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1. Introduction

In his work “Legons sur la Théorie Mathématique de la Lutte pour la Vie” [17] Volterra began the
study of differential equations

xi(t) = xi(t)(r,- + Zn:aijxj(t)), i=1,...,n, (1)

j=1

where x;(t) > 0 represents the density of population i in time t and r; its intrinsic rate of growth or
decay. Each coefficient a;; represents the effect of population j on population i. If a; > 0 this means
that population i benefits from population j. A = (aj) is said to be the interaction matrix of the system
(1). This system of differential equations is usually referred to as the Lotka-Volterra equations.

* Corresponding author.
E-mail address: pedromiguel.duarte@gmail.com (P. Duarte)

0024-3795/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.1aa.2012.06.015


https://core.ac.uk/display/82115741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.laa.2012.06.015
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2012.06.015

2574 P. Duarte, T. Peixe / Linear Algebra and its Applications 437 (2012) 2573-2586

For two-dimensional systems we can completely analyze the dynamics of (1) (see, for example,
[5]). However we are far from being capable of doing the same for higher dimensional Lotka-Volterra
systems, in spite of some important results [11,16,2,21].

There is a close relation between studying the dynamical properties of a Lotka-Volterra system
and the algebraic properties of its interaction matrix, and depending on that these systems can be
classified in tree main classes: cooperative or competitive; conservative; and dissipative.

For the cooperative and competitive systems, overall results were obtained by Smale [14] and Hirsch
[3,4], among others, for example, Zeeman [18-20], van Den Driessche and Zeeman [1], Hofbauer and
So [6], Smith [15] and Karakostas and Gyori [7].

Concerning the conservative systems, the initial investigations are attributed to Volterra, who also
defined the class of dissipative systems [17] looking for a generalization of the predator-prey system.
Given A € Mat,x;(IR) and a point g € R} we can write the Lotka-Volterra system (1) as

d
Z — Xaq®), @)

dt
where X4 ¢(x) = x+A(x—q). The symbol ‘+’ denotes point-wise multiplication of vectors in R". We say
that system (2), the matrix A, or the vector field X4 4, are dissipative iff there is a positive diagonal matrix
D such that Q (x) = xTADx < 0 for every x € R™. Notice this condition is equivalent to x’D~1Ax < 0,
because

xX'D7Ax = (D7 'x)TAD(D™'x) = QD" 'x) < 0.
When A is dissipative, (2) admits the Lyapunov function

1. x;i — gi logx;

heo =3 =~ . (3)

i=1
which decreases along orbits of X4 4. In fact the derivative of h along orbits of X4 4 is

n

h= '21 %(Xi — @) —q) = x—@'D AR —q) <0. (4)
ij= 1

Since h function is proper, X4 q determines a complete semi-flow ¢/§’q : R"+ <>, defined forall t > 0.
LetI'4 4 denote the forward limit set of (2), i.e., the set of all accumulation points 0f¢>j‘,q (x)ast — +o00,
sometimes referred to as the system’s attractor. By La Salle’s theorem [8] we know that for dissipative
systems 4 g € {h=0}.

The notion of stably dissipative is due to Redheffer et al., who in a series of papers in the 80s
[12,13,11,9,10] studied the asymptotic stability of this class of systems, using the term stably admissible
systems. Redheffer et al. designated by admissible the matrices that Volterra had initially classified
as dissipative [17]. We now give the precise definition of stably dissipative system. Given a matrix
A € Mat, ., (R) we say that another real matrix A € Matyx,(R) is a perturbation of A iff

ﬁg:O(:)aij:O.

We say that a given matrix A, X4 g, or (2), is stably dissipative iff any sufficiently small perturbation A
of A is dissipative, i.e.,

Je > 0 : max|a; — a;| <€ = Ais dissipative.
i.j

From the interaction matrix A we can construct a graph G4 having as vertices the n species
{1,..., n}.See Definition 3.1 below. An edge is drawn connecting the vertices i and j whenever a;; # 0
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or aj; # 0. Redheffer et al. [12,13,11,9,10] have characterized the class of stably dissipative systems
and its attractor I'4 4 in terms of the graph G4. In particular, they describe a simple reduction algorithm,
running on the graph Gy, that ‘deduces’ every restriction of the form 'y g € {x : x; = ¢q;},1 <i < n,
that holds for every stably dissipative system with interaction graph Gg. To start this algorithm they
use the following

