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Transcriptional activation of hypoxia-inducible factor-1a by HDAC4
and HDAC5 involves differential recruitment of p300 and FIH-1
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a b s t r a c t

The interplay between hypoxia-inducible factor-1a (HIF-1a) and histone deacetylase (HDACs) have
been well studied; however, the mechanism of cross-talk is unclear. Here, we investigated the roles
of HDAC4 and HDAC5 in the regulation of HIF-1a function and its associated mechanisms. HDAC4
and HDAC5 enhanced transactivation by HIF-1a without stabilizing HIF-1a. HDAC4 and HDAC5 phys-
ically associated with HIF-1a through the inhibitory domain (ID) that is the binding site for factor
inhibiting HIF-1 (FIH-1). In the presence of these HDACs, binding of HIF-1a to FIH-1 decreased,
whereas binding to p300 increased. These results indicate that HDAC4 and HDAC5 increase the
transactivation function of HIF-1a by promoting dissociation of HIF-1a from FIH-1 and association
with p300.

Structured summary:
MINT-6802187: HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with FIH1
(uniprotkb:Q9NWT6) by anti bait coimmunoprecipitation (MI:0006)
MINT-6802058: HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC4
(uniprotkb:P56524) by pull down (MI:0096)
MINT-6802021: HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC4
(uniprotkb:P56524) by anti bait coimmunoprecipitation (MI:0006)
MINT-6802036: HIF1 alpha (uniprotkb:Q61221) physically interacts (MI:0218) with HDAC5
(uniprotkb:Q9UQL6) by anti bait coimmunoprecipitation (MI:0006)
MINT-6802102: HIF1 alpha (uniprotkb:Q16665) physically interacts (MI:0218) with HDAC5
(uniprotkb:Q9UQL6) by pull down (MI:0096)
MINT-6802121, MINT-6802156: P300 (uniprotkb:Q09472) physically interacts (MI:0218) with HIF1 alpha
(uniprotkb:Q16665) by anti bait coimmunoprecipitation (MI:0006)
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1. Introduction

Hypoxia-inducible factor-1 (HIF-1) is a key transcriptional acti-
vator induced under hypoxic conditions that regulates cell adapta-
tion and survival to hypoxia [1]. It is a heterodimer of HIF-1a and
HIF-1b, which bind to the cis-acting hypoxia-response element
chemical Societies. Published by E

DD, oxygen-dependent deg-
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ain; ID, inhibitory domain;

PCR, reverse transcriptase-
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(HREs) of the target promoters. HIF-1a is posttranslationally mod-
ified to regulate function of HIF-1 in response to the availability of
oxygen [1,2]. Hydroxylation of Pro564 on the ODD by prolyl
hydroxylase regulates stability of the HIF-1a protein [3]. HIF-1a
is acetylated by the acetyltransferase, ARD1, and by p300/CBP-
associated factor, although the role of the acetylation in HIF-1a
function remains controversial [4,5]. Another pivotal modification
could be hydroxylation of Asp803 in the C-terminal activating do-
main (C-TAD) by factor inhibiting HIF-1 (FIH-1), which blocks
recruitment of transcriptional coactivators such as CBP/p300 under
normoxic conditions, inhibiting the transactivation function of
HIF-1 [6–8].

Acetylation of specific lysine residues on amino termini of the
core histone, which is controlled by antagonistic activity of histone
lsevier B.V. All rights reserved.
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acetyltransferases and histone deacetylase (HDACs), is essential
during activation of gene transcription [9]. The eukaryotic classical
HDAC family is classified into three groups according to the phylo-
genetic and sequence similarity [9,10]. Class I HDAC family mem-
bers such as HDAC1 and HDAC2 are closely related to the yeast
transcriptional regulator, RPD3, while class II HDACs including
HDAC4 and HDAC5 are closely related to the yeast deacetylase,
HDA1. HDAC11 is classified into class IV, because of its low simi-
larity to other classes [9]. Because HDACs are involved in tumori-
genesis and angiogenesis, HDACs are among the most promising
targets for treating various human cancers. Currently, the first-
generation HDAC inhibitors are being tested in Phase I and II clin-
ical trials [11,12].

Although HIF-1a is stabilized and VEGF is upregulated by over-
expression of HDAC1 [13,14], the mechanism of cross-talk between
HIF-1a and the HDAC is unclear. An HDAC inhibitor, trichostatin A
(TSA), induced acetylation of HIF-1a in the oxygen-dependent deg-
radation (ODD) domain [5], and it increased expression of p53 and
von Hippel–Lindau (pVHL), which leads to degradation of HIF-1a
[13]. HDAC inhibitors also induced degradation of HIF-1a by dis-
rupting the HSP70/HSP90 axis function, which is a pVHL-indepen-
dent mechanism [15]. Acetylation regulated HIF-1 function by
targeting the HIF-1a/p300 complex, not HIF-1a directly [16]. Class
II HDACs induce HIF-1a stability through a VHL-independent but
proteasome-dependent pathway [17]. These controversies may
represent the diverse roles of HDAC classes and subtypes in the
regulation of HIF-1a. Here, we investigated the roles of HDAC4
and HDAC5 in the regulation of HIF-1a function and its associated
mechanisms. HDAC4 and HDAC5 bound the inhibitory domain (ID)
of HIF-1a and enhanced transactivation function through differen-
tial recruitment of p300 and FIH-1.

2. Materials and methods

2.1. Cells and cell culture

HepG2 (ATCC HB 8065), HeLa (ATCC CCL-2), NIH3T3 (ATCC CRL-
1658), and HEK293 were obtained from the American Type Culture
Collection. Cells were maintained in Dulbecco’s modified eagle’s
medium or Iscove’s modified Dulbecco’s medium containing 10%
fetal bovine serum at 37 �C in a 5% CO2/95% air incubator. Cells
were exposed to hypoxia (0.1% O2) by incubating cells at 37 �C in
5% CO2/10% H2/85% N2 anaerobic incubator (Forma Scientific, Wal-
tham, MA). Hypoxia was also induced chemically by treating cells
with 100 lM desferrioxamine (DFO).

2.2. Plasmids and transient transfection

The FLAG-tagged HDAC4, and HDAC5, the glutathione S-trans-
ferase (GST)-fused truncated HIF-1a, and green fluorescent protein
(GFP-HIF-1a) were as previously described [18,19]. The reporter
containing the Gal4 binding site, Gal4-tk-luc, and Gal4-HIF-1a,
which contains the DNA-binding domain (1–147 amino acids) of
yeast Gal4 linked to the full-length coding region of mouse HIF-
1a, has been described [19]. Transient expression of proteins and
reporter gene analyses were as previously described [14,19].
Fig. 1. Expression level of VEGF is regulated by HDAC4 and HDAC5. (A) HeLa cells
were transfected with the indicated amount (upper) or 6 lg (lower) of pCMV-FLAG-
HDAC or empty vector. After 24 h of transfection, whole cell lysates were prepared.
The expression of proteins and transcripts were analyzed by western blot analysis
(upper) and RT-PCR (lower), respectively. (B) HEK293 cells were transfected with
250 pmol of non-specific si-RNA (si-control), si-HDAC4 or si-HDAC5 for 48 h. The
expression of proteins was analyzed by western blot analysis. One representative of
at least three independent experiments with similar results is shown.
2.3. RT-PCR, Western blotting and immunoprecipitation

Reverse transcriptase-polymerase chain reaction (RT-PCR) was
performed as described previously [14,19]. Western blotting and
immunoprecipitation were performed as previously described
using specific antibodies against HIF-1a, VEGF, HDAC4, HDAC5,
FIH-1, b-actin (Santa Cruz Biotech), FLAG (Sigma–Aldrich), and a-
tubulin (Calbiochem) [14,19].
2.4. Transfection of si-RNA duplexes

The small interfering-RNA (si-RNA) duplexes targeting HDAC4
(si-HDAC4; 50-AAAUUACGGUCCAGGCUAATT-30 and 50-UUAGC-
CUGGACCGUAAUUUTT-30), HDAC5 (si-HDAC5; 50-GACUGUUAUUA
GCACCUUUTT-30 and 50-AAAGGUGCUAAUAACAGUCTT-30), and
nonspecific si-RNA (si-control; 50-GUUCAGCGUGUCCGGCGAGTT-
30 and 50-CUCGCCGGACACGCUGAACTT-30) were transfected as pre-
viously described [14].

2.5. Establishment of GFP-HIF-1a stable cell line

HeLa cells (1 � 104 cells per 60 cm2 dish) were seeded and incu-
bated overnight. After 48 h of transfection with 1 lg GFP-HIF-1a,
G418 was added to a final concentration of 0.6 mg/ml. After 3
weeks of incubation in medium containing G418, selected colonies
were transferred to 12-well plates. As cells grew, they were moved
to a larger plate and maintained in G418-containing medium.

3. Results

3.1. HDAC4 and HDAC5 increase the transactivation function of
HIF-1a

Based on the previous observation that inhibition of class II
HDACs by valproic acid blocked the expression of HIF-1a [17],
we examined how HDAC4 and HDAC5, which are class II HDACs,
regulate activity of HIF-1a. When HDAC4 and HDAC5 were overex-
pressed in HeLa cells, protein and mRNA levels of HIF-1a were not
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altered, whereas VEGF, an angiogenic target gene of HIF-1a, in-
creased in a dose-dependent manner (Fig. 1A). When expression
of HDAC4 and HDAC5 was blocked by RNA interference, expression
of VEGF, but not HIF-1a, diminished (Fig. 1B). These results suggest
that HDAC4 and HDAC5 increase expression of VEGF by enhancing
transactivation by HIF-1a, instead of enhancing transcription or
protein stability. Therefore, we tested whether HDAC4 and HDAC5
enhanced the transactivation function of HIF-1a using a Gal4-dri-
ven reporter system [19]. Cotransfection of the Gal4-HIF-1a plas-
mid with HDAC4 or HDAC5 significantly enhanced the Gal4-tk-
luc reporter, similar to the activity induced by DFO, a hypoxia-
mimicking agent, while HDAC1 did not (Fig. 2A). Treatment of
either si-HDAC4 or si-HDAC5 significantly blocked the basal activ-
ity as well as the DFO-induced transcriptional activity of Gal4-HIF-
1a (Fig. 2B), further demonstrating that HDAC4 and HDAC5 were
required for transcriptional activation of HIF-1a.

3.2. HDAC4 and HDAC5 interact with HIF-1a through the ID

To investigate molecular mechanisms of the HDAC4- and
HDAC5-induced transactivation by HIF-1a, we examined whether
HDAC physically associated with HIF-1a. As shown in Fig. 3A, each
HDAC4 and HDAC5 coimmunoprecipitated with HIF-1a. Next, we
determined the interaction domains of HIF-1a using GST-fused
Fig. 2. HDAC4 and HDAC5 enhance transactivation function of HIF-1. (A) HepG2
cells were transfected with 150 ng Gal4-tk-luc plasmid, 50 ng Gal4-HIF-1a plasmid,
and the indicated amount of pCMV-FLAG-HDAC. After 48 h of transfection,
luciferase activity was measured and normalized for transfection efficiency using
the corresponding b-galactosidase activity. Treatment with 100 lM DFO for 24 h
was shown as positive control. Data shown are the mean ± S.E.M of three
independent experiments (**P < 0.01 and ***P < 0.001 vs. vehicle treated control).
(B) HepG2 cells were cotransfected with 150 ng Gal4-tk-luc plasmid, 50 ng Gal4-
HIF-1a plasmid and 20 pmole si-RNAs. After 24 h of transfection, cells were treated
with 100 lM DFO for 24 h (*P < 0.05 and **P < 0.01 vs. si-control with vehicle;
#P < 0.05 vs. si-control with DFO).
truncated HIF-1a. The results showed that mainly the ID, but not
the N-terminus (N), the ODD or the C-TAD, served as a binding site
for both HDAC4 and HDAC5 (Fig. 3B; data not shown).

3.3. Differential bindings of HIF-1a to FIH-1 and P300 induces
transactivation function of HIF-1a in the presence of HDAC4 and
HDAC5

As FIH-1 binds to HIF-1a through ID and blocks binding of p300
on the C-TAD, which results in repression of HIF-1a function [8],
we tested whether this binding was altered in the presence of
HDACs. Coimmunoprecipitation data showed that binding of HIF-
1a to FIH-1 decreased in the presence of HDAC4 or HDAC5. In con-
trast, binding of HIF-1a to p300 increased (Fig. 4A). These results
indicate that HIF-1a dissociated from FIH-1 and that it recruits
p300 in the presence of HDAC4 or HDAC5. When the expression
of HDAC4 and HDAC5 was repressed by si-RNAs, the hypoxia-in-
duced binding of HIF-1a to p300 was disappeared, whereas the
binding of HIF-1a to FIH-1 was increased (Fig. 4B). Interestingly,
Fig. 3. Bindings of HIF-1a to p300 and to FIH-1 were changed in the presence of
HDAC4 and HDAC5. (A) HDAC4 and HDAC5 interacted with HIF-1a. NIH3T3 cells
were transfected with 9 lg pCMV-FLAG-HDAC or empty vector. 500 lg of whole
cell lysates were immunoprecipitated (IP) with anti-HIF-1a antibody or normal IgG,
and then probed using anti-FLAG antibody by western blot (WB) analysis. (B)
Schematic representation of full-length and deletion HIF-1a constructs containing
the basic helix–loop–helix (bHLH)/PER–ARNT–SIM (PAS), ODD, ID, N-terminal
transactivation domain (NTAD), and CTAD (upper). NIH3T3 cells were transfected
with 3 lg each pEBG-HIF-1a deletion construct and FLAG-HDAC or empty vector.
Whole cell lysates were immunoprecipitated with anti-GST antibody, and then
probed using anti-FLAG antibody. The expression of GST-HIF-1a deletions, FLAG-
HDAC, and a-tubulin was analyzed by western blot analysis (lower).



Fig. 4. Differential binding of HIF-1a to FIH-1 and p300 in the presence of HDAC4 and HDAC5. (A) GFP-HIF-1a stable cells were transfected with 6 lg pCMV-FLAG-HDAC or
empty vector. Whole cell lysates were immunoprecipitated (IP) with anti-FIH-1 anti-p300, or normal IgG and then probed using anti-HIF-1a antibody. Expression of the
indicated proteins was analyzed by western blotting as control. GFP did not interact with either FIH-1 or HIF-1a (data not shown). (B) HeLa cells were transfected with
50 nmol of si-control, si-HDAC4 or si-HDAC5 for 48 h, and then exposed to hypoxia. Whole cell lysates were immunoprecipitated (IP) with anti-HIF-1a and then probed using
anti-p300 or anti-FIH antibody. Expression of the indicated proteins was analyzed by western blotting as control.
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expression level of p300 was also decreased after si-HDAC4 and si-
HDAC5 treatment, suggesting a potential regulation mechanism of
p300 by the class II HDACs. Finally, the Gal4-tk-luc reporter activity
that was induced by HDAC4 or HDAC5 was decreased by FIH-1 in a
dose-dependent manner. In contrast, the reporter activity that was
decreased by FIH-1 was recovered along with the expression of
HDAC4 or HDAC5, dose dependently (Fig. 5). Together, these data
demonstrated that HDAC4 and HDAC5 increased the transcrip-
tional activity of HIF-1a by promoting dissociation of HIF-1a from
FIH-1 and association with coactivator p300.

4. Discussion

HIF-1a and HDACs are over-expressed in various human
cancers, and they are closely associated with malignant transfor-
mation and metastasis [1,12]. HDAC inhibitors possess anti-
tumorigenic and anti-angiogenic effects, which may be mediated,
at least in part, by the inhibiting function of HIF-1 and VEGF
[13]. Thus far, HDACs have been demonstrated to regulate diverse
aspects of HIF-1a function, such as protein stability, subcellular
localization, and transactivation function [13–17,20,21], which
suggest that each HDAC subtype may have a distinct mechanism
for controlling HIF-1a. We demonstrated that HDAC4 and
HDAC5-induced transactivation function of HIF-1a which involves
differential recruitment of FIH-1 and p300.

Although the interplay between HDAC and HIF-1a has been
well studied, it remains unclear [4,13–17]. Several distinct
mechanisms have been described for the HDAC-induced activation
of HIF-1. First, HDAC subtypes such as HDAC1 and HDAC3 en-
hanced HIF-1a protein stability through interaction with the
ODD of HIF-1a [13,20]. In contrast, HDAC4 and HDAC6 induced
HIF-1a protein stability via a pVHL-independent-, but protea-
some-dependent pathway [17]. Second, HADC4, HDAC5 and HDAC7
increased transactivation function of HIF-1 by recruiting p300 (Figs.
4 and 5) [21]. Third, HDAC7 increased transcriptional activity of
HIF-1a by promoting nuclear translocation under hypoxic condi-
tions [21]. In addition, indirect mechanisms were proposed in that
the HDAC inhibitor suppressed transactivation function of HIF-1a
by hyperacetylation of p300, not HIF-1a, which blocked formation
of the HIF-1a-p300 complex [16]. Inhibition of HDAC6 also induced
degradation of HIF-1a via hyperacetylation of Hsp90 which induced
binding of Hsp70 to HIF-1a [15]. Together, HDACs employ multiple
strategies for modulation of HIF-1a to ensure HIF-1a activity is
maintained under hypoxia. A variety of other stimuli that activate
HIF-1a, such as growth factors, pH, and mechanical stresses, may
also use combinations of HDAC subtypes to achieve a specific regu-
lation of HIF-1a in a stimulus-specific manner.

FIH-1 is originally known as a member of the superfamily 2-
oxoglutarate and Fe(II)-dependent dioxygenase [22]. FIH-1 has
emerged as a critical oxygen sensor in the hypoxic response path-
way because it hydroxylates Asp803 on the C-TAD of HIF-1a in an
oxygen-dependent manner [7]. Consequently, it blocks recruit-
ment of transcriptional coactivator proteins such as CBP/p300
under normoxic conditions, which results in inhibition of transac-
tivation function of HIF-1 [8]. Here, HDAC4 and HDAC5 induce
transactivation function of HIF-1 by inhibiting association of FIH-
1 to HIF-1, further confirming the inhibitory function of FIH-1 in
hypoxia signaling (Fig. 3). Bortezomib, a proteosome inhibitor,
may utilize a similar mechanism in that it represses HIF-1a
through FIH-1-mediated inhibition of p300 recruitment [23]. Re-
cently, it was shown that FIH-1 was a substrate for Siah-1, a mem-
ber of the E3 ubiqutin ligase family, and was subjected to



Fig. 5. HDAC4 and HDAC5 recover the transcriptional activity of HIF-1a which is repressed by FIH-1. HepG2 cells were co-transfected with 150 ng Gal4-tk-luc and 50 ng
Gal4-HIF-1a with the indicated combinations of expression vectors for FIH-1 and HDAC4. After 48 h of transfection, luciferase activity was measured and normalized for
transfection efficiency using the corresponding b-galactosidase activity. Data shown are the mean ± SEM of three independent determinations (*P < 0.05; **P < 0.01;
***P < 0.001).

H.-W. Seo et al. / FEBS Letters 583 (2009) 55–60 59
ubiquitination/proteasomal degradation [24]. It may be interesting
to test whether HDACs are also involved in deacetylation of FIH-1,
which may induce the Siah-mediated degradation of FIH-1. FIH-1
has also been implicated in inflammation, because it hydroxylates
asparaginyl residues within the IjB protein, implying that hydrox-
ylation of intercellular proteins by FIH-1 is broader than previously
thought [25]. The potential involvement of HDAC4 and HDAC5 in
the new aspect of FIH-1 biology needs to be further investigated.

Currently, efforts are being made to understand the function of
HDACs and to develop potent and subtype-specific HDAC inhibi-
tors. Importantly, differential expression of HDAC4 and HDAC5
was noticed in breast tumors and colorectal tumors [26], thus stud-
ies on the biological function of HDAC subtypes related to HIF-1a
may affect strategies for hypoxia-associated human diseases.
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