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Abstract 

A numerical integration method that has rapid convergence for integrands with known singularities is presented. 
Based on endpoint corrections to the trapezoidal rule, the quadratures are suited for the discretization of a variety of 
integral equations encountered in mathematical physics. The quadratures are based on a technique introduced by 
Rokhlin (1990). The present modification controls the growth of the quadrature weights and permits higher-order rules in 
practice. Several numerical examples are included. 
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1. I n t r o d u c t i o n  

The discretization of a linear Fredholm integral equation of the second kind, 

f (x)  + f~ K(x, t) f(t) dt = 9(x), (1) 

where the kernel K is in L2([a,b] 2) and the right-hand side g and unknown f a r e  in LZ([a, b]), is 
typically obtained either by projection of the equation onto an n-dimensional subspace of L z 
(Galerkin method or method of moments), or by approximation of the integral at n points 
{xl .... , x.} c [a,b] by a quadrature,  

f f  g(xi, t ) f( t)dt  ~ ~ wijK(xi, xj)f(xj),  i=  l , . . . ,n  (2) 
j = l  
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(Nystr6m method). Both methods lead to a system of n linear algebraic equations in n unknowns, 
which are then solved by one of a variety of techniques. It is well known that the rate of 
convergence of the Galerkin method is determined by the convergence of the subspace projections 
to the underlying functions, as well as the accuracy of the computed projection coefficients (inner 
products) for K and g. Also known, though perhaps less widely appreciated, is the fact that the 
NystriSm solution converges, as a function of n, to the true solution f a t  a rate equal to the rate of 
convergence of the quadrature to the integral (see, e.g., [5]). 

For a large variety of physical problems, the kernel K is singular for x = t, dooming most 
conventional quadrature schemes to slow convergence. Often, however, the kernel is derived from 
a Green's function with singularity of known type. For this case Rokhlin [-6] constructed 
quadratures based on corrections to the trapezoidal rule. His scheme achieves kth order conver- 
gence by altering 2k weights to exactly integrate the functions t C s ( x  - t) + t ~, for i , j  = 0, . . . ,  k - 1, 
where the function s contains the singularity of K. Rokhlin's method is restricted to fairly low 
orders of convergence, due to explosive growth in magnitude of the altered weights with k. Starr [-7] 
constructed quadratures based on points at Chebyshev nodes on subintervals of [a,b], with 
quadrature weights again determined so that the functions t i . s ( x  - t) + t j are integrated exactly 
for i, j = 0, . . . ,  k - 1. To prevent the rapid growth of the quadrature weights with k, he allowed 
extra weights (e.g., 3k weights for 2k constraining equations) and minimized their sum of squares. 

This paper introduces quadrature rules inspired by the rules of Rokhlin and Starr. Global rules 
are developed, based on corrections to the trapezoidal rule, that achieve arbitrary order conver- 
gence, with weights of small magnitude, for integrands with known singularities. The rules are 
constructed as follows: 

(1) For differentiable integrands on [ a , b ] ,  the trapezoidal rule is corrected at the endpoints 
according to the Euler-Maclaurin formula. The derivatives at a and b appearing in the Eu- 
ler-Maclaurin formula are computed to the necessary order by finite-difference expressions of the 
integrand. The coefficients in the expressions are limited in magnitude by using values of the 
integrand at more points than dictated by the order of convergence. 

(2) For an integrand with a singularity of known type at x, the interval of integration is divided 
into subintervals I-a, x] and [x, b] so that the singularity lies at one endpoint of each subinterval. 
The trapezoidal rule for each interval is corrected at the differentiable end according to 1. At the 
singular end, corrections are made so that the functions t i. s ( x  - t) + t ~ are integrated exactly, for i, 
j = 0, . . . ,  k - 1. Here the integrand is assumed to have the f o r m f ( t ) ' s ( x  - t) + g(t) ,  w h e r e f a n d  
g have multiple continuous derivatives. As in (1), the correction weights are limited in magnitude by 
allowing more than 2k weights and minimizing their sum of squares. 

We define these quadrature rules in Section 2, establish their analytical properties in Section 3, 
present numerical examples in Section 4, and conclude with a brief discussion in Section 5. 

