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a b s t r a c t

Ratcheting is defined as the accumulation of plastic strains during cyclic plastic loading. Modeling this
behavior is extremely difficult because any small error in plastic strain during a single cycle will add
to become a large error after many cycles. As is typical with metals, most constitutive models use the
associative flow rule which states that the plastic strain increment is in the direction normal to the yield
surface. When the associative flow rule is used, it is important to have the shape of the yield surface mod-
eled accurately because small deviations in shape may result in large deviations in the normal to the yield
surface and thus the plastic strain increment in multi-axial loading. During cyclic plastic loading these
deviations will accumulate and may result in large errors to predicted strains.

This paper compares the bi-axial ratcheting simulations of two classes of plasticity models. The first
class of models consists of the classical von Mises model with various kinematic hardening (KH) rules.
The second class of models introduce directional distortional hardening (DDH) in addition to these
various kinematic hardening rules. Directional distortion describes the formation of a region of high cur-
vature on the yield surface approximately in the direction of loading and a region of flattened curvature
approximately in the opposite direction. Results indicate that the addition of directional distortional
hardening improves ratcheting predictions, particularly under biaxial stress controlled loading, over
kinematic hardening alone.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Ratcheting is the accumulation of plastic strains during cyclic
plastic loading. Modeling this behavior is extremely difficult
because any small systematic error in plastic strain during a single
cycle will add to become a large error after many cycles. Most con-
stitutive models for metals use the associative flow rule which
states that the plastic strain increment is in the direction normal
to the yield surface. When the associative flow rule is used, it is
important to have the shape of the yield surface modeled accu-
rately because small deviations in shape may result in large devia-
tions in the normal to the yield surface and thus the plastic strain
increment in multi-axial loading (this is not an issue in uniaxial
loading because the normal to the yield surface remains the same
with and without distortion). During cyclic plastic loading these
deviations will accumulate and may result in large errors to pre-
dicted strains.
ll rights reserved.
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This paper compares the bi-axial ratcheting predictions of two
classes of plasticity models. The first class of models consists of
the classical von Mises model with various advanced kinematic
hardening (KH) rules. The second class of models introduce direc-
tional distortional hardening (DDH) in addition to these various
kinematic hardening rules. Directional distortion describes the
formation of a region of high curvature on the yield surface approx-
imately in the direction of loading and a region of flattened curva-
ture approximately in the opposite direction. Such distortion has
been observed in numerous experiments on various types of met-
als, including, but not limited to, those by Phillips et al. (1975),
Naghdi et al. (1958), McComb (1960), Wu and Yeh (1991), and
Boucher et al. (1995).

The kinematic hardening rules of interest will be described in
Section 2 and the directional distortional hardening models of
interest will be described in Section 3. Section 4 discusses the
calibration of the models and Section 5 shows how the various
models simulate bi-axial ratcheting tests. The results will include
various KH rules with and without DDH as well as a few different
forms of the DDH models. Simulations will be compared with
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experimental findings from Hassan and Kyriakides (1992), Hassan
et al. (1992), and Corona et al. (1996).

In terms of notation, henceforth all second order tensors will be
denoted by bold face in direct notation, e.g. m, and all fourth order
tensors will be capitalized in bold and calligraphy, e.g. M. No bold
face symbols will be used when indexed components of tensors are
used and a superposed do will indicate the rate. The proposed con-
stitutive model is confined to small deformations. The stress tensor
is denoted by r and the linearized strain tensor is denoted by e. As
usual, the strain tensor is decomposed into elastic and plastic parts
(e ¼ ee þ ep) and the elastic constitutive law will be assumed linear
and isotropic.
2. Kinematic hardening models

There are numerous kinematic hardening rules that were de-
signed to help improve ratcheting predictions. This paper will fo-
cus on a few more recent kinematic hardening rules, and in
particular those presented in Dafalias and Feigenbaum (2011),
and the building blocks that lead to those models.