Lemma 1.1. Given a stably dissipative matrix A, there is some positive diagonal matrix D such that

n
aij .
Z—’w,-w,:o = aqijw;=0,Vi=1,...,n.

ij=1 4%

Since by La Salle’s theorem

n
@i
TagC{xeRL: > E’f(xi—qf)(xj—qj)=0 :
ij=1
itfollowsthatI's g C {x : x; = q;} foreveryi =1, ..., nsuchthata; < 0.Avertexiis colored black,

o, tostate that 'y ¢ C {x : X; = q;} holds. Similarly, a cross is drawn at a vertex i, @, to state that
Cagq C {x: le"q(x) = 0}, which means {x; = const} is an invariant foliation under q’)qu :Tagq <.
All other vertices are colored white, o. Before starting their procedure, as a;; < 0 for all i, they color
in black every vertexi € {1, ..., n} such that a; < 0, and in white all other vertices. This should be
interpreted as a collection of statements about the attractor I'4 4. The reduction procedure consists of
the following rules, corresponding to valid inference rules:

(a) Ifjis a @ or @-vertex and all of its neighbors are e, except for one vertex [, then color [ as e.

(b) Ifj is a @ or &©-vertex and all of its neighbors are e or &, except for one vertex [, then draw & at
the vertex I.

(c) Ifjis a o-vertex and all of is neighbors are e or &, then draw & at the vertex j.

Redheffer et al. define the reduced graph of the system, R(A), as the graph obtained from G4 by suc-
cessive applications of the reduction rules (a), (b) and (c) until they can no longer be applied. In [11]
Redheffer and Walter proved the following result, which in a sense states that the previous algorithm
on G4 cannot be improved.

Theorem 1.2. Given a stably dissipative matrix A,

(a) If R(A) has only e-vertices then A is nonsingular, the stationary point q is unique and every solution of
(2) converges, as t — 00, to q.

(b) If R(A) has only e and @-vertices, but not all e, then A is singular, the stationary point q is not unique,
and every solution of (2) has a limit, as t — o0, that depends on the initial condition.

(c) If R(A) has at least one o-vertex then there exists a stably dissipative matrix A, with Gz = G, such that
the system (2) associated with A has a nonconstant periodic solution.

In a very recent paper, Zhao and Luo [21] gave necessary and sufficient conditions for a matrix to
be stably dissipative, see Proposition 3.5.

The previous theorem tells us that when R(A) has only e-vertices, then the matrix A has always
maximal rank, rank(A) = n. In case R(A) has only e and &@-vertices, then rank of the matrix A equals
the dimension of an invariant foliation. This led us to establish that the rank of any stably dissipative
matrix only depends on its graph. In particular the same is true for the dimension of the invariant
foliation of any stably dissipative system. See Theorem 4.2 and Corollary 4.3.
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2. Dissipative systems and invariant foliations

Assume the Lotka-Volterra field Xy q(x) = x*A(x—q), defined in(2),is associated with a dissipative
matrix A with rank(A) = k. Let W be a (n — k) X n matrix whose rows form a basis of

Ker(AT) = {x e R" : X’"A=0}.

Define the map g : R}, — R" K g(x) = Wlogx, where logx = (logxi, ..., logx,)". Denoting
by Dy = diag(xq, ..., X,) the diagonal matrix, the Jacobian matrix of g, Dgy = W Dx_l, has maximal
rankn — k. Hence g : R, — R" ¥ is a submersion.

We denote by 4 the pre-image foliation, whose leaves are the pre-images g~ (c) of g. By a classical
theorem on Differential Geometry, each non-empty pre-image g~ ! (¢) is a submanifold of dimension
k. Recall that the dimension of a foliation is the common dimension of its leaves. A foliation J is said
to be invariant under a vector field X if X(x) € T,F for every x, where Ty.F denotes the tangent space
at x to the unique leaf of F through x. This condition is equivalent to say that the flow of X preserves
the leaves of F.