2. Corrected trapezoidal rules 

It is well known that the trapezoidal rule for integration can be modified at the ends via the 
Euler-Maclaurin summation formula to a rapidly convergent rule, provided that the integrand is 
sufficiently differentiable. We will suppose, instead, that the integrand is singular at one end of the 
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interval and the form of the singularity is known. In this case a modification at that end may be 
determined so that the corrected trapezoidal rule is rapidly convergent. In the following subsection, 
we define endpoint corrections, for differentiable integrands, that depend on the node spacing h for 
the trapezoidal rule with n subintervals, the order k of the corrected rule, the number of correction 
weights m, and the node spacing h' = h/c of the corrections. In the following subsection, we use 
these corrections at the smooth end and define corrections at the singular end with order k', 
number of correction weights m', and correction node spacing h" = h/c'. 

2.1. Differentiable integrands 

We begin with the assumption that the integrand is differentiable throughout the interval of 
integration. For k an even positive integer, m a positive integer with m > k, and c e ~, c > 0, we 
define the 1 × m vector d~ by the formula 

dcmk= Vck" (M~)  I, (3) 

where the 1 x (k - l) vector VCk is defined by 

/ B2 2 Bk- 2 C*- Z, 0 /  (4) = ~0,'~.I C ,0, B4 ~ l  C4' "" '  O, (k - 2)------~ Vck 

the m x (k - 1) matrix M~' is defined by 

1 0 0 
1 1 1/2 ! 
1 2 22/2 ! 

1 m - 1  ( m - 1 ) 2 / 2 !  

. . °  

0 

1/(k - 2)! L 
2 k-2/(k -- 2)! / 

(m - 1) k- 2/(k - 2)! 

(5) 

B i denotes the jth Bernoulli number (see, e.g., [1]), and superscript I denotes pseudoinverse (see, 
e.g., [3]). We define the linear operator T,(.,  a,b) by the formula 

T , ( f a ,  b) = h'(½f(a) + f ( a  + h) + ... + f ( b  - h )  + ½f(b)), (6) 

and the linear operator D~"(., a, b) by the formula 

m n  Dck ( f ,a ,b)  = h'dc'~" 

f(a)  +f (b)  ) 

f ( a  + h') + f ( b  - h') 

f ( a  + (m - 1)h') + f (b  (m - 1)h') 

(7) 

where h = (b - a)/n and h' = h/c. For differentiable functions f, the expression D~n(f, a, b) is a kth 
order correction to the trapezoidal rule. 
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Theorem 2.1. Suppose the function f :  [a, b] ~ ~ is k times continuously differentiable. Then there 
exists C > 0 independent of n such that 

,8, 

Proof. The Euler -Maclaur in  formula (see, e.g., [3]) states 

f ~ k/2- 1 f ( x ) d x  = T, ( f ,a ,b)  + ~ h 2i B2i _ f l E i -  i=1 ~ ( f t2i-  1)(a ) 1)(b)) 

-1- hk BR -~. (a - b) ftk)(() 

for some ( ~ l,a, b]. Taylor 's  expansion o f f  about  a is 

k- 2 lih,~j (ih,)k - 1 
f (a  + ih') -- ~ f l J ) ( a ) ~  +f~k-l)(vi)(k - 1)!' 

j=0  

with a <~ vi <<. a + ih', for i -- 0, 1 , . . . ,  m - 1, which can be written in matrix form as 

(9) 

(10) 

f ( a  + h') = M'~" f ' (a)  

f ( a  + (m - 1)h')/ fCk-2)(a) 

+ eh', (11) 

where M~" is defined in (5) and eh, is a (k - 1) x 1 vector with elements of order  O((h') k- 1). Similarly, 

we obtain 

f (b)  ) 

= M'~. - i f (b) .  + e'h'. (12) 

( _ 1)tk- 2)ftk- 2)(b ) 

The  matr ix M~' is of rank k - 1, for the functions x J/j !, for j = 0, 1, . . . ,  form a Chebyshev system; 

hence 

(M~)~M~ = Ik- 1 ,  (13) 

the identity matrix of dimension k - 1. Combina t ion  of (7), (9), (11)-(13) yields (8). []  