All kinematic hardening rules to be used in this work are based
on the Armstrong and Frederick (1966) kinematic hardening rule,
also known as the evanescence memory model, and referred to
here as the AF model for abbreviation. The AF model is obtained
by adding a dynamic recovery term to Prager’s linear kinematic
hardening term, Prager (1956)1 which is directed along the current
value of the back stress. Furthermore, all kinematic hardening rules
to be used in this work have the back-stress additively decomposed
into components, as first suggested by Chaboche et al. (1979).
Initially it was suggested that each component obeys its own AF rule,
thus this model can appropriately be named the multicomponent AF
model (abbreviated MAF). In the present work, the back-stress will
be additively decomposed into four components and the hardening
rules for each component will not be purely the AF model, but rather
more advanced models based on the AF formulation.

In particular, the kinematic hardening models to be used in this
work will all make use of the modification to the MAF kinematic
hardening rule suggested by Delobelle et al. (1995), which incorpo-
rates the Burlet and Cailletaud (1986) model, and therefore will be
referred to as the BCD modification. Delobelle et al. suggested a
non-linear kinematic hardening rule whose dynamic recovery term
is a weighted average of regular AF type along the back stress, and
a so-called radial evanescence rule along the plastic strain rate
direction introduced by Burlet and Cailletaud (1986). In the origi-
nal work, Delobelle et al. (1995) suggest either a fixed weighting
factor or an empirically varied one. A very important property of
this modification is that the value of the plastic modulus is un-
changed from what it would be if the kinematic hardening was
that of a simple AF kind for any type of loading, as was shown in
the original papers and again more recently in Dafalias and Feigen-
baum (2011). It follows that the main goal of this modification is to
address the multiaxial ratcheting by modifying the change in the
direction of the plastic strain increment via the ensuing change
of the direction of kinematic hardening, while the uniaxial
response remains unchanged from that of an AF model because
of the invariance of the plastic modulus.

This BCD modification will be incorporated in the threshold
model by Chaboche (1991) and multiplicative AF model by Dafalias
et al. (2008a). Because the threshold is the key feature the Chab-
oche model will be abbreviated MAFT (the multicomponent AF
model with a threshold, hence the T at the end). Similarly since
the multiplier is the key feature, the Dafalias et al. model will be
1 It was brought to the attention of the authors by a reviewer that linear kinematic
hardening may have been propose earlier by Prager (1935), however, the authors
were unable to translate this paper.
abbreviated MAFM (the multicomponent AF model with a multi-
plier, hence the M at the end). Simulations in the current work
do not include the MAFT or MAFM models without the BCD mod-
ification because Dafalias and Feigenbaum (2011) showed that the
following models that incorporate the BCD modification into the
MAFT or MAFM models better simulate ratcheting results, and
these models are the KH rules to be use in the present work:

� MAFTd: The MAFT model with the BCD modification (the d at
the end is because it is a key parameter in this model). This
model was first suggested by Bari and Hassan (2002). The kine-
matic hardening rules for this model are given in Eqs. (5)–(7).
� MAFMd: The MAFM model with the BCD modification (the d at

the end is because it is a key parameter in this model). This
model was first presented in Dafalias and Feigenbaum (2011).
The kinematic hardening rules for this model are given in Eqs.
(8)–(10).
� MAFTr: The MAFT model with the r modification to the BCD

suggestion (hence the r at the end). This model was first
presented in Dafalias and Feigenbaum (2011). The kinematic
hardening rules for this model are given in Eqs. (13)–(15) and
(7).
� MAFMr: The MAFM model with the r modification to the BCD

suggestion (hence the r at the end).This model was first
presented in Dafalias and Feigenbaum (2011). The kinematic
hardening rules for this model are given in Eqs. (11)–(13).

Subsequent sections present some of the history and basic formu-
lation of these models as well as the MAFT and MAFM models. In
these sections, all models will use a unit normal formulation of
the associative flow rule. Therefore the flow rule will be given by

_ep ¼ hkin ð1Þ

where k is the loading index (or plastic multiplier) and n is the unit
normal to the yield surface, i.e. n ¼ @f=@rð Þ=j@f=@rj. Had a non-unit
normal formulation been used, the flow rule would have been
_ep ¼ hkið@f=@rÞ, the difference between these two accounted for
by an adjustment of the value of the plastic modulus by a factor
depending on the quantity j@f=@rj (it is also important if the k is de-
fined in terms of n or @f=@r).
2.1. MAFT kinematic hardening rule

