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a b s t r a c t

Projections of extreme precipitation are of great importance, considering the potential severe impacts on
society. In this study a recently developed regional, non-stationary peaks-over-threshold approach is
applied to two transient simulations of the RACMO2 regional climate model for the period 1950–2100,
driven by two different general circulation models. The regional approach reduces the estimation
uncertainty compared to at-site approaches. The selection of a threshold for the peaks-over-threshold
model is tackled from a new perspective, taking advantage of the regional setting. Further, a regional
quantile regression model using a common relative trend in the threshold is introduced. A considerable
bias in the extreme return levels is found with respect to gridded observations. This bias is corrected for
by adjusting the parameters in the peaks-over-threshold model.

In summer a significant increase in extreme precipitation over the study area is found for both
RACMO2 simulations, mainly as a result of an increase of the variability of the excesses over the threshold.
However, the magnitude of this trend in extreme summer precipitation depends on the driving general
circulation model. In winter an increase in extreme precipitation corresponding with an increase in mean
precipitation is found for both simulations. This trend is due to an increase of the threshold.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Information on extreme precipitation is crucial for various
societal sectors, e.g. for the design of sewage and drainage
systems, roads and tunnels, farming, and the insurance industry.
Consensus is growing that the characteristics of extreme precipi-
tation may alter owing to climate change. In order to project the
change in extreme precipitation, climate model data have been
analyzed and compared to observations. Often this evaluation is
done in terms of index values, such as the empirical annual 90%
quantile of the precipitation amounts for each year or the 1-day or
5-day maximum precipitation amount in a year, see e.g. Klein Tank
and Können (2003), and Turco and Llasat (2011). This approach
shows the evolution of precipitation extremes over time. However,
the indices have mostly a return period of not more than 1 year,

which is of minor importance for the planning of hydraulic
infrastructure, that usually has to withstand events with much
longer return periods. To estimate the changes in these rare
events, extreme-value distributions have been fitted to the
extremes for two subsets of the data representing current (e.g.
1980–2010) and future (e.g. 2070–2100) climate, assuming statio-
narity within the time slices, see e.g. Fowler et al. (2005), Ekström
et al. (2005), and Kyselý and Beranová (2009). Considering only
two time slices does not give a picture of the evolution of the
extremes, which is e.g. necessary if one is interested in the risk of
failure of a hydraulic structure during its expected lifetime. More-
over, the selection of the time slices introduces additional uncer-
tainty. A small shift of the time slices may have large influence on
the estimated change. As an alternative, extreme value distribu-
tions with time-dependent parameters, which allow the consid-
eration of the full time period, have been used, see e.g. Coles
(2001), El Adlouni et al. (2007), Sugahara et al. (2009), Kyselý et al.
(2010), Beguería et al. (2011), and Tramblay et al. (2013).

The estimation of changes in rare extremes is subject to large
uncertainty. A general way to reduce the estimation uncertainty is
regional frequency analysis (RFA), where the similarities between
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different sites in a region are exploited (Hosking and Wallis, 1997).
RFA is mostly applied to (annual) block maxima (BM). An alternative
to BM is to consider all peaks over a (high) threshold (POT), which is
often preferable, owing to the more efficient use of the data.

A regional peaks-over-threshold model, combining the RFA
approach and POT data, which can be used to analyze precipitation
extremes in a changing climate, was developed by Roth et al.
(2012). In this model a temporally varying threshold, which is
determined by quantile regression, is used to account for changes
in the frequency of precipitation extremes. The marginal distribu-
tions of the excesses are described by generalized Pareto distribu-
tions (GPD), with parameters, that may vary over time and their
spatial variation is modeled by the index flood (IF) approach. For a
detailed introduction to the index flood method, see Hosking and
Wallis (1997).

The selection of the threshold is a crucial step in the application
of the POT approach. However, there is still no standard procedure
for this, and usually one relies on visual tools. Among these the
plotting of the change of the estimated GPD shape parameter or the
mean excess of the exceedances against the height of the threshold
is popular. Unfortunately these plots rarely give clear indications of
which quantile should be used for the threshold. In the present
study, the individual plots are averaged over the region in order to
make the desired constant or linear structure more apparent.

Daily precipitation from two simulations of a regional climate
model (RCM) driven by different general circulation models (GCM)
and from gridded observational data is analyzed for the Netherlands
and north-western Germany. Instead of linking the POT model
parameters to time, a temperature-based covariate is used to include
the evolution of climate, see also Hanel et al. (2009), and Van
Oldenborgh et al. (2009). Bias correction of the return levels from
the regional climate model simulations is discussed. In addition to
the changes in return levels, we present a risk-based design level that
was recently introduced by Rootzén and Katz (2013).

Section 2 outlines the methods and Section 3 introduces the
data used. Results and discussion are given in Section 4, followed
by the conclusion in Section 5.

2. Methods

2.1. Introduction to the peaks-over-threshold model

To study the extremes of independent and identically distrib-
uted random variables Xi, one can consider the excesses Yi ¼ Xi�u
over a (high) threshold u. The Balkema, De Haan, and Pickands
theorem states that the distribution of the excesses Y, conditioned
on YZ0, can be approximated by a generalized Pareto distribution
(GPD), if the threshold u is sufficiently high and certain regularity
conditions hold, see e.g. Reiss and Thomas (2007):

PðYryjYZ0Þ ¼ Gξ;sðyÞ ¼
1� 1þξy

s

� ��1=ξ

; ξa0;

1�exp � y
s

� �
; ξ¼ 0;

8>>><
>>>:

for yZ0 if ξZ0 and 0ryr�s=ξ if ξo0, where s and ξ are the
scale and the shape parameter respectively. For ξ¼ 0 the GPD
reduces to the exponential distribution. The independence
requirement can be weakened (e.g. Leadbetter et al., 1983).
In the case of short-range dependence the GPD approximation
applies if one considers declustered excesses, i.e. the excesses of
the local maxima (peaks) in a cluster of exceedances only. Several
studies have considered the GPD also for non-stationary data,
using temporally varying parameters, see for recent examples
Sugahara et al. (2009), Kyselý et al. (2010), and Beguería et al.
(2011).

2.2. Temporal dependence and declustering

Daily precipitation exhibits temporal dependence, also at high
levels. This dependence is generally stronger in winter than in
summer (due to the convective nature of most extremes in summer).
As mentioned in Section 2.1 one can account for this temporal
dependence by considering declustered excesses. This is usually
achieved by specifying a minimum separation time tsep between
exceedances over the threshold, where tsep is determined by the
temporal dependence in the data at high levels. Here, we follow this
approach but decluster all data and not the excesses only.

Let xs(t) be the rainfall at site sAf1;…; Sg and day tAf1;…; Tg.
To determine tsep we compute first the 95% quantile for each site s
and calculate the number of clusters of length nZ2. A cluster of
length n is defined as n consecutive exceedances of the 95%
quantile. The number of clusters decreases usually very fast with
the length n. The separation time tsep is set to n, if the number of
clusters of length nþ2 is sufficiently low. After this initial step we
obtain the declustered data by replacing xs(t) with zero, if it is not
a maximum in the subset xsðt�tsepÞ;…; xsðtÞ;…; xsðtþtsepÞ. From
this it is clear that also the excesses obtained from the declustered
data are separated by at least tsep days.

2.3. Index flood approach

Roth et al. (2012) introduced a regional approach for multi-site,
non-stationary POT rainfall data:

ysðtÞ ¼ xsðtÞ�usðtÞ;
where us(t) is a suitable threshold value for site s and day t. The
approach is based on the index flood (IF) assumption, i.e. that the
non-stationary POT data have, after scaling by a time and site
dependent index variable (or index rainfall) ηsðtÞ, a common excess
distribution. If the site-specific excess distributions are GPD with
shape parameter ξsðtÞ and scale parameter ssðtÞ, then we have for
the scaled excesses:

P
YsðtÞ
ηsðtÞ

ry YsðtÞ40
�
¼ GξðtÞ;γðtÞðyÞ;

����
�

ð1Þ

with Ys(t) the excess at site s and day t and γðtÞ ¼ ssðtÞ=ηsðtÞ a
dimensionless dispersion coefficient. The IF assumption thus
implies that this coefficient and the shape parameter are constant
over the region of interest. Roth et al. (2012) used the threshold
us(t) as index variable:

ηsðtÞ ¼ usðtÞ:
The mean number λ of the excesses over us(t) in this approach is
constant over time and space, which was achieved by using
quantile regression to determine us(t). With Eq. (1) we can
compute for each site s and day t the value rs;tðαÞ that is exceeded
on average α times in a season:

rs;tðαÞ ¼
usðtÞ 1�γðtÞ

ξðtÞ 1� λ

α

� �ξðtÞ" # !
; ξðtÞa0;

usðtÞð1þγðtÞlnðλ=αÞÞ; ξðtÞ ¼ 0:

8>><
>>: ð2Þ

In analogy with a stationary setting, the quantity rs;tðαÞ is termed
the 1/α-year return level, although 1/α no longer gives the
expected waiting time between exceedances of rs;tðαÞ:

2.4. Determination of the threshold

The non-stationary threshold is estimated via quantile regres-
sion. However, we have to select an appropriate quantile, i.e. the
value of the threshold has to be high enough to justify the GPD
assumption.

M. Roth et al. / Weather and Climate Extremes 4 (2014) 1–102



2.4.1. Quantile selection
The threshold choice (TC) plot and the mean excess (ME) plot

(also referred to as mean residual life plot) are widely used graphical
tools for the selection of the threshold in the POT analysis. The TC
plot is based on the fact that once the GPD model holds at grid point
s for some threshold u0s it holds for every threshold usZu0

s . In
particular we have that the associated shape parameter is the same
for us and us

0. This property is called threshold stability. The thresh-
old stability can be exploited by estimating the shape parameter for a
range of high thresholds and plotting:

ðus; ξ̂sðusÞÞus Zu0
s
;

where ξ̂sðusÞ denotes the estimated shape parameter for threshold us.
If the GPD model holds for us0 the graph should be (approximately)
constant for usZu0

s . However, owing to the decreasing number of
excesses above higher thresholds, the plot becomes unstable and the
constant behavior is difficult to see. By combining different diagnos-
tics one hopes for a better picture of the threshold to be used. In this
study we, therefore, consider also the ME plot.

The ME plot relies on a similar consideration and utilizes the
mean excess function

esðuÞ≔E½Xs�ujXs4u�
where Xs represents the daily rainfall at site s. The empirical
version of the mean excess function is given by

êsðuÞ ¼
∑T

t ¼ 1ðxsðtÞ�uÞIðu;1ÞðxsðtÞÞ
∑T

t ¼ 1Iðu;1ÞðxsðtÞÞ
;

where IA is the indicator function for set A, i.e. IAðxÞ ¼ 1 if xAA and
otherwise zero. If the GPD model holds, es(u) is linear in the
threshold u, see e.g. Embrechts et al. (1997), and êsðuÞ becomes
approximately linear. However, as described in greater detail in
Ghosh and Resnick (2010), there are some problems associated
with the use of the ME plot. These are in particular that the ME
function is only well defined for ξo1, and – as for the TC plot – the
empirical ME function becomes unstable for high values of the
threshold, see also the comments of Dr. Kimber in the discussion
of Davison and Smith (1990). In our specific application the
condition ξo1 is no restriction as even the highest estimates of
ξ for daily extreme precipitation are far below 1, see e.g. Martins
and Stedinger (2000) and Papalexiou and Koutsoyiannis (2012).

We want to select τ0A ½0;1Þ, such that the GPD model is valid

above the τ0 quantile at every grid point. We denote by qsðτÞ≔F �1
Xs

ðτÞ
the τ quantile of the data at site s, by ξ̂sðτÞ the corresponding estimate
of the shape parameter and by êsðτÞ the corresponding value of the
empirical ME function. We assume, there exists for each s a τs0, such
that the GPD model holds for all excesses Xs�qsðτs0Þ. Then we define
τ0≔maxs τs0 and it is clear that the GPD model holds for qsðτÞ for

every grid point sAf1;…; Sg and τ4τ0, i.e. ξ̂sðτÞ should be approxi-
mately constant and êsðτÞ should be approximately linear for τ4τ0.
Concerning the instabilities of the TC and ME plots, the constant
(respectively linear) behavior might not be apparent for every single
grid point s. Therefore, we propose to consider spatial averaging of
the TC (respectively ME) plot to reveal the underlying structure
better. The spatially averaged TC plot is given by

ðqavgðτÞ; ξ̂avgðτÞÞτA ½0;1Þ; ð3Þ

where qavgðτÞ ¼ S�1∑S
s ¼ 1qsðτÞ and ξ̂avgðτÞ ¼ S�1∑S

s ¼ 1ξ̂sðτÞ. The spa-
tially averaged ME plot is given by

ðqavgðτÞ; êavgðτÞÞτA ½0;1Þ; ð4Þ

where êavgðτÞ ¼ S�1∑S
s ¼ 1êsðτÞ. Note that while the spatially averaged

TC plot works if the shape parameter is site-specific, the spatially
averaged ME plot requires a common shape parameter. The strength

of the spatially averaged plot lies in the increased detection prob-
ability of non-constant (respectively non-linear) behavior, when the
threshold is too low.

2.4.2. Quantile regression
Quantile regression relies on the fact that a sample quantile can

be viewed as the solution of an optimization problem, which can
be computed efficiently using linear programming, as shown in
Koenker and Bassett Jr. (1978). For a fixed site sAf1;…; Sg, we can
obtain the τ-th sample quantile of the declustered observations
xs ¼ ðxsð1Þ;…; xsðTÞÞ as

arg min
βAR

∑
T

t ¼ 1
ρτðxsðtÞ�βÞ; ð5Þ

where

ρτðvÞ ¼
vðτ�1Þ; vo0;
vτ; vZ0:

(

This can be easily generalized by replacing β by a suitable
regression model, e.g. in order to obtain for each site a linear
trend in the temporal covariate z(t), we determine

arg min
β0s ;β

1
s AR

∑
S

s ¼ 1
∑
T

t ¼ 1
ρτðxsðtÞ�β0s �β1s � zðtÞÞ; ð6Þ

which can be done for each site separately. It may be useful to
assume a common relative trend over the region, compare Hanel
et al. (2009) who use a common relative trend in the location
parameter of the generalized extreme value distribution. Then, we
have to determine

arg min
β0s ;β

1 AR

∑
S

s ¼ 1
∑
T

t ¼ 1
ρτðxsðtÞ�β0s ½1þβ1 � zðtÞ�Þ; ð7Þ

where βs
0 is a site specific niveau component and β1 a common

relative trend. This common relative trend can be found by profile
quantile regression, i.e. we compute

∑
S

s ¼ 1
min
β0s

∑
T

t ¼ 1
ρτðxsðtÞ�β0s ½1þβ1 � zðtÞ�Þ

over a grid of possible values of β1 and select the one that
minimizes the sum on the right side. The β0s are determined for
each fixed β1 as the solutions of the independent minimization
problems:

min
β0s AR

∑
T

t ¼ 1
ρτ

xsðtÞ
1þβ1 � zðtÞ�β0s

� �
:

We want to test whether β1 differs significantly from zero.
However, the distribution of β1 under the null hypothesis, i.e. that
there is no trend, is not known. Therefore, we calculate p-values by
a block-wise bootstrap approach (compare e.g. Douglas et al.,
2000). Seasonal blocks over the whole spatial domain are sampled
with replacement, therefore the newly created data should have
approximately the same spatial dependence structure as the
original data but no trend component. Calculating β1 multiple
times for these bootstrap data delivers an approximate distribu-
tion of β1 under the null hypothesis.

2.5. Estimating the excess distribution

For a specific model of the GPD parameters, e.g.

γðtÞ ¼ γ0þγ1 � zðtÞ; ξðtÞ ¼ ξ0; ð8Þ
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and fixed threshold ðusðtÞÞsA f1;…;Sg;tA f1;…;Tg we estimate the vector of
parameters θ¼ ðγ0; γ1; ξ0Þ0 by maximizing the following function:

ℓIðθ; yÞ ¼ � ∑
T

t ¼ 1
∑
S

s ¼ 1
ysðtÞZ0

lnðγðtÞusðtÞÞþ
1þξðtÞ
ξðtÞ ln 1þξðtÞysðtÞ

γðtÞusðtÞ

� �� �
: ð9Þ

This is the so-called independence log likelihood, i.e. the log like-
lihood that would be obtained, if peaks at different sites were
independent of each other, see also Moore (1987), Smith (1989),
Buishand (1991), Cooley et al. (2007), and Hanel et al. (2009). We rely
on this simplified likelihood function, because the estimation of the
full likelihood function would be virtually impossible due to spatial
dependence and large dimensionality, compare also Thibaud et al.
(2013). This method provides asymptotically unbiased parameter
estimates, but the spatial dependence in the data results in a (highly)
increased variance of the estimates compared to the variance that
would be obtained for independent data. Therefore, Smith (1990)
suggested to adjust the standard errors and likelihood ratio tests in a
way that is now generalized in the composite likelihood framework,
see Varin et al. (2011) for an extensive overview. For applications of
this approach, see e.g. Blanchet and Lehning (2010) for annual
maximum snow depths over Switzerland and Van de Vyver (2012)
for annual extremes of precipitation in Belgium. We refer to Roth
et al. (2012) for the details of the estimation of the GPD parameters.

2.6. Bias correction

Climate models represent the current status of knowledge
about the climate system but are imperfect still. Systematic
differences occur between climate model data and observations,
which translate into biases in derived quantities like return levels
of daily precipitation. There are different ways to correct for these
biases. In the discussion below, we will use the following notation.
By superscript ‘Mod’ we denote all entities, such as parameters
and return level, that are derived from the climate model data and
by superscript ‘Obs’ those from the observations. Further, we
denote by TC the end of the overlapping or control period.

A simple way to adjust the simulated return levels, in the spirit
of quantile matching, is to apply a return period specific change
factor:

~rs;tðαÞ ¼ rMod
s;t ðαÞ � ∑

TC

i ¼ 1r
Obs
s;i ðαÞ

∑TC

i ¼ 1r
Mod
s;i ðαÞ

: ð10Þ

A drawback of this approach is that in general the adjusted
quantiles will no longer follow a GPD. It is even possible that they
do not increase monotonically with increasing return period. This
can be overcome if we adjust the GPD parameters and the
threshold instead, i.e.

~ξðtÞ ¼ ξModðtÞ� 1

TC ∑
TC

i ¼ 1
ðξObsðiÞ�ξModðiÞÞ;

~γ ðtÞ ¼ γModðtÞ � ∑
TC

i ¼ 1γ
ObsðiÞ

∑TC

i ¼ 1γ
ModðiÞ

;

~usðtÞ ¼ uMod
s ðtÞ � ∑

TC

i ¼ 1u
Obs
s ðiÞ

∑TC

i ¼ 1u
Mod
s ðiÞ

: ð11Þ

For the shape parameter an additive adjustment was chosen
owing to the small and possibly negative values of this parameter.
Using the adjusted parameters in Eq. (2), we get an estimate of
rs;tðαÞ. The proposed correction yields that the temporal mean of
the adjusted return levels over the control period approximates
the temporal mean of the estimated return levels for the observa-
tional data. The approach can be generalized by taking not only
the biases in the means of the threshold and the GPD parameters
into account but also the biases in their trends. However, one

should be very careful doing so as it might lead to implausible
effects owing to the many parameters involved.

The uncertainty in the projected return levels, due to the
unknown GPD parameters, can be assessed by the following
procedure. First we generate bootstrap samples of the estimated
GPD parameters for both the observations and the climate model
data, e.g. by the method used in Roth et al. (2012), based on
exponential residuals of the excesses. From these bootstrap
samples a bootstrap sample of the adjusted return level is
obtained, by applying correction scheme (11) to the estimated
shape and dispersion parameters in the bootstrap samples from
the climate model data and observations. Note that for long return
periods the uncertainty of the threshold can be neglected, but this
cannot be done for short return periods. Then one must generate
bootstrap samples from all days in the season of interest rather
than from days with threshold exceedances only.

3. Data

3.1. Region and precipitation data

The spatial domain of the study includes the Netherlands and a
part of north-western Germany, roughly northwest of the line
Cologne–Hamburg. The region is relatively flat with hills up to
300 m in the extreme south and south-east. The averaged eleva-
tion is for about 60% of the grid boxes lower than 25 m and only in
less than 5% of the grid boxes higher than 100 m. Fig. 1 shows the
observed mean annual precipitation totals for the considered grid
points, which range from about 650 mm to 850 mm, without a
clear spatial pattern. Precipitation data have been provided on a
0:221� 0:221 rotated pole grid and a total of 158 grid points falls
into the specified region.

For this region we consider two transient simulations from the
RACMO2 RCM of the Royal Netherlands Meteorological Institute
(Van Meijgaard et al., 2008) from 1950 to 2100. The first one was
driven by the ECHAM5 GCM, developed at the Max Planck
Institute for Meteorology in Hamburg (Roeckner et al., 2003),
and the second was driven by the GCM Model for Interdisciplinary
Research on Climate (MIROC) (Hasumi and Emori, 2004). In the
following these two simulations are denoted as R/ECHAM5 and
R/MIROC. We selected these simulations for the present case
study, because their precipitation projections are quite different,
although both simulations are based on the SRES A1B emission
scenario (Nakićenović and Swart, 2000).

We compare the climate model data with gridded observations
from the E-OBS data set (Haylock et al., 2008), version 6.0, which is
available on the same grid. With 3.1 stations on average per grid
box (in total 492) the station density in this part of the E-OBS
domain is quite high. Therefore, the data are considered to be

51

52

53

54

55

4 6 8 10

650 700 750 800 850

Fig. 1. Mean annual precipitation totals in mm for the considered grid cells. The red
triangle indicates the position of De Bilt.
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adequate for comparison with gridded RCM data. Table 1 contrasts
the daily regional mean winter (December–February) and summer
(June–August) precipitation for the climate model data with those
for the observations during the control period 1950–2010. For the
climate model data also the means for the future period 2071–
2100 and the associated change are given. The R/ECHAM5 simula-
tion shows a clear increase in winter and decrease in summer,
which are both significant at the 1% level according to a two
sample t-test based on the seasonal totals. For R/MIROC the
changes in mean winter and summer precipitation are small. It
is noteworthy that the climate simulations do not preserve the
seasonal cycle: for the observations the mean precipitation is
higher in summer than in winter, but for the climate model data
the opposite is found.

3.2. Temperature as covariate

The enhanced greenhouse gas effect is anticipated to be small or
not existent in the first decades of the simulation and increasing by
the end of the 20th century. This is inconsistent with a simple linear
trend over time for the threshold and GPD parameters. Instead of
applying more complicated relationships with time, leading to
increased estimation uncertainty, a covariate that is considered
representative of the enhanced greenhouse gas effect is used.

With rising temperatures the water holding capacity of the
atmosphere increases. As extreme precipitation strongly depends
on the available precipitable water, compare e.g. Lenderink and
van Meijgaard (2008), temperature is a natural covariate for the
non-stationary POT approach. Hanel et al. (2009) used the seaso-
nal global temperature anomaly, from the driving GCM, as covari-
ate. However, a prominent property of the standard time covariate
is that trends over time are easily comparable between different
models. In order to maintain this property, and in view of the
common driving scenario, we consider a common, regional tem-
perature covariate.

First we determine for each year the seasonal mean tempera-
ture in the R/ECHAM5 and R/MIROC data, aggregated over all grid
boxes in the RACMO2 domain with at least 50% land coverage.
These seasonal mean temperatures were averaged for the two
climate simulations and the anomalies were then computed with
respect to the control period. The temperature anomalies are
decomposed into a short-range dependent component and an
increasing trend component using monotone regression (Wu et al.,
2001). For an introduction to monotone regression, see e.g.
Robertson et al. (1988). In this study the monotone median
algorithm of Koenker and Ng (2005) is used, and the fitted values
constitute the common covariate z(t). Fig. 2 shows z(t) for the
winter and the summer season. Note the breaks in winter around
1960 and 2020, and in summer around 1990 and 2055. These are
owing to the piecewise linear fit in the regression setting and do
not have a specific physical meaning. The fitted curves are
assumed to be representative of the enhanced greenhouse effect,
as projected in the two climate simulations.

Over the control period the observed trend in temperature is
larger than the (averaged) trend of the climate simulations in this
region. Van Oldenborgh et al. (2009) explored several explanations
for the stronger observed than modeled warming in western
Europe, the most important being a stronger trend to westerly
circulation in winter and a stronger trend towards more short-
wave radiation in summer than simulated by the climate models.
The pronounced trend in observed temperature is accounted for in
an alternative covariate zE�OBSðtÞ, based on a monotone regression
fit to the observed seasonal temperature anomalies.

4. Results and discussion

4.1. Temporal dependence and declustering

Prior to the analysis of the extremes in the precipitation data,
we apply the declustering scheme, outlined in Section 2.2. In
winter we observe large numbers of clusters of lengths 2 and 3 of
the exceedances of the 95% quantile, both in the climate model
data and the observations, indicating a considerable amount of
temporal dependence. As the number of clusters of length 4 is less
than one per decade, we choose in winter a separation time of
2 days. Consistent with the literature, compare e.g. Kyselý and
Beranová (2009), the temporal dependence in summer is much
weaker, manifesting in a small number of clusters of length 3.
Therefore, a separation time of 1 day is taken as sufficient for the
summer season.

4.2. Threshold

4.2.1. Quantile selection
We illustrate the quantile selection approach proposed in

Section 2.4 using the winter data from the R/MIROC simulation.
From the spatially averaged TC and ME plots (Figs. 3 and 4), it can
be seen that the 95% quantile is too low for the GPD model to hold,
i.e. the spatially averaged estimates of the shape parameter to the
right of the spatially averaged 95% quantile in the TC plot are
neither constant nor is the ME plot linear. The 97.5% quantile
seems to be high enough for the GPD model to hold. Similar
pictures for the winter data from the ECHAM5 driven simulation
and the observations were obtained. Therefore, we took the 97.5%
quantile as threshold for all winter data. For the summer data it
was necessary to reject also the 97.5% quantile and the 98.5%
quantile was used as threshold, i.e. on average we consider 1.38
excesses per grid point and season. Note that this is a considerably
higher quantile than in many other studies (Friederichs, 2010;
Kyselý et al., 2010; Halmstad et al., 2012).

4.2.2. Quantile regression
For each grid point and season, we fitted the simple linear quantile

regression model in Eq. (6) to the observed precipitation data. As

Table 1
Seasonal mean precipitation in mm/day.

Season Data 1950–2011 2071–2100 Change (%)

Winter E-OBS 2.08 – –

R/ECHAM5 2.98 3.55 19.1
R/MIROC 2.48 2.52 1.6

Summer E-OBS 2.46 – –

R/ECHAM5 2.70 2.27 �15.9
R/MIROC 2.10 2.17 3.3

1950 2000 2050 2100

0

2

4

6

de
gr
ee
C
el
si
us

Fig. 2. Seasonal regional temperature anomaly with respect to the period 1950–
2011 (dashed) and fitted monotone trend (solid) for winter (blue) and summer
(red).
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predictor for the 97.5% quantile in winter (respectively the 98.5%
quantile in summer) we used the regional temperature anomaly z(t).
This was repeated for the climate model data both for the control
period and the full period. The resulting local trends (i.e. slope
parameters βs1) are shown in Fig. 5 for winter and Fig. 6 for summer.
In winter the observed data show rather large positive slopes, which
are not found for the climate model data in the control period. The

large increase in precipitation extremes is consistent with the
observed increase in 10-day precipitation maxima in this part of
Europe. Van Haren et al. (2013a) attribute part of the latter trend to the
change in circulation, which explains also partly the relatively large
increase in mean winter temperature. In summer, the climate model
output exhibits more negative slopes than the observations. As the
considered region is bordered by the North Sea, this might be
attributed to a, lower than observed, trend in sea surface temperature
in this coastal area in the climate models (compare Van Haren et al.,
2013b).

It is striking that for both climate simulations the trends obtained
for the control period do not resemble those obtained for the full
period. In particular, the spread of the estimated trends over the
region is much smaller for the full period than for the control period,
consistent with the decreased estimation uncertainty for the full
period. Moreover, there is no clear spatial pattern in the trends for
the full period nor for the control period. Therefore, we assume in the
following a common relative trend over the region, i.e. we fit the
common relative trend model, given in Eq. (7), to the daily precipita-
tion data. Table 2 shows that the climate simulations give quite
different trends for the control period in summer even with opposite
sign, but for the full period the trends are much closer. This is
consistent with the results for the local trends. The values for the
observations are quite large. This is partly caused by the fact that the
temperature covariate z(t) underestimates the temperature trend in
the observations (Section 3.2). If we replace the covariate z(t) by
zE�OBSðtÞ we obtain an increase of 3.7% per degree Celsius change for
the observed winter data and 2.8% in summer, resembling the
estimates from the climate simulations for the full period.

We computed p-values for the common trend by the block-
wise bootstrap, outlined in Section 2.4.2. It turns out that the
trends are significant only for the full period in winter for both

Fig. 3. Spatially averaged TC plot for R/MIROC, winter season. The dashed vertical
lines mark the spatially averaged quantile for τ¼0.95, 0.975 and 0.985.

Fig. 4. Same as Fig. 3 but for the spatially averaged ME plot.
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Fig. 5. Change in the threshold (mm per degree warming; pluses indicate significance at the 5% level) for the winter season, i.e. βs1 in Eq. (6).
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models and in summer only for R/MIROC, which is consistent with
the significance of the local trends, compare the number of pluses
in Figs. 5 and 6. Therefore, we are considering the following
temporally varying thresholds only for those data sets, for the
other data sets the thresholds are taken to be constant.

4.3. Excess distribution

For the GPD parameters it was assumed that the dispersion
coefficient varies linearly with the temperature covariate and that
the shape parameter is constant, see Eq. (8). The significance of the
trend in the dispersion coefficient was determined by the compo-
site likelihood ratio test, which is an extension of the classical
likelihood ratio test, that takes the spatial dependence into
account (compare Varin et al., 2011; Roth et al., 2012). The results
are given in Table 3. Just as for the threshold, the control period
does not provide a clear picture and the strong positive trend in
the dispersion coefficient of the winter observation data vanishes,
if the observed regional temperature anomalies zE�OBS are used as

covariate. However, for the whole period both climate simulations
agree reasonably well in each season. In winter, where a signifi-
cant trend in the threshold was found for both models, the trend
in the dispersion coefficient is negligible. In summer the disper-
sion coefficient is significantly increasing for R/ECHAM5 as well as
for R/MIROC. Hanel and Buishand (2011) reported a similar trend
in the dispersion coefficient of the 1-day summer precipitation
maxima in this region for an ensemble of 15 transient regional
climate model simulations.

The need to include a trend in the dispersion coefficient can be
demonstrated with the standard exponential residuals (Roth et al.,
2012) of the model fit. Fig. 7 shows these transformed residuals for
the R/MIROC summer season obtained using the model without
and with trend in the dispersion coefficient. Whereas the former
exhibit a highly significant linear trend, the linear trend in the
latter is close to zero and there is no indication for other trends.

Table 4 shows for both climate simulations and the observations
the shape parameter ξ, the temporally averaged dispersion coeffi-
cient γ, and the temporally and regionally averaged threshold u.
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Fig. 6. Same as Fig. 5 but for the summer season.

Table 2
Change in the threshold (% per degree warming; bold script indicates significance
at the 5% level), i.e. 100 β1 in the model with a common relative trend, Eq. (7).

Season Data 1950–2011 1950–2100

Winter E-OBS 10.6 –

R/ECHAM5 3.8 3.6
R/MIROC 9.4 2.2

Summer E-OBS 7.4 –

R/ECHAM5 �6.3 1.5
R/MIROC 8.8 4.6

Table 3
Slope parameter of the linear regression model for the GPD dispersion coefficient,
i.e. γ1 in Eq. (8), for each season (bold – significant at 5% level).

Season Data 1950–2011 1950–2100

Winter E-OBS 0.0905 –

R/ECHAM5 �0.0093 0.0010
R/MIROC 0.0324 0.0086

Summer E-OBS 0.0085 –

R/ECHAM5 �0.0470 0.0258
R/MIROC 0.0247 0.0400
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While the shape parameters and the threshold values from the
climate simulations are comparable to the observed ones, the
dispersion coefficients from the climate model data are too low in
winter and too high in summer. Note that the shape parameter for
the E-OBS summer season almost equals the constant 0.15, found
by Koutsoyiannis (2004) for annual block maxima of daily pre-
cipitation in different parts of the world.

4.4. Return levels

For the selected threshold and the estimated parameters we
can compute a time-dependent return level using Eq. (2). As an
alternative to the non-stationary POT approach, we consider a
‘time slice’ approach. Therefore, we estimate for each 30-year
window of the data (i.e. 1950–1979, 1951–1980, etc.) a common
shape parameter and common dispersion coefficient as if the data
were stationary. Then the return levels are computed based on
these estimates. For the MIROC driven simulation Fig. 8 shows, for
both approaches, the 50-year return level of daily precipitation in
the summer season at the grid point closest to De Bilt. The
confidence bands are obtained using the asymptotic normality of
the maximum independence likelihood estimator of the GPD
parameters (Davison, 2003; Varin et al., 2011). This ignores the
uncertainty in the threshold, which is small for the 50-year return
level compared to the uncertainty due to the GPD parameters.

Overall, the figure shows a good agreement between both
methods. However, the 95% confidence band for the non-
stationary POT approach is considerably narrower than that for
the time-slice approach, owing to the increased number of data
points used for the estimation. In fact, the relative standard error
reduces from about 8.7% for the moving window approach to
about 4.5% for the non-stationary approach. Moreover, a mono-
tone trend in the return level is more plausible than the irregular
pattern of the trend for the time-slice approach, where slightly
different selections of the windows can produce quite different
estimates of the change, e.g. it matters a lot if the period 2063–

2092 (rð0:02Þ ¼ 85 mm) or the period 2071–2100 (rð0:02Þ ¼
99 mm) is taken as future period. This is even more delicate
because the control period can be chosen in different ways too.
Fig. 8 also shows the confidence band if only at-site data are used
to estimate the parameters of the non-stationary model. These are
four times wider than those obtained by the regional estimation
approach.

The 50-year return level of the 1-day summer maximum
precipitation near De Bilt from the MIROC driven simulation in
Fig. 8 is significantly larger than the estimate of 52 mm from the
observations. Therefore, a bias correction is needed. Bias correc-
tion can be very sensitive to trends, e.g. when they are close to
zero but of different signs. Thus, we take only significant trends in
the threshold and GPD parameters into account. Note that the
proposed correction scheme, see Section 2.6, assumes that the bias
is constant over time. Maraun (2012) finds this justified for
seasonal precipitation sums over most of Europe and in particular
over the here considered study area. Although, one cannot directly
deduce from this that the bias in extremes is constant as well, a
small experiment, splitting the historical period in two subperiods,
justifies the use of the proposed bias correction.

Fig. 9 shows the bias-corrected 50-year return level for the
summer season for both the R/ECHAM5 and R/MIROC data, based
on the adjusted threshold and GPD parameters. The results for
winter are shown in Fig. 10. As the trend in the control period is
negligible for both models and seasons, the bias correction
removes almost the whole bias, which would not be the case if
the trend in the observations was significant. We see that in
summer R/MIROC projects a much stronger increase (45%) than
R/ECHAM5 (15%), while the situation in winter is the opposite.
Then, R/MIROC projects a 11% increase in extreme precipitation,
and R/ECHAM5 a 22% increase. The latter is about the same as the
trend in the mean, see Table 1. In winter similar changes in mean
and extreme precipitation have been reported for other RCM
simulations in parts of Europe (Frei et al., 2006; Kyselý et al.,
2011; Hanel and Buishand, 2012). However, in summer the trend

Fig. 7. Standard exponential residuals for R/MIROC summer averaged over season
and the whole domain (black circles – model without trend in the dispersion
coefficient, black line – corresponding linear regression, red – same for the model
with trend in the dispersion).

Table 4
Mean threshold u (mm), dispersion coefficient γ, and shape parameter ξ for both
seasons.

Season Data 1950–2011 1950–2100

u γ ξ u γ ξ

Winter E-OBS 11.8 0.417 �0.001 – – –

R/ECHAM5 14.0 0.303 0.050 14.8 0.339 �0.024
R/MIROC 11.5 0.348 0.061 12.1 0.371 0.056

Summer E-OBS 17.9 0.321 0.161 – – –

R/ECHAM5 17.5 0.413 0.102 17.8 0.418 0.198
R/MIROC 15.9 0.506 0.222 17.6 0.581 0.207

Fig. 8. 50-year summer return level, rð0:02Þ, at the grid point closest to De Bilt for
R/MIROC with 95% confidence bands. The solid black line (respectively gray band) is
based on regional 30-year time slices and the solid red line (respectively red band)
is based on the non-stationary approach. The blue shadow indicates the 95%
confidence band based on the non-stationary at-site model.

Fig. 9. Bias-corrected 50-year summer return level, rð0:02Þ, at the grid box closest
to De Bilt for R/MIROC (red) and R/ECHAM5 (blue) with 95% confidence bands
obtained by the bootstrap procedure, outlined in Section 2.6. The constant 50-year
return level of the observations is given as reference (dashed line).
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in mean precipitation does not give a good indication of the trend
in extremes.

In Fig. 10 one can see that the width of the confidence band for
the return level is the same for both climate model simulations
and that it does not vary over time. This is owing to the bias-
correction scheme. As there is no trend in the GPD parameters of
the climate model data in the winter season, the bias correction
always yields the values of the (bootstrapped) GPD parameters
from the observations. Thus, the width of the confidence band is
determined by the variance of these parameter estimates. This
implies that only longer observation records can reduce the
uncertainty. However, in summer the trend in the dispersion
coefficient is significant for the climate model data. Including this
trend in the POT model increases the width of the confidence band
towards the end of the 21st century, as shown in Fig. 9.

Return levels of precipitation are often the basis of hydrologic
design. In a stationary climate the risk that a system fails within its
expected life time is directly related to the return period, e.g. the
probability that a 50-year return level is exceeded at least once
during 50 years is 64%. This holds no longer for a non-stationary
climate. Rootzén and Katz (2013) recently proposed a risk-based
design level that can be used both for a stationary and a non-
stationary climate. The p design life level for a specified period
gives the value that is exceeded with probability p during the
design life period. Table 5 shows the 10% and 5% design life level
for De Bilt, computed for two different 50-year design life periods,
using the bias-corrected GPD parameters for the summer season.
For both climate simulations a significant increase is found for the
future period 2016–2065. The 95% confidence interval for the
change in design life level is based on the same bootstrap samples
as those used to generate the confidence band for the 50-year
return level in Fig. 9. The relative changes for p¼0.10 and p¼0.05
are almost identical. The change in the design life level for the
ECHAM5 driven simulation is half the size of the change in the
MIROC driven simulation, similar to the difference in the change in
the summer 50-year return level, see Fig. 9. However, the change
in the design life level can be compared only roughly with that in
the return level, as it takes the whole design life period into
account rather than only two points in time.

A caveat is that the 5% design life level corresponds to a very
rare rainfall amount. In a stationary climate the associated

return period to this design life level is 1000 (exactly 975)
years, which is on the edge of reasonable extrapolation. In
general, for a stationary climate, the return period correspond-
ing to the p design life level for a design life period of n years,
follows from

R¼ 1
1�

ffiffiffiffiffiffiffiffiffiffiffi
1�pn

p � 1

1� 1�p
n

� �¼ n
p
: ð12Þ

5. Conclusion

In this study we applied the regional non-stationary POT model
of Roth et al. (2012) to precipitation extremes of two transient
climate simulations for the period 1950–2100, conducted with the
regional climate model RACMO2, driven by the general circulation
models ECHAM5 and MIROC. The simulated 1-day summer and
winter precipitation extremes in the Netherlands and north-
western Germany were compared with those in the gridded
observation data set E-OBS for the period 1950–2011.

Visual inspection of the spatially averaged TC plot and the
spatially averaged ME plot leads to a rejection of the 95% quantile
as threshold, which is often used in the literature for precipitation
data. It may be useful to develop regional goodness-of-fit tests to
make the selection of the threshold more objectively. A regional
quantile regression model using a common relative trend for the
threshold was used to smooth the large spatial scattering of the
local trends in the threshold for the control period. The absence
of a spatial pattern in the trends for both the control and full
period justifies this model. The non-stationary approach leads
to return levels, that are consistent with those obtained by a
30-year moving window approach, but exhibit less uncertainty.
For the considered 50-year return level the uncertainty is
reduced by a factor of two, compared to the moving window
approach. The simulated return levels exhibit a considerable
positive bias, which was corrected for by adjusting the para-
meters of the peaks-over-threshold model. The uncertainty in
the adjusted return levels is then strongly governed by the
variance of the estimated GPD parameters from the observa-
tions. Therefore, accurate estimates of the GPD parameters,
based on high quality observed precipitation records, are
needed to project future extremes.

For the winter season, the two climate model simulations
project a significant trend in the threshold. This is in line with a
positive trend in the location parameter of the generalized
extreme value distribution fitted to the 5-day winter precipitation
maxima in this region for an ensemble of 15 transient regional
climate model simulations (Hanel and Buishand, 2011). The
difference between the R/ECHAM5 and R/MIROC simulations does
not give the full range of possible future projections. In summer
the differences between the climate model data are larger. The
ECHAM5 driven simulation projects a 15% increase of the 50-year
return level, based on a significant increase of the dispersion
coefficient, which corresponds well to the increase in the disper-
sion coefficient of the generalized extreme value distribution
found in Hanel and Buishand (2011). The MIROC driven simulation
projects additionally a significant increase of the threshold, result-
ing in a 45% increase of the 50-year return level.
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