Remark  2.2. Theorem 2.1 does not  address the form of the dependence of C on f, a, b, k, c, and m. It 
is not  difficult to see that  C depends  onftk)(O, for some ( E [a, b]. It also depends on the accuracy of 
the finite-difference approximat ions  to the odd derivatives off ,  as represented by D~". While the 
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order of these approximations is O(hk), the constant depends on m/c, as will be seen in the examples. 
For role small, the error is dominated by the Euler-Maclaur in  error hkftk)(O(a -- b)Bk/k!.  

2.2. Singular integrands 

We now consider integrands of the form 

f ( x )  = dp(x)" s(x) + ~b(x) (14) 

for all x e (0, b], where ~b, O e ck([ 0, b]) and the function s ~ ck((O, hi) is singular at 0, but integrable 
on the interval [0, b]. We assume that the numerical separation o f f  into the two summands of (14) 
is unavailable in practice; for quadratures in the contrary case see Kress [4]. We will see that 
endpoint  corrections of the trapezoidal rule which make the quadrature exact for functions 
x i" s(x) + x J, for i, j = 0 , . . . ,  k - 1, are in general kth-order convergent. We define the right-end 
corrected rule R~k"( • , b) by the formula 

R~"(f, b) = T ' ( f ,  b) + h. d ~ .  

f ( b )  \ 

f ( b  _ h') J ,  

f ( b  - ( m  - 1)h') /  

(15) 

where the linear operator T ' ( . ,  b) is defined by 

T ~ ( f b )  = h ' ( f ( h )  +f (2h)  + .-- + f ( b  - h )  + ½f(b)) (16) 

and d~'~ is defined by (3); h = bin and h' = h/c. We denote the error of the right-end corrected rule as 
follows: 

Ec"ck"(f b) = f ( x )  d x  - Rc~k"(f b). (17) 

I m m t n  For positive integers k' and m, and c' e ~, c' > 0, we define the 1 x m' vector 6ckc'k" by the formula 

ram', Uckk'" (L~k~') t, (18) 6ckc'k" = h -  1 .  . . n  

where the 1 x 2k' vector u~'~'b is defined by 

u~7,, = (E~"(1, b), ... , E~"(x  k '-  1, b), E~"(s(x), b ) , . . . ,  E~k"(X k'-  1. s(x), b)) ,  (19) 

and the m' x 2k' matrix L~'k", is defined by 

1 h" ... (h,,)k'- 1 s(h") ... 

L~R~ ' = 1 2h" ... (2h,,)k'-i s(2h") ... 
• . . 

1 m'h" ... (m'h") k ' - I  s(m'h") ... 

(h") k ' - l  "s(h") 

(2h,,)k'- 1 "s(2h") j 

(m,h,)k ' -  1 s ( m ' h " ) /  

(20) 
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where h" h/c' and h b/n. We define the linear operator mm'n . = = Ackc'k'( , b) by the formula 

Inm' tl I " (~ckc'k' dck~,k,(f, b) h mm'n. 
f(h") I f(2h") 

f (m'h")l  

(21) 

and the following theorem holds. Its proof is based on the observation that the integrandfis  the 
sum of two parts, one integrated exactly, and the other vanishing at 0 along with several of its 
derivatives. The proof directly follows that of Theorem 2.1 in [6], and is omitted. 

Theorem 2.3. Suppose the function f :  [a, b] ~ E is given by (14), and that the elements of 6~,'~, defined 
in (18) are bounded with respect to n. Then there exists C > 0 independent of n such that 

] f ] f ( x )dxRm~,rb , ,m ,~b  ) C (22) - -  ck I,J, ) - -  A c k c ' k , ( f  ~ ~ n m i n ( k , k ,  ) .  

,,m', < k, i.e., if the correction at the smooth end is We will see that the condition o n  (~ckc'k' is met if k' 
of higher order than the correction at the singular end. In this case, then, we obtain quadrature 
rules with order of convergence k', which is arbitrary. In the next section we demonstrate that the 
other parameters determining the quadrature weights can be chosen so that the convergence is not 
overshadowed by roundoff error. 

3. The size of the correction weights 

It is well known that Newton-Cotes quadrature rules, with n equispaced nodes, and weights 
determined so as to exactly integrate polynomials of degree less than n, are impractical for large 
n due to explosively growing weights (see, e.g., [8]). It might be expected that finite-difference 
approximations to the high-order Euler-Maclaurin corrections to the trapezoidal rule would suffer 
a similar fate, which is indeed the case. But the size of the weights can be controlled by using more 
weights than the order of the rule and (for the Euler-Maclaurin corrections) by increasing the 
spacing between correction nodes. The following theorem governs the behavior of the elements of 
dc'~ as c and m are varied. 

Theorem 3.1. 

lim max [(d~)il = O; 
m--,o~ l <~i<.m 

furthermore, for any y e ~, y > 0, the value 

max I(d~'.,,.k)il 
l <~ i <~ ra 

Suppose the vector dc] of correction coefficients is defined by (3). Then we have the limit 

(23) 

(24) 

is bounded with respect to m. 
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Proof. Let y = c/m (not necessarily a constant).  We rearrange Eq. (3) for d~'~ to obtain 

/ 
Bk-2 ( 

d¢'~= 0 , - ~  y2, . . . ,  k _ 2 ~, k-Z, Ol 'm 

\ 

1 0 

1 1/m 

1 (m - 1)/m 

• -. 0 t I ... (1/m)k- z 

• .. ( (m--1) /m)  k-2 

(25) 

where we denote  the vector on the r ight-hand side by V~,k and the matrix by (A~t~') I. We denote  the 
sequence of o r thonorma l  (shifted and scaled Legendre) polynomials  for the interval [0, 1] by 
Po, P l , . . - ;  the momen t s  flij are defined by the formula 

fo ' f l i j= p i (x )xJdx ,  i , j = O ,  1 ,2 , . . . ,  (26) 

the (k - 1) x (k - 1) matrix fig by 

flk = { f l i j } i=O ..... k - 2 ; j = O  . . . . .  k - 2 ,  ( 2 7 )  

and the (k - 1)× m matrix ~//'~' by 

~¢¢'~ = {p,( j /m)} ,=o ..... k-2;j=O ..... m - l "  (28) 

We obtain 

lim 1 . ~ , ~ , .  ~ .  = fig (29) 
m ''~ OO m 

from the observat ion that  each element of the matrix on the left is a rectangular-rule quadra ture  for 
the corresponding element on the right. For  a vector v we let [I v [J denote  maxilv~l. Combin ing  (25) 
and (29) we have 

lim II d~ II = lim [I 6rk "m-(A4~') t [I 
m--~ OO 

~< lim l[ frk((m- X ~1~)~ _ fl~ l ~ n ) [ 1  "~ lim II ~k"/~k- 1 ~ ,  II 

= lim l[ Vrk" flk X ~,~, II, 

if y is bounded• If y is a constant,  the latter limit is bounded  by II f~k"//~- x 11• (k - 1)sup IpRx)l, where 
the sup remum is taken over x e [0, 1] and i ~< k - 2, giving (24); ify --. 0 as m ~ ~ ,  then the limit is 
0, yielding (23). []  

Theorem 3.1 implies that  we can choose the number  of correction weights m and their relative 
spacing c = h/h' such that  c/m, and magni tude  of the largest correction weight, is as small as 
desired• The  tradeoff is that  the quadra ture  error  constant  increases as c/m decreases; our  
experiments indicate, however, that  a favorable balance is possible. A similar si tuation exists for the 

~ckc'k'" singularity correction weights mm'n 
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Irtl m ' l l  T h e o r e m  3.2. Suppose  that  f o r  s(x)  = x a wi th  0 < [oc I < 1, the vector 6ckc'k" o f  correct ion weights  is 
def ined by  (18), with  k' < k. T h e n  f o r  any  Y ~ ~,  7 > O, the value 

r l l ~ l ~ ' , l l  max I(ar,k,e.m',k')il (30) 
l <~i <~m' 

is bounded  wi th  respect  to m' and n, and fur thermore ,  we  have the limit 

m r t l "  n lim max I(a~c,k,),l = 0 ,  (31) 
m'~oo l <~i<~m" 

Proof. Let 7 = c'/m'. We rearrange (18) to obtain 

mm" n 1 Uckc k' Jck~'k' = h -  "mm'~ . (L,ff )1, (32) 

-m=',' is defined by where the 1 x 2k' vector Uck¢, k, 

U~k~'k"m~'"" = ( E ~ ( 1 ,  b)/1, . . . ,  E~k~(X k ' -  ', b) /(m'h")  k ' -  ' ,  

E ~  ~ (x ~, b)/(m'h")~, . . . , E~k ~ (x ~ + *" - ' ,  b)/(m'h")~ + k" - ,  ) ,  

and the m' x 2k' matrix Lk, is defined by 

1 1/m' ... ( 1 /m , ) k ' - I  (l/m,)= 

--m" 1 2/m'  ... (2 /m')  k ' - I  (2/m') ~ 
L k ,  ~ • . • 

1 1 . . .  (1)k'-  x (1)~ 

,lJm',' k -i) 
... (2 /m,y ,+k ' -  

... (1)~+k'-i 

(33) 

(34) 

We now use the observat ion (see [6]) that  for p > - 1 and a quadra ture  R~k~(XP, b) of right-end 
order k >~ 2, there is a constant  C > 0 such that  for p < k, 

I f~  m~ p C x p d x  - R c k  ( x  , b) < _ l ~  (35) 
r i p+  • 

Combin ing  (17), (33), and (35) we obtain 

~ m m ' n  t I(Uckc'k' )il iE~n(x i -  1,b)l Ci 
(m,h, ,) i-1 < n ( b / y ) i - 1 ,  (36) 

IE~n(x=+i- 1,b)l Ci+k - . , . 'n'  (37)  I(Uckc'k')i+kl = (m,h,,)~+i-1 < n(b /y )~+i-1 ,  

for i = 1 , . . . ,  k'. The pseudoinverse of L~' is bounded,  as can be shown by a derivation similar to 
that  in the p roof  of Theorem 2.3. The combina t ion  of (32), (36), (37), and the bound  for (E~')~ yields 
(30), for Y bounded,  and (31), if c' = ~,-m is a constant.  []  
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4. Numerical examples 

4.1. Differentiable integrands 

The well-known fourth order quadrature formula (see, e.g., [9]) 

fo ' f (x)  ~ + 26f(a + h) + + 2h) + f ( a  + 3h) + ... dx h ° (~s f (a) 2Z~g f (a 

+ f ( b  - 3h) + zz~4 f ( b  - 2h) + ~6 f ( b  - h) + a8 f(b)) 

is the rule T,( f ,  a, b) + D~"(f, a, b) with c = 1 and m = k - 1 = 3. In this case, d¢'~ = ( - ~, 16, - ~ ) .  
Various other values of dc'~ are given in Table 1. 

We have tested the convergence of these rules for the functionf(x)  = sin(23x) + cos(24x) on the 
interval [0, 1]. The errors for various parameter choices are shown in Table 2, as computed with 
double precision arithmetic. It can be seen that the rules perform well and the expected order of 
convergence is achieved in each case. The close spacing of the corrections for c = k reduces the 
error considerably, compared with c = 1. The largest correction weight for c = k = ½m = 12 has 
magnitude ~ 2ah, so cancellation errors are minimal. 

4.2. Singular integrands 

Several examples have been computed for singular integrands. The test function f (x )=  
sin(23x) + cos(24x) + s(x)(sin(21x) + cos(22x)) was used, for the singular part s(x) one of the 

Table 1 
Endpoint  corrections transform the familiar trapezoidal rule into a high-order quadrature for 
functions with several continuous derivatives. The quadrature rules are given by the for- 
mula S~f (x )dx  = T , ( f ,a ,b )  + hZ~=l(d~)i[ f(a + (i - 1)h') + f ( b  - (i - 1)h')] + O(hk), where h = 

(b - a)/n, h' = h/c, and T,(  f ) = h [½f(a) + f (a + h) + ... + f (b - h) + ½ f(b)] .  The elements (d~)i are 
tabulated as Ni/D 

c = l ; m = k - 1  

k = 2  k = 4  k = 6  k = 8  k = 1 0  k = 1 2  

D 1 24 1440 120 960 7 257 600 

N1 0 - 3 - 245 - 23681 - 1 546047 
N2 4 462 55 688 4 274 870 
N3 - 1 - 336 - 66 109 - 6 996 434 
N4 146 57 024 9 005 886 
N5 - 2 7  - 3 1 5 2 3  - 8 2 7 7 7 6 0  
N6 9 976 5 232 322 
N7 - 1 375 - 2 161 710 
Na 526 154 
N9 - 57281 

Nlo 
N l l  

958 003 200 

- 216254335 
679 543 284 

- 1412947389 
2415 881 496 

-- 3 103 579086 
2 939 942 400 

- 2023224 114 
984 515 304 

- 321455811 
63 253 516 

- 5 675 265 
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T a b l e  2 
D mn E r r o r s  for  t he  a p p l i c a t i o n  o f  t he  co r r ec t ed  t r a p e z o i d a l  ru les  T , (  f ,  a, b) + ck ( f ,  a,  b) to  the  f u n c t i o n  

f ( x )  = s in(23x)  = s in(23x)  + cos (24x)  o n  t he  in t e rva l  [a,  b]  = [0, 1], as  c o m p u t e d  u s i n g  d o u b l e  p rec i s ion  

a r i t h m e t i c  

c = 1; m = k - 1 c = k ;  m = 2k 

n k = 4  k = 8  k = 1 2  k = 4  k = 8  k = 1 2  

10 1.70E - 02 1.83E - 02 - -  1.49E - 02 6 .92E - 04 1.10E - 06 

20 5.32E - 04 1.78E - 04 4 .43E - 04 3.79E - 04 3.07E - 07 3.75E - 10 

40 1.21E - 05 4 .33E - 06 1.17E - 07 1.35E - 05 5.10E - 10 5.34E - 14 

80 2 .38E - 06 9 .83E - 09 9 .14E - 11 2 .13E - 06 1.83E - 13 2 .90E - 15 

160 1.99E - 07 9 .60E - 12 1.51E - 14 1.72E - 07 3 . 0 0 E -  16 3.00E - 16 

320 1.39E - 0 8  2 .85E - 14 2.20E - 15 1.20E - 0 8  3.80E - 15 1.00E - 16 

T a b l e  3 

c o r r e c t i o n s  6ckc,k, for  t h r ee  di f ferent  s ingular i t ies .  H e r e  c = k = ~ m 16 a n d  L i m i t i n g  va lue s  as  n ~ ~ o f  e n d p o i n t  - ram', = 

k ' = 4  

s(x) = x-1/2 s(x) = log(x)  s(x) = x 1/2 

c' = 8; m ' =  8 

0 .7889576157976986E  + 01 

- 0 .1014839102693306E  + 03 

0 .4982052353339497E  + 03 

- 0 . 1 2 4 1 7 7 8 6 0 4 5 4 3 4 1 1 E  + 04 

0 .1751093993580452E  + 04 

- 0 .1419085152097947E  + 0 4  

0 .6179863268019096E  + 03 

- 0 . 1 1 2 3 2 7 4 6 4 9 6 3 6 0 0 3 E  + 03 

c ' = 4 ; m ' = 1 6  

0 .8462579989929540E  + 01 

- 0 .5435908661112594E  + 02 

0 .1004033238128716E  + 03 

- 0 .1562169259798149E  + 02 

- 0 .6374313277726896E  + 02 

- 0 . 3 0 7 2 5 1 0 6 5 1 9 3 6 0 0 8 E  + 02 

0 .2115143836148849E  + 02 

0 .4683397742937565E  + 02 

0 .3502121990978420E  + 02 

- - 0 . 1 6 1 6 4 3 2 6 7 0 7 0 4 0 6 6 E  + 00 

- 0 . 3 3 3 6 3 1 2 8 1 9 2 1 0 0 9 6 E  + 02 

- - 0 . 4 1 7 3 8 6 0 4 3 5 4 4 7 3 3 6 E  + 02 

- 0 . 1 6 4 1 8 1 6 3 4 4 8 6 2 3 3 2 E  + 02 

0 .2850714644518526E  + 02 

0 .4919461810492213E  + 02 
- 0 .3294374628555238E  + 02 

0 .3093483401777122E + 01 

- 0 .3101788376740790E + 02 

0 .1362059155903270E + 03 

- 0 . 3 1 4 7 4 7 4 8 0 8 7 2 4 2 1 4 E  + 03 

0 .4215054127612634E + 03 

- 0 .3287854038787327E + 03 

0 .1388011671370668E + 03 

- 0 . 2 4 5 5 5 2 1 0 3 7 1 8 7 2 2 7 E  + 02 

0 .3448173692662518E + 01 

- 0 .1601143873638304E + 02 

0 .2427502641368332E + 02 

0 .4722206428800859E + 0 0  

- 0 .1447823711138307E + 02 

- 0 . 9 9 8 9 3 3 5 9 5 6 0 2 6 0 6 6 E  + 01 

0 .2211594559407416E + 01 

0 .1043094039079357E + 02 

0 .9802590813947814E + 01 

0 .2167076760778314E + 01 

- 0 . 6 6 6 1 8 6 9 9 4 4 1 4 8 1 3 6 E  + 01 

- 0 . 1 0 3 4 0 7 1 9 9 0 7 6 7 9 0 5 E  + 02 

- 0 .5384782825493895E + 01 

0 .5793630843054246E + 01 

0 .1228302599763183E + 02 
- 0 .7517895633725869E + 01 

0 .1761384695584808E + 01 

- 0 . 1 3 8 2 1 1 8 3 4 4 8 5 2 9 7 7 E  + 02 

0 .5459150117813370E + 02 

- 0 . 1 1 7 3 5 7 4 8 4 5 4 9 8 7 0 6 E  + 03 

0 .1507790199321616E + 03 

- 0 .1147784911579322E + 03 

0 .4762309598361213E + 02 

- 0 .8297842633159577E + 01 

0 .2050559756045592E + 01 

- 0 .6865912494117176E + 01 

0 .8491285270322254E + 01 

0 .1705242848943216E + 01 

- 0 .4604469053907677E + 01 

- 0 .4354220712239432E + 01 

- 0 .3188321047055960E + 00 

0 .3251630138161534E + 01 

0 .3885773620301128E + 01 

0 .1580226691059038E + 01 
- 0 .1806976420043709E + O1 

- 0 .3745300019759054E + 01 

- 0 .2450268607844168E + 01 

0 .1662082464711006E + 01 

0 .4590184679455359E + 01 

- 0 .2571006056382313E + 01 
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T a b l e  4 

R'"  Amm'"tCb) t o  t h e  f u n c t i o n  E r r o r s  f o r  t h e  a p p l i c a t i o n  o f  t h e  c o r r e c t e d  t r a p e z o i d a l  r u l e s  ck ( f , b )+  ckc'k',J, 
f ( x )  = s i n ( 2 3 x )  + c o s ( 2 4 x )  + s(x)(sin(21x) + c o s ( 2 2 x ) )  f o r  t h r e e  c h o i c e s  o f  t h e  s i n g u l a r  f u n c t i o n  s(x), o n  t h e  

i n t e r v a l  [0 ,  b-I = I-0, 1 1  a s  c o m p u t e d  u s i n g  d o u b l e  p r e c i s i o n  a r i t h m e t i c .  H e r e  c = k = ] m  = 16 

s(x) = x-1/2 s(x) = l o g ( x )  s(x) = x 1/2 

n k = 4  k = 8  k = 4  k = 8  k = 4  k = 8  

c '  = m '  = 2k '  

10 2 . 9 7 E  - 02  2 . 0 4 E  - 05  6 . 7 0 E  - 03  1 .91E  - 06  9 . 1 2 E  - 03 9 . 8 3 E  - 07  

20  1 .27E  - 03  1 .51E  - 08  3 . 5 9 E  - 05  4 . 0 6 E  - 10 7 . 8 6 E  - 07  3 . 3 4 E  - 10 

40  1 .41E  - 05  3 . 3 6 E  - 09  4 . 7 8 E  - 07  7 . 4 9 E  - 11 1 .53E - 07  9 . 1 5 E  - 12 

80  5 . 1 2 E  - 07  3 . 2 1 E  - 09  7 . 0 1 E  - 10 1 .58E  - 10 4 . 4 6 E  - 09  4 . 5 5 E  - 11 

160 1 .73E  - 08  1 .34E  - 10 2 . 7 1 E  - 10 5 .2 1 E  - 12 1 .12E - 10 2 . 8 7 E  - 14 

320  6 . 1 2 E  - 10 1 .36E  - 11 1 .61E - 11 3 . 8 3 E  - 13 2 . 8 8 E  - 12 7 . 1 9 E  - 15 

c '  = k; m '  = 4k '  

10 1 .07E  + 01 2 . 1 7 E  + 00  2 . 2 9 E  - 01 1 .14E  - 01 2 . 7 5 E  - 01 4 . 5 1 E  - 02  

20  1 .81E  - 01 8 . 1 3 E  - 0 4  8 . 0 1 E  - 03  2 . 2 0 E  - 05  3 . 3 2 E  - 03  1 .55E  - 05  

40  2 . 9 7 E  - 03  7 . 9 8 E  - 07  1 .83E - 04  3 . 2 9 E  - 08  7 . 9 3 E  - 05  7 . 6 3 E  - 09  

80  4 . 7 6 E  - 05  2 . 2 6 E  - 10 4 . 9 9 E  - 0 6  1 .45E  - 11 3 .7 7 E  - 07  3 . 4 5 E  - 12 

160 2 . 6 8 E  - 0 6  3 . 6 7 E  - 12 5 . 3 1 E  - 08  1 .51E  - 13 2 . 4 5 E  - 08  1 .26E  - 14 

320  9 . 3 5 E  - 08  6 . 6 2 E  - 14 4 . 6 7 E  - 10 1 .64E  - 14 6 . 5 8 E  - 10 3 . 0 8 E  - 16 

functions x -1/2,  log(x), and x ~/2. The correction coefficients were computed using REAL*16 
(quadruple precision) arithmetic, due to the poor conditioning of the small scale linear systems to 
be solved. Note that although the correction coefficients differ for various n, they reach limiting 
values as n --, ~ (see [6]); this property enables us to compute them for several n and obtain them 
for other values of n by interpolation. 

Table 3 shows the limiting values of the correction coefficients for k' = 4. For each of the three 
singularities, two values of the pair (c', m') were used. These results demonstrate that while the 
correction coefficients are rather large for k' = 4, their size can be controlled (to avoid cancellation 
errors) by decreasing c' and increasing m'. Table 4 displays the quadrature errors resulting from 
using the correction coefficients on the test function. The quadrature computations were made 
using double precision arithmetic. These examples demonstrate that with appropriate choices of 
the parameters c, k, c', k', m and m', effective, high-order quadratures for known singularities are 
practical. 

5. Discussion 

In this paper we have developed quadratures based on the trapezoidal rule that achieve 
high-order convergence for integrands with known singularities. These rules, with quadrature 
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nodes that are equispaced except for the correction terms, are well suited to the evaluation of 
integral operators, which typically must be evaluated at multiple points. We remark that the 
locations of the density values can be equispaced, with the values at correction nodes determined 
by local interpolation (see, e.g., I-2]). 

The quadratures presented here overcome a limitation of similar quadratures developed in I-6], 
namely that the correction weights grow rapidly with increasing order. The slowdown in growth is 
achieved by allowing more correction weights than required by the number of constraining 
equations and minimizing their sum of squares. 

We have demonstrated the asymptotic behavior of the quadratures and the quadrature weights 
analytically, while giving numerical examples to demonstrate their effectiveness for typical para- 
meter values. 
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