In this model, first proposed by Chaboche (1991), the back-
stress is additively decomposed into many components, as usual,
and each component of back-stress has its own AF kinematic hard-
ening rule, except one component has its hardening rule altered
such that the dynamic recovery term becomes inactive within a
threshold in stress space in which case the rule becomes Prager’s
linear kinematic hardening. Outside this threshold this particular
back-stress component evolves according to its own AF kinematic
hardening rule like the other components. The threshold is defined
by a term inside McCauley brackets, therefore, a continuous mon-
itoring of whether or not the threshold has been crossed is
required, a feature with some degree of inconvenience in numeri-
cal implementation of the model. The main goal of the threshold
concept is to properly modify the value of the plastic modulus
for better fitting uniaxial ratcheting, although it has also some
minor effect on the direction of kinematic hardening since it alters
one AF component to a Prager linear kinematic hardening within
the range of the threshold. Since the key new feature of this model
is the threshold, it can be called the threshold model. This model
generally over-predicts ratcheting strains for biaxial loading (Bari
and Hassan, 2002). A similar but not identical concept was pre-
sented by Ohno and Wang (1993), where again the intention was
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to deactivate or reduce the dynamic recovery term for certain
stress range and loading directions.
2.2. MAFM kinematic hardening rule

As first presented by Dafalias et al. (2008a) MAFM is the
so-called multi-component AF kinematic hardening rule with
multiplier. The basic structure of this model is the same as the
multicomponent back stress, however, one of the back stress (a4)
components instead of considering both coefficients of its AF rate
equation of evolution constants, the coefficient of the dynamic
recovery term will be variable, enhanced by expressions associated
with the rate evolution equation of another dimensionless second
order internal variable (a�4) also evolving according to an AF rule,
but which is not a back-stress component itself. This variable coef-
ficient of the dynamic recovery term allows the pace at which a
back-stress component approaches its saturation level to vary
depending on the direction of loading and the distance from
saturation.

Specifically the evolution of these components in multiaxial
stress space is given by the following equations Dafalias et al.
(2008a,b):
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where ci; as
i ; c�i , and a�si are all model constants. The various square

roots of 2=3 or 3=2 in the above equations play the role of guaran-
teeing that under uniaxial stress loading Eqs. (2)–(4) yield their uni-
axial stress loading counterparts as explained in Dafalias et al.
(2008a,b).

Observe that the first three components of the back stress
according to Eq. (2) obey a typical AF kinematic hardening rule.
The as

i represents the saturation (limit) value of the uniaxial load-
ing counterpart a of ai. The ci is the coefficient of the dynamic
recovery term of the AF rule along ai, and it had been taken outside
the parentheses in Eqs. (2). The evolution of the fourth back stress
component a4 is given by Eq. (3) in which observe that the
dynamic recovery coefficient c4 has been enhanced by expressions
associated with the rate evolution equation of another dimension-
less second order internal variable, the multiplier a�4, also evolving
according to an AF rule as per Eq. (4). The multiplier a�4 is not a
component of the back stress a, and its only role is to modify
appropriately the coefficient c4 of the component a4. One can show
that the terms which enhance the value of c4, i.e. the terms which
are inside the same parentheses as c4 in Eq. (3), are obtained by
taking the trace of the product with n, of the difference of the cur-
rent value of the multiplier a�4 from its saturation value

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ

p
a�s4 n

in multiaxial stress space, i.e.,
ffiffi
2
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ffiffi
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q
a�s4 n� a�4
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: n.

During a change in loading direction, this enhancement will gener-
ally speed up the evolution of a4, since a�4 : n will generally be
smaller in value when n abruptly changes.

Again all these square roots terms of 2/3 and 3/2 lead to the
exact uniaxial counterpart presented in Dafalias et al. (2008a,b)
(one must also account for the relation a�4 : n ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ

p
a�4). Vari-

ability of the coefficients of an AF back-stress evolution law has
been introduced in the past in various forms for improving ratchet-
ing simulations, e.g. Chaboche (1991), Guionnet (1992), Ohno and
Wang (1993), but not in a format involving their multiplication by
another directionally evolving internal variable like the multiplier
in the MAFM model.

Dafalias et al. (2008a) show that such multiplicative AF kine-
matic hardening rule combined with the underlying additive
back-stress decomposition of the multicomponent hardening mod-
el can offer improvement in the simulation of the loops created by
unloading/partial reverse loading/reloading, without sacrificing
the ability to model the ratcheting response that is often improved
because it is ultimately related to the underlying realistic modeling
of such loops. They also show that the multiplicative AF scheme
can substitute for the threshold refinement proposed by Chaboche
(1991), i.e. the MAFT model, and elaborated by Bari and Hassan
(2000) in uniaxial ratcheting simulations with equal and often
slightly better success. Dafalias and Feigenbaum (2011) show that
this model can also substitute for the MAFT model in bi-axial strain
controlled ratcheting, again with approximately equal success.

2.3. MAFTd and MAFMd kinematic hardening rules

Bari and Hassan (2002) incorporated the BCD modification to a
model where the back-stress is additively decomposed in AF
components and one back-stress has a threshold as suggested by
Chaboche (1991) (MAFT), in what can be symbolized by the acro-
nym MAFTd as explained previously. The result is the following
kinematic hardening rule, adjusted as usual to reflect the unit nor-
mal formulation _ep ¼ hkin and expressed in terms of the constants
ci ¼ ci and as

i ¼ Ci=ci instead of the originally used constants ci and
Ci:
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where �a is the threshold level of back-stress that makes the
dynamic recovery term inactive within the threshold, and f ða4Þ is
defined as:

f ða4Þ ¼
3
2
a4 : a4

� �1=2

ð7Þ

Bari and Hassan assume d (symbolized in their paper by d0) is a con-
stant; in particular, they found best results for CS 1026 with
d ¼ 0:18.

Notice that each one of the equations given in Eqs. (5) and (6)
use the BCD modification and Eq. (6) has the additional feature
of the threshold term with the McCauley brackets h i, multiplying
the dynamic recovery component. One can observe that applica-
tion of the consistency condition and use of Eqs. (5) and (6) renders
the value of the hardening plastic modulus equal to a sum of terms
each one of which is proportional to a quantity cið

ffiffiffiffiffiffiffiffi
2=3

p
as

i

�ai : nÞ; i ¼ 1; 2; 3; 4 (for the a4 the threshold term multiplies
a4 : n), hence, the modulus is independent of d and identical to
what it would have been obtained had the BCD modification not
been introduced at all.

There is, however, a theoretical weakness of this model, and in
fact this theoretical weakness extents to any models that use the
Delobelle et al. (1995) or Burlet and Cailletaud (1986) kinematic
hardening rules. As Dafalias and Feigenbaum (2011) rigorously
show, the resulting kinematic hardening model might allow some
or all of the back-stress components to move outside their natural
saturation (limit) levels in stress space (a kind of bounding surface
for back stress) depending on the value of the weighting factor d,
with consequences of a negative plastic modulus and an ensuing
softening response while such response is not expected or sought.
Dafalias and Feigenbaum show that restricting d to the range
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0:5 6 d 6 1 is necessary and sufficient to prohibit this unexpected
and undesired possibility. Note that despite the unexpected and
undesired possibility of softening, the BCD modification is thermo-
dynamically admissible for all d.

Since the choice of d ¼ 1, gives the AF kinematic hardening rule,
and since Bari and Hassan found that d ¼ 0:18 gives the best results
for many of the ratcheting experiments which will be modeled in
this work, albeit with the aforementioned deficiency since
d < 0:5, only the case of d ¼ 0:5 will be used in the present study.

Proceeding in a similar manner as Bari and Hassan (2002) for
the multicomponent model with a threshold, introduction of the
BCD modification into the multicomponent AF with multiplier
kinematic hardening model (MAFM), given in Eqs. (2)–(4), yields
the following kinematic hardening rule symbolized by the acro-
nym MAFMd as explained in the previous section:
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where again a ¼
P

ai. Notice that the BCD modification was not
introduced in the evolution law of the multiplier a�4 given by Eq.
(10), but only in the evolution laws of the back-stress components
ai in terms of a common weighting factor d. The only difference
between the present multiplicative AF model with the BCD modifi-
cation (MAFMd model) and that by Bari and Hassan (2002) (MAFTd
model) presented before, is the use of the multiplier rather than the
threshold when comparing Eq. (9) and Eq. (6). Again, to avoid the
potential for negative plastic modulus and softening (Dafalias and
Feigenbaum, 2011), d ¼ 0:5 will be chosen.

2.4. MAFTr and MAFMr kinematic hardening rules

As already mentioned the condition on d required for not possi-
bly crossing the bounding surface associated with the evolution of
back stress given by is 0:5 6 d 6 1. Focusing on the MAFMd model
(equivalent proposition can be made for the MAFTd model), in
order to remove the possibility of crossing the corresponding
bounding surface by any one of the back-stress components, the
following variation of the BCD modification was proposed by
Dafalias and Feigenbaum (2011):
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where ri is given by:
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This model is called the MAFMr model. Notice that Eqs. (11) and
(12) are the same as Eqs. (8) and (9) but the variables ri have re-
placed the constant d. The same condition obtained for d, i.e.
0:5 6 ri 6 1, guarantees that no crossing of the corresponding
bounding surface for each ai can occur. According to its definition
by Eq. (13), the value of ri, which measures the proximity of ai to
its saturation value as

i ¼
ffiffiffiffiffiffiffiffi
2=3

p
as

i n on its bounding surface, will be
between 0 and 1, and it will be equal to 1 at the crucial for crossing
possibility point when ai ¼ as

i , therefore, the kinematic hardening
becomes of the pure AF type and the possibility of the back-stress
crossing its bounding surface and having a negative plastic modulus
is eliminated. Because of the replacement of the BCD modification
by a variation utilizing ri (or r for a single back stress component),
the variation will be called the r-modification. Identical variation
where ri substitute for d can be applied to Eqs. (5)–(7) for the
threshold model, in what can be called correspondingly the MAFTr
model. Thus, the MAFTr model is defined as:
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where again ri is defined by Eq. (13) and f ða4Þ is defined by Eq. (7).
Notice that the r-modification eliminates the necessity to intro-

duce the model constant d.

3. Directional distortional hardening model (DDH)

Directional distortion has been modeled by Shutov et al. (2011),
François (2001), Voyiadjis et al. (1990), and Kurtyka and Zyczkowski
(1996), among others. The directional distortional models used in
the present work are based on the work of Feigenbaum and
Dafalias (2007, 2008) where all hardening rules are derived on
the basis of sufficient conditions necessary to satisfy the dissipation
inequality, in conjunction with a few simple, plausible assumptions
about energy storage in the material. It should be noted that the
thermodynamic derivation of these models is quite similar to that
in Shutov et al. (2011).

For consistency with the original Feigenbaum and Dafalias
(2007, 2008) work, a non-unit normal formulation of the associa-
tive flow rule will be used in this section. Therefore the flow rule
will be given by

_ep ¼ hki @f
@r

ð16Þ

where k is the loading index (or plastic multiplier). To switch to unit
normal formulation, hardening rules and k will need to be adjusted
by a factor only depending on the quantity j@f=@rj.

The Feigenbaum and Dafalias (2007) model uses the following
yield function:

f ¼ ðs� aÞ : ½H0 þ ðnr : aÞA�ðs� aÞ � k2 ¼ 0 ð17Þ

where s is the deviatoric component of the stress tensor, a is the
deviatoric back-stress tensor that represents the ‘‘center’’ of the yield
surface, k represents the size of the yield surface, A is the fourth-
order evolving anisotropic tensor, H0 is the fourth order isotropic
unit tensor given by the expressionH0ijkl

¼ 3
2

1
2 dikdjl þ dildjk

	 

� 1

3 dijdkl

� �
,

and nr is the radial, in regards to the center of the yield surface, devi-
atoric unit tensor illustrated in Fig. 1 and defined by

nr ¼
s� a
s� aj j ð18Þ

with the symbol j � j representing the norm of a tensor defined as
jmj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m : m
p

. The fourth order anisotropic tensor, A, is responsible
for distortional hardening in general, and the trace-type scalar mul-
tiplier, nr : a, is responsible for the directionality of distortion. This
can be intuitively understood if one observes that the double con-
traction nr : a is an inner product between the tensors nr and a,
thus, it actually takes the ‘‘projection’’ of a along the different ‘‘unit’’
directions nr. This product can vary from jaj to �jaj passing through
zero, and such variation effects the role of the distortional tensor A
which is multiplied by it. Since the fourth-order tensor A is the cor-
ner stone of this model, it will henceforth be referred to as the ‘‘A-
model.’’

It must be mentioned that the introduction of an evolving
fourth order tensor to describe non directional distortion and the



Fig. 1. Example of directional distortion of the yield surface for loading in pure
tension. Observe the radial normal nr and how it differs from the unit normal n.
Also note that the two subsequent yield surfaces have the same final stress point in
tension, but translation of the center of the directionally distorted yield surface is
less than that with kinematic hardening alone.
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thermodynamic basis of its evolution, was first presented in
Dafalias et al. (2002).

Observe that due to the symmetry of ðskl � aklÞ in the indices k; l
and the quadratic symmetry of Eq. (17), it follows without loss of
generality that the following symmetry relations apply in reference
to the components of A

Aijkl ¼ Ajikl ¼ Aklij ð19Þ

Eqs. (19) reduce at first the number of independent components of
A to 21, but because ðs� aÞ is deviatoric, it has five independent
components with respect to an orthonormal basis, therefore, the
independent components of A must reduce further from 21 to 15.
This can be achieved by imposing the following six, single pair of
indices traceless-type conditions, also referred to as incompressibil-
ity conditions, Dafalias (1979),

Aiikl ¼ 0 ð20Þ

where summation over repeated indices is implied.
In Feigenbaum and Dafalias (2008) two yield functions are pro-

posed, the first of which can been understood as a special case of
(17) where A is constantly aligned with the fourth order unit iso-
tropic tensor H0 by means of a possibly varying proportionality
factor, which gives rise to the following expression for the yield
function:

f ¼ 3
2

1� cðnr : aÞ½ �ðs� aÞ : ðs� aÞ � k2 ¼ 0 ð21Þ

where c is a scalar-valued internal variable whose magnitude is di-
rectly associated with the amount of distortion of the yield surface.
Since the back stress a is the entity which dictates the directional
distortion, this model will be referred to as the ‘‘a-model.’’ For the
purposes of this work, only this simplest version of the a-model will
be considered, and this is the case where c is constant. Nonetheless
the full a-model will be presented.

One criticism one might raise for the models in Eqs. (17) and
(21) is that distortional hardening is coupled with kinematic hard-
ening due to the role the back stress plays in the distortion scheme,
while the underlying physics would imply an uncoupled consider-
ation. To alleviate this problem a second yield function was pro-
posed in Feigenbaum and Dafalias (2008),
f ¼ 3
2

1� ðnr : rÞ½ �ðs� aÞ : ðs� aÞ � k2 ¼ 0 ð22Þ

where r is a second order deviatoric tensor-valued directional dis-
tortional hardening internal variable. By introducing r in Eq. (22)
the scalar quantity nr : r is completely responsible for directional
distortion, therefore, kinematic hardening has been decoupled from
distortional hardening. Since r is the entity which dictates the direc-
tional distortion, this model will be referred to as the ‘‘r-model.’’
Notice the bold r represents the tensor responsible for distortion,
which is not to be confused with the scalar r in the MAFTr and
MAFMr which is a ratio that replaces the constant weighting factor
in the BCD modification.

Thus the distortional hardening models to be use, can be sum-
marized as follows:

� A model: This model was first suggested by Feigenbaum and
Dafalias (2007). The key feature of this model is the fourth order
tensor A which is responsible for distortion and the scalar mul-
tiplier nr : a which is responsible for the directionality of the
distortion. The yield function for this model is given in Eq.
(17). Note that in subsequent figures DDH refers to this model.
� a model: This model was first suggested by Feigenbaum and

Dafalias (2008). The key feature of this model is the scalar quan-
tity cðnr : aÞ which is responsible for distortion. It is called the a
model because the back-stress may be the only evolving quan-
tity that leads to yield surface distortion. The yield function for
this model is given in Eq. (21).
� r model: This model was first suggested by Feigenbaum and

Dafalias (2008). The key feature of this model is the second
order tensor r which is responsible for distortional hardening.
The r allows kinematic hardening and distortional hardening
to be decoupled. The yield function for this model is given in
Eq. (22).

The hardening rules for these models are obtained from conditions
sufficient for satisfaction of the second law of thermodynamics, in
conjunction with a few simple and plausible assumptions about
energy storage and release in the material. Details of these thermo-
dynamic assumptions and how the hardening rules are sufficient
to satisfy the second law of thermodynamics can be found in
Feigenbaum and Dafalias (2007, 2008). For now only the hardening
rules themselves along with some thermodynamically necessary
restrictions will be presented.

All three models give rise to the same form of isotropic and
kinematic hardening, however, isotropic hardening will not be in-
cluded in any of the simulations in this work, and the kinematic
hardening rules to be used have been described in a previous
section.

The hardening rules that arise for the distortional parameters
for the three models are as follows:

_A ¼ �kA1 s� aj j2 nr : að Þnr � nr þ
3
2

A2A

� �
ð23Þ

_c ¼ 3
2

kc1js� aj2½ðnr : aÞ � c2c� ð24Þ

_r ¼ 3
2

kq1js� aj2ðnr � q2rÞ ð25Þ

where A1; A2; c1; c2; q1 and q2 are non-negative material con-
stants. These hardening rules are sufficient for the satisfaction of
the second law of thermodynamics provided that

A2jAj2 6 1; c2c2
6 1; q2jrj

2
6 1 ð26Þ

for all time, where jAj2 ¼ A :: A ¼ AijklAijkl, since A is symmetric,
and jrj2 ¼ r : r are Euclidean norms (Feigenbaum and Dafalias,
2007, 2008).



Table 1
Material constants for CS 1026 with kinematic hardening only.

MAFTd MAFMd MAFTr MAFMr

c1 20,000 20,000 20,000 20,000
as

1 3 ksi 3 ksi 3 ksi 3 ksi
c2 400 400 400 400
as

2 8.07 ksi 8.07 ksi 8.07 ksi 8.07 ksi
c3 11 10 11 10
as

3 41.4 ksi 45.5 ksi 41.4 ksi 45.5 ksi
c4 5000 1800 5000 1800
as

4 3 ksi 8 ksi 3 ksi 8 ksi
�a 5 ksi – 5 ksi –
c�4 – 5000 – 5000
as�

4 – 0.16 – 0.16
d 0.5 0.5 – –

Table 2
Material constants for CS 1018 with kinematic hardening only.

MAFTd MAFMd MAFTr MAFMr

c1 20,000 20,000 20,000 20,000
as

1 3 ksi 3 ksi 3 ksi 3 ksi
c2 400 400 400 400
as

2 8.07 ksi 8.07 ksi 8.07 ksi 8.07 ksi
c3 20 20 20 20
as

3 40 ksi 40 ksi 40 ksi 40 ksi
c4 5000 600 5000 600
as

4 3 ksi 8 ksi 3 ksi 8 ksi
�a 5 ksi – 5 ksi –
c�4 – 5000 – 5000
as�

4 – 0.16 – 0.16
d 0.5 0.5 – –

Table 3
Distortional material parameters.

A1 2:25 ksi�4

A2 1575 ksi2

q1 5 ksi�2

q2 6
c 0:0055 ksi�1
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Notice that all hardening rules for all models, and in particular
for the evolution of the fourth order tensor A, are of the evanes-
cent memory type, therefore the internal variables all reach finite
limits under any type of loading. These limits can be found by set-
ting the rate equations in (23)–(25) equal to zero, which yields:

A l ¼ �2amax

3A2
nl

r � nl
r ð27Þ

cl ¼ amax

c2
ð28Þ

rl ¼ 1
q2

nl
r ð29Þ

where the superscript l denotes the limit values of the quantities
involved. The quantity amax, which appears in the equations of the
limits for the distortional parameters for the A and a models,
Eqs. (27) and (28), is the magnitude of the limit back-stress. Specif-
ically, amax is defined by

al ¼ amaxnl ¼ amaxnl
r ð30Þ

for AF type kinematic hardening rules. The fact that nl
r ¼ nl at the

limit, as shown in Feigenbaum and Dafalias (2007, 2008), has been
evoked to derived Eqs. (27)–(30). The magnitude of the limit
back-stress, amax depends on the kinematic hardