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Ten Hadamard Matrices of Order 1852 of Goethals-Seidel Type

DracgoMIR Z. Dokovic

No Hadamard matrices of Goethals—Seidel type of order 1852 appear in the literature. In
this note we construct ten such matrices. All of them have the maximal possible excess 79 636.
The existence of a Hadamard matrix of order 1852 follows from a recent theorem of Yamada,
but this fact has remained unnoticed so far.

A (1, —1)-matrix A of order m is a Hadamard matrix if AA"=ml, (A" is the
transpose of A and [, is the identity matrix of order m). If such A exists and m >2
then 4 | m and we shall write m = 4n. There exists a Hadamard matrix of order 2. Since
the tensor product of Hadamard matrices is again a Hadamard matrix, one is mainly
interested in constructing Hadamard matrices of order m = 4n for n odd. According to
[7], Badamard matrices of order 4n are known for all odd n <500, except for the
following 18 values of n:

107, 167, 179, 191, 213, 223, 239, 251, 283,
311, 347, 359, 419, 443, 463, 479, 487, 491.

All these numbers, except 213 which is divisible by 3, are primes congruent to 3
(mod 4).

Two remarks are in order. First, the number 213 should be removed from this list
because T-sequences of length 71 have been recently constructed in [5]. (These
sequences are also given in [7].) Indeed, this implies that there exists a Baumert—Hall
array of order 4 -71. Hence one can insert four Williamson type matrices of order 3
into this array to obtain a Hadamard matrix of order 4 - 213. Second, the number 463
also should not appear in this list. Indeed, g =461 is a prime =5 (mod 8) and there
exists a skew Hadamard matrix of order (g + 3)/2 =232 =_8-29. By Theorem 4 of [9]
this implies the existence of a Hadamard matrix of order 4(q +2)=4-463. It is
interesting that this fact was noticed neither by Yamada [9, p. 378] nor Miyamoto [6,
p- 107].

In this note we shall construct ten Hadamard matrices of order 4 - 463 = 1852 which
are of a special type, known as the Goethals—Seidel type. Apart from their own
Instrinsic interest, these matrices have the maximum possible excess, namely
4:43-463=79636. Indeed, this excess coincides with the upper bound due to
Kounias and Farmakis [4].

In view of [8, Theorem 8.41, Cor. 8.42] it suffices to construct 4—
(n; ny, ny, ns, ny; A) supplementary difference sets modulo # with n =463 and n + A =
Y n;. Recall that four subsets S, S,, S, S; of {1,2,...,n—1} are said to be
4 — (n;ny, ny, ns, ny; A) supplementary difference sets (sds) modulo n if |S.|=n, for
k=1,2,3,4and foreachre{1,2,...,n—1} we have A((r) + - - - + A,(r) = A, where
A«(r) is the number of solutions of the congruence i —j =r (mod n) with {i, j} = S,.

Let G be the group of non-zero residue classes modulo the prime 463, and let
H=(251) ={1, 21, 33, 34, 118, 163, 169, 178, 182, 190, 196, 200, 230, 251, 286, 308,
318, 412, 441, 449, 450} be its subgroup of order 21. We enumerate the 22 cosets
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a;, 0<i=<21, of Hin G as follows:
oy =H, a,=2H, o, =4H, as=5H, ag="7H, aqo=8H,
a1y = ].OH, Kiq = 19H, a/16=25H, (Y18=29H, [Y20=49H,
and @y ;= —1- ay, for 0=<i=<10.
We have constructed ten non-equivalent 4 — (463; 210, 231, 231, 231; 440) sds’s S;,
S,, 8, Ss. (Two sds’s are said to be equivalent if one can be obtained from the other by

permuting and/or shifting the four sets S;, and/or by multiplying each S, by some fixed
element of G.) In all ten cases the sets S, have the form

Sk=UCVi; ie"k; k=]~)2)314,-

where J, = {0, 1, . .., 21}. Hence, instead of listing the sets S, we shall list the index
sets J,.. The ten solutions are as follows:

1) JL=1{9, 10, 12, 14, 15, 17, 18, 19, 20, 21},
5,=1{0,1,4,5,9, 10, 11, 14, 16, 19, 21},
5,=1{0,1,4,6,9, 10, 12, 14, 15, 17, 20},
I,={1,3,4,6,7,8, 10, 13, 19, 20, 21};
) JLi={1,4,6,7,8,10, 13, 14, 15, 21},
5L=1{0,1,2,3,4,7, 11, 12, 13, 19, 21},
5,={0,1,4,5,67, 13,15, 19, 20, 21},
J.=1{2,7,8,9, 11, 12, 13, 14, 17, 19, 20};
(3) Ji=1{4,7,8,9,10, 14, 16, 17, 19, 21},
L,=1{0,4,6,7,12, 13, 14, 17, 18, 20, 21},
JL=1{1,3,4,8 10, 11, 13, 16, 19, 20, 21},
J,=1{1,4,56,7,9, 14, 15, 16, 17, 20};
(4) J,=1{4,7,8,9,10, 14, 16, 17, 19, 21},
J,=1{0,4,5,6,7,8,14, 15,16, 17, 21},
J,=1{0,4,6,7,12, 13, 14, 17, 18, 20, 21},
J.={1,3,4,8, 10, 11, 13, 16, 19, 20, 21},
(5) JLi=1{2,3,4,809,10, 12, 15, 17, 20},
5L,=1{0,1,2,8,10, 11, 12, 13,17, 19, 21},
1,=1{0,3,5,6,8,9,13, 15, 19, 20, 21},
J,=1{0,3,7,8,10, 11, 13, 16, 19, 20, 21};
(6) J,=1{3,6,7,10,12, 13, 15, 17, 18, 19},
5L,=1{0,1,2,3,7,13, 14, 17, 18,20, 21},
J,=10,2,4,5,8,10, 12,17, 18, 19, 21},
J.=1{1,3,4,6,7, 10,15, 17, 19, 20, 21};
(7) J,=1{8,11, 13, 14, 15, 16, 18, 19, 20, 21},
5L,=1{0,1,4,5,9,10, 11, 14, 16, 19, 21},
L,=1{0,1,4,6,9,10, 12, 14, 15, 17, 20},
J.=1{1,3,4,6,7,8, 10,13, 19, 20, 21};
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(8) L=1{2,6,7, 11,12, 13, 14, 16, 18, 19},
5L=10,1,2,3,7, 13,14, 17, 18, 20, 21},
L=1{0,2,4,5,8, 10,12, 17, 18, 19, 21},
J,=1{1,3,4,6,7, 10,15, 17, 19, 20, 21};

(9) J,=1{0,1,4,9, 10, 12, 13, 18, 19, 20},
5=1{0,2,4,6,7, 11,12, 15, 18, 20, 21},
J,=1{0,3,5,10, 11, 12, 16, 17, 18, 20, 21},
J,={0,4,56,7,8, 10,12, 16, 17, 21};

(10) J,=1{0,1,4,9,10, 12, 13, 18, 19, 20},
L,=1{0,3,5,10,11, 12, 16, 17, 18, 20, 21},
5=1{0,4,56,7,8, 10,12, 16, 17, 21},
J.=1{1,3,5,6,7,10,13, 14, 19, 20, 21}.

The above ten sds’s are pairwise non-equivalent because they have different
intersection patterns. For instance, in the first solution we have

l-’zn]3l=6; l-’zmjd.l:l]a NJ=5,
while in the second solution we have
N s =7, [N Ty =6, [sNJy =4

(Shifting cannot be used since it destroys the property of the S;’s being unions of cosets
%)

Needless to say, these sds’s were found by a computer search. The computation was
carried out partly on a Sun Sparc-station 2 and partly on a MIPS machine. The main
idea used in the computer search was to try to construct the required sds’s from the
cosets of a suitable subgroup of non-zero residue classes of integers mod n = 463. The
same method (with some modifications when # is not a prime) was used successfully by
the author recently to construct skew Hadamard matrices of Goethals—Seidel type for
19 orders for which no skew Hadamard matrices were known previously (see [1-3]).
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