Proposition 2.1. IfAis dissipative then the foliation F is Xa q-invariant with dim(Fa) = rank(A).
Proof. We have

Dgx(XA,q(X)) = Dgx(D«A(x — q))
= WD, 'D,A(x — q)
=WA(x—q) =0,
because WA = 0. Hence Xj (x) € TxFa and Fp is Xa g-invariant. O

Defining the symmetric and skew-symmetric parts of a matrix A by

T
and Askew — A=A
2 9

gom _ A + AT

the following decompositions hold
A=AY" 4 A% and AT = AV™ — gk
The following lemma is a simple but key observation
Lemma 2.2. Given a dissipative matrix A,
Ker(A) = Ker(A") = Ker(A%Y™) N Ker(A**®").
Proof. It is obvious that Ker(A) 2 Ker(A%¥™) N Ker(A®*¢"). On the other hand, if v € Ker(A) then
Av = 0, and hence vIAY™y = vT Av = 0. Since A%™ < 0, it follows that v € Ker(A®™). Observing that

AW = A — AY™, we have v € Ker(A™"). Thus v € Ker(A™™) N Ker(A*“"). We have proved that
Ker(A) = Ker(A¥™) N ](er(ASkEW). 0

Define
Eng={xeR} : Ax—q) =0} (5)
to be the affine space of equilibrium points of X4 4.

Theorem 2.3. Given a dissipative matrix A, each leaf of Fy intersects transversely Ep ¢ in a single point.
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Proof. LetV be a k x n matrix whose rows form a basis of Ker(A)J-, the space generated by the rows of
A. With this notion, A(x — q) = 0 is equivalent to V(x — q) = 0. Let W be the (n — k) x n matrix used
in the definition of 74, whose rows form a basis of Ker(A”). With W and V we form the n x n matrix

w
U= |:} By Lemma 2.2, Ker(AT) = Ker(A), and this implies that U is nonsingular. The intersection
Vv

of aleaf g~1(c) of 74 with the equilibria set Ep q is described by the system

Wlogx =c

X € g_l (C) N EA,q <
Vix—q) =0

Substituting u = log x, this system becomes equivalent to

Wu=c

Vet —q) =0
In order to see that each leaf of 7, intersects the equilibria set E4 4 at a single point, it is enough to see
that

Wu =c Wi =c
and ,
V(' —q) =0 V' —q) =0
imply u = u’. By the mean value theorem for every i € {1, ..., n} thereis some ii; € [u;, u/] such that
e — e = el (u; — 1)),
which in vector notation is to say that

. _
e'—e" =Da(u—u)=¢e"x@u—u).

Hence

Wu—-u)=0 - Wu—-u)=0
V(e! —e¥)=0 VD,i(u—u') =0

G o
u—u)y=0 & U u—u)=0.
VD, 0|D,a

I/ 0
0|D,a

Therefore, as |: :| is non-singular, we must have u = u'. The transversality follows from the

1[0
nonsingularity of U |: } a
il

3. Stably dissipative systems

Definition 3.1. Given a dissipative matrix A we define its graph as G4 = (Vy, Aa), With V4 = Ve UV,
Voe={1<i<n:agi<0}andV, ={1<i<n: a;=0} Apair(i,j), withi # j, is an edge in
Aa iffaj # 0oraj; # 0.
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Consider a simple graph G = (V, A) whose vertices are colored in black and white, meaning there
is a decomposition V = V4 U V, of the vertex set. We shall say that a vertex in 'V, is a o-vertex, while
a vertex in V, is a e-vertex. Such graphs will be referred as black and white graphs.

In [11] Redheffer and Walter gave the following important property of stably dissipative matrices
in terms of their associated graph.

Lemma 3.2. IfAis a stably dissipative matrix then every cycle of Ga has at least one strong link (e—e).
Proof. The proofis by contradiction, for otherwise we could perturb A into a non dissipative matrix. O

Definition 3.3. A black and white graph G is called stably dissipative iff every cycle of G contains at
least a strong link, i.e., an edge between e-vertices (e—e).

The name ‘stably dissipative’ stems from the use we shall make of this class of graphs to characterize
stably dissipative matrices. See Proposition 3.5 below.

Let us say thata dissipative matrixA € Mat; ., (R) is almost skew-symmetriciff a; = —aj;; whenever
a;j = 0 or ajj = 0, and the quadratic form Q (Xg)kev, = 2.i jev, @ Xi X; is negative definite.

Proposition 3.4. Given a dissipative matrix A € Mat,x,(IR), there is a positive diagonal matrix D such
that a;j dj = —aj; dy whenever a;; = 0 or aj; = 0, and for every x;, € Rwithk € V,, Z,-’jev. a;dixix; < 0.

Proof. Let Dbea positive diagonal matrix such that forallx € R",Q(x) = 3_;. j @ijdixix; < 0.Assuming
a;; = 0, choose a vector x € R" with x; = 0 and x; = 0 for every k # i, j. Then for every x; € R,

(ajd; + ajid;) j + ajid; X' = Q(x) <0,

which implies that a;d; + ajid; = 0, and everything else follows. [

Recently, Zhao and Luo [21] gave a complete characterization of stably dissipative matrices.

Proposition 3.5. Given A € Mat,x,(R), A is stably dissipative iff Gy is a stably dissipative graph and
there is a positive diagonal matrix D such that AD is almost skew-symmetric.

Proof. We outline the proof. Assuming A is stably dissipative, by Lemma 3.2, Gy is stably dissipative.
Take adiagonal matrix D > Oaccording to Lemma 1.1, which implies that Q (xk)kev, = i jev, @ijdiXiXj
is negative definite. By Proposition 3.4, AD is almost skew-symmetric.

Conversely, assume G is stably dissipative, assume AD is almost skew-symmetric, and takeA = (@)
some close enough perturbation of A. Let Ga be the partial graph of G4 obtained by removing every
strong link (e-e).Because Gy is stably dissipative, the graph Ga hasno cycles. We partition the vertex set
{1, ..., n}asfollows: Let Vg be a set with an endpoint in each connected component of Ga. Recursively,
define Vj to be the set of all vertices such that there is an edge of Ga connecting it to a vertex in Vi_.
By construction, we have amap i — i/, associated with this partition, such that i’ € Vj_ for every
i € Vpwithk > 1, and G, has an edge connecting i with i’. Then we consider the diagonal matrix
D= diag(aj) whose coefficients are recursively defined by a,- =d;ifi € Vy, and

- ~ Qi
di = —dy =~ for i € Vj with k>1.
ai'i

It follows by induction in k that <~1,~ > 0 for every i € Vi. For k = 0 this is automatic. Assuming this
holds in V_1, for any i € Vj we have Ezi/ > 0, which implies that a,- > 0 because a;y and ay; have
opposite signs. The diagonal matrix D is close to D because A is near A. Therefore, by continuity, the
quadratic form Q(xk)kev. = 2lijev. &Uaix,»xj is negative definite. On the other hand, by definition of
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d;, d; Qi + ai/ dy; = 0. Since every o—o and o—e connection links i with i’ for some i ¢ Vo, this implies
that for every (x;) € R", Z?,j=1 ajdixix; < 0. Hence A is dissipative, which proves that A is stably
dissipative. O

4. Main results

Definition4.1. Given astably dissipative graph G, we denote by SD(G) the set of all dissipative matrices
Awith Gy = G.

Our main theorem is
Theorem 4.2. Given a stably dissipative graph G, every matrix A € SD(G) has the same rank.

By this theorem we can define the rank of a stably dissipative graph G, denoted hereafter by rank(G),
as the rank of any matrix in SD(G). Together with Proposition 2.1, this implies that

Corollary 4.3. Given a stably dissipative graph G, for every matrix A € SD(G), any stably dissipative
Lotka-Volterra system with matrix A has an invariant foliation of dimension = rank(G).

Definition 4.4. We shall say that a graph G has constant rank iff every matrix A € SD(G) has the same
rank.

With this terminology, Theorem 4.2 just states that every stably dissipative graph has constant
rank.

5. Simplified reduction algorithm

Asbefore, let I'4 4 denote the forward limit set of (2), i.e., the set of all accumulation points of ¢>f\) q (x)
ast — +o00.Wesay thataspeciesi € {1, ..., n}isstrongly dissipativeiff T4 g C {x e R, : x; = q; },
or equivalently lim;—, 4~ ¢f"q’i(x) = qj, forallx € R'}.. Similarly, we say that a speciesi € {1, ..., n}
is weakly dissipative iff lim;— o0 q),f\, q’,-(x) exists, for all x € R”+. With this terminology, the algorithm
of Redheffer et al., described in Section 1, is about the determination of all ‘strongly’ and ‘weakly
dissipative’ species of the stably dissipative system (2). Since the algorithm runs on the graph G, the
conclusions drawn from the reduction procedure hold for all stably dissipative systems that share the
same graph Ga.

The following proposition is a slight improvement on item (b) of Theorem 1.2.

Proposition 5.1. If R(A) has only e and ®-vertices then the system has an invariant foliation with a single
globally attractive stationary point in each leaf.

Proof. Combine Theorem 1.2(b) with Proposition 2.3. [

In [12] Redheffer and Zhou make the following remark:

Remark 5.2. Let A be dissipative and let every vertex o in G4 be replaced arbitrarily by é@. Then A is
nonsingular iff, by algebraic manipulations, every vertex can then be replaced by e.

We shall explain this remark in terms of a simpler reduction algorithm. Denote by Ej 4 the set of
all equilibria of (2), Eaq = {x € R} : A(x —q) = 0}. Let us say that a speciesi € {1,...,n}
is a restriction to the equilibria of X4  whenever Epq, C {x € R : x; = g;}. Notice that every
strongly dissipative species is also a restriction to the equilibria of X4 4. Think of coloring i as black
as the statement that i is a restriction to the equilibria of X, 4. Notice that at the beginning of the
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reduction algorithm, described in Section 1, the weaker interpretation that all black vertices correspond
to restrictions to the equilibria is also valid. If we simply do not write é-vertices, but consider every
o-vertex as a @-vertex, then the reduction rules (b) and (c) can be discarded, while the first rule, (a),
becomes

(R) If all neighbors of a vertex j are e-vertices, except for one vertex k, then we can color k as a
e-vertex.

The idea implicitin the remark above is that (R) is a valid inference rule for the weaker interpretation
of the coloring statements above. Assuming that every o-vertex is a é>-vertex amounts to looking for
restrictions on the equilibria set E4 4 instead of the attractor I'y 4. Let us still call reduced graph to the
graph, denoted by R, (G), obtained from G by successively applying rule (R) alone until it can no longer
be applied. The previous considerations show that

Proposition 5.3. Given a stably dissipative matrix A, every e-vertex of R.(Ga) is a restriction to the
equilibria of Xa .

We shall write R, (G) = {e} to express that all vertices of R, (G) are e-vertices.

Corollary 5.4. If G is a stably dissipative graph such that R,(G) = {e} then every matrix A € SD(G) is
nonsingular. In particular G has constant rank.

Proof. GivenA € SD(G), by Proposition 5.3 we have E4 4 = {q}, which automatically implies that A is
nonsingular. [J

In fact, the converse statement of this corollary holds by Remark 5.2.

Proposition 5.5. Let A be a stably dissipative matrix. If A is nonsingular then R,(Gs) = {e}.

6. Proofs
We call any extreme o-vertex of G a o-endpoint of G.
Lemma 6.1. [f a stably dissipative graph G has no o-endpoints then R, (G) = {e}.

Proof. Let G be astably dissipative graph with no o-endpoints. Assume, by contradiction, that R, (G) #
{e}. We shall construct a cycle in R, (G) with no e—e edges. Since every o-vertex of R, (G) is also a o-
vertex of G, this will contradict the assumption that G is stably dissipative. In the following construction
we always refer to the vertex coloring of R,(G). Take jg to be any o-vertex. Then, given jj take a
neighboring vertex ji41 to be another o-vertex, if possible, or a e-vertex otherwise. While the path is
simple (no vertex repetitions) it cannot end at some o-endpoint, and it cannot contain any e—e edge
because whenever we arrive to a e-vertex from a o-one we can always escape to another o-vertex. In
fact, no e-vertex can be linked to a single o-vertex since otherwise we could reduce it to a e-vertex by
applying rule (R). By finiteness this recursively defined path must eventually close, hence producing a
cycle with no e—e edges. [J

Given a stably dissipative graph G and some o-endpointi € V,, we define the trimmed graph T;(G)
as follows: Let i’ € 'V be the unique vertex connected to i by some edge of G. Then T;(G) is the partial
graph obtained from G by removing every edge incident with i’ except with i. See an example in Fig. 1.
The trimming operation preserves the stable dissipativeness of graph, i.e., T;(G) is stably dissipative
whenever G is. This follows by Definition 3.3 because T;(G) is obtained by removing some edges from G.
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Fig. 1. A graph G and it’s trimmed graph T;(G).

Similarly we define the trimmed matrix T;(A) as follows: Annihilate every entry of row i’, except for
ay; and ayy, and annihilate every entry of column ', except for a;y and ayj.

0 - % - . 0 . 0

00 0 a - 00 0 a

A=|.0 - x . A =|-0 .0
* Qjj * Ajy * 0 ayi 0 apyy O

-0 - o« - -0 -0

The ‘+” above represent entries of A that are annihilated in T;(A).

Lemma 6.2. Leti € V, be some o-endpoint of a stably dissipative graph G.
IfA € SD(G) then T;(A) € SD(T;(G)) and rank(T;(A)) = rank(A).

Proof. Take A € SD(G) and let A’ = T;(A), where i is some o-endpoint. Denote, respectively, by col;
and row; the jth column and the jth row of A, and denote by colj/» and row]f the jth column and the jth
row of the trimmed matrix. Since i is a o-endpoint, a;y is the only nonzero entry in row;, and ay; is the
only nonzero entry in col;. Then the trimmed matrix A’ is obtained from A by applying the following
Gauss elimination rules, either simultaneously or in some arbitrary order

7 aji’ . .
TOW; := [OWj — —— [OW; j *1,
aii

di' .,
=coli — ~Lcol; j#I.

ayi

/
colj

Because Gauss elimination preserves the matrix rank we have rank(A") = rank(A). To finish the proof,
it is enough to see now that A’ is stably dissipative. We use Proposition 3.5 for this purpose. First,
Ga = T;i(G) is stably dissipative as observed above. Let D be a positive diagonal matrix such that AD
is almost skew-symmetric. In view of Proposition 3.5, we only need to prove that A’ D is also almost
skew-symmetric. Notice that G and T;(G) share the same black and white vertices. If a}ck =0or a]’j =0
then also ay, = 0 or ajj = 0. Hence, because AD is almost skew-symmetric, ay; dj = —ajy di. Looking

at the Gauss elimination rules above, we have a;q. = ai and aj/»k = aj, or else a;q. = }/‘k = 0.In
. ’ / . / / H

either case we have o di = — dy. Finally, we need to see that Q"(x¢)¢ev, = >k jev, akjdeka is

a negative definite quadratic form. If i’ is a o-vertex then Q' (x¢)¢ev, = 2 kjev, Akidj XkX; is negative

definite because AD is almost skew-symmetric. Otherwise, if i’ is a e-vertex, given a nonzero vector
(x¢)¢ev, we define (x})¢ev, letting x;, = x; for £ # i', while x|, = 0. Then

/ _ 2 A v
Q' (Xe)eev, = apy dyxXp + > aydixixj <0,

<0 kjEV

=Q(x))rev, <0

since (x¢)¢ey, 7 0 implies that either x; # 0 or else (xz,)gev. # 0. This proves that Q’ is negative
definite. O
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Table 1
Some graph trimming examples.

Original graph Trimmed graph Graph rank
&—O
|z [ 6
i% o0—=e
] O l 4
q —O ©)
[ 1~ - 5

As a simple corollary of the previous lemma we obtain

Lemma 6.3 (Trimming lemma). Leti € V, be some o-endpoint of a stably dissipative graph G. If T;(G)
has constant rank then so has G, and rank(G) = rank(T;(G)).

We can now prove Theorem 4.2.

Proof. Definerecursively asequence of graphs Go, G, . .., Gy, withGg = G,and where Gj11 = T;,(G;)
for some o-endpoint j; of G;. This sequence will end at some graph G, with no o-endpoint. By Lemma 6.1
we have R, (G;,) = {e}.The connected components of G, are either reducible to e-vertices by iteration
of rule (R), or else composed by o-vertices alone. Since the o-components cannot be trimmed anymore,
they must be either formed of a single o-vertex, or else a single o—o edge. By Corollary 5.4, G, has
constant rank. Finally, applying inductively Lemma 6.3 we see that all graphs G; have constant rank.
Hence G, in particular, has constant rank. [

Remark 6.4. The previous proof gives a simple recipe to compute the rank of a graph. Trim G while
possible. In the end, discard the single o-vertex components and count the remaining vertices. See
some examples in Table 1.

7. Trimming effect on dynamics

In this last section we use an example to describe the effect of trimming a stably dissipative matrix
on the underlying dynamics.
Consider the system

X1 =x1((x2 — 1) + (x7 — 1))

X =x(=2(x1 — 1) + (x3 — 1))
X3 =—x3(x2 — 1)

E= 1% =x((xs = 1) — (x7 — 1))

X5 =x5(—2(x4 — 1) + (xg — 1))
Xe = —X6(x5 — 1)

X7 =x7(—=(x1 = 1) + (x4 — 1) — (x7 — 1)),
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with interaction matrix

0 1 00 0 01

-2 0 110 0 0|0

0 -10/0 0 00

A=| 0 0 0/0 1 0|-1
0 0 0/—-2 0 1|0

0 000 —10/0
-1 001 0 0]—1 |

and fixed pointq = (1, 1, 1, 1, 1, 1, 1). E has associated graph G, represented in Fig. 2.

The null space, Ker(A), is generated by the vector (1, 0, 2, 1, 0, 2, 0). Hence the foliation F, with
leaves F. given by

Fe={xe R7 : log x1 + 2logx3 + log x4 + 2logxg = c},

is an invariant foliation with dimension 6 in R”. The system’s phase portrait is represented in Fig. 3,
being the attractor a 3-plan transversal to F given by

F:{xeR7:x1=x4, Xy = X5, X3 = Xg, X7 = 1}.

The intersection of each leaf F. with I is a surface S, given by
c
Se = Fe NI = j(x1,%2, X3, X1, X2, X3, 1) : logxy + 2logxs = 50

which is foliated into invariant curves by the level sets of h, defined in (3). Note that S, corresponds to
an invariant leaf of the conservative system with graph o—o—o.

With the first trim on G we get the graph Tg(G) represented in Fig. 4.

This corresponds to annihilate the entries (4, 5) and (5, 4) of the original matrix A. Notice that
the components x5 and xg of the system are independent of the rest. Hence the dynamics of this new
system is the product of two independent LV systems represented in Fig. 5.

The five dimensional system on the left of Fig. 5 has a straight line of equilibria. Moreover it leaves
invariant a foliation of dimension four with a single globally attractive fixed point on each leaf, The
right-hand side system is a typical conservative predator—prey.

Now we have two different possibilities of trimming the graph Tg(G): we can either choose the o-
endpoint 3 or else 4. In the first case we get the graph T3 (Ts(G)) represented in Fig. 6, whose dynamics
is illustrated in Fig. 7.

The three dimensional system in the middle of Fig. 7 has a straight line of equilibria. Moreover it
leaves invariant a foliation of dimension two with a single globally attractive fixed point on each leaf.
The left and right-hand side systems are typical conservative predator-preys.

In the second case we get the graph T4 (Ts(G)) represented in Fig. 8, whose dynamics is depicted in
Fig. 9.

O O O o O O O
3 2 1 7 4 5 6

Fig. 2. Associated graph of matrix A, G(A).
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R” z F.
A1 4 Sc r
R? S.
q+ Ker(A)

Fig. 3. Phase portrait of a system E.

O Q O @ O O——O

1 7 4 5 6

Fig. 4. The trimmed graph of G, T (G).

x

Fig. 5. Representation of the system’s dynamics associated to the graph Ts(G).

O——O O ® O O——O

3 2 1 7 4 5 6

Fig. 6. The trimmed graph T3 (Ts(G)) of Ts(G).

Fig. 7. Representation of the system’s dynamics associated to the graph T3 (Tg(G)).
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O O O ®o—O O——=O

3 2 1 7 4 5 6

Fig. 8. The trimmed graph T4(Ts(G)) of Ts(G).

' '

Fig. 9. Representation of the system’s dynamics associated to the graph T4(T(G)).
2 1 7 4 5 6

Fig. 10. The trimmed graph Ty (T4(Ts(G))) of T4(Ts(G)).

' '

Fig. 11. Representation of the system’s dynamics associated to the graph Ty (T4(Ts(G))).

Here, the left-hand side three dimensional system is conservative, leaving invariant a foliation of
dimension two transversal to a straight line of equilibria. The middle and right-hand side systems are
typical predator-prey, respectively, dissipative and conservative.

Trimming T4(Ts(G)) choosing the o-endpoint 1 we get the graph T; (T4(Tg(G))) represented in Fig.
10, whose dynamics is a product of three predator—prey systems, illustrated in Fig. 11, with a one di-
mensional system consisting of equilibria.

Notice that by trimming T3(Ts(G)) we obtain an isomorphic graph to the one in Fig. 10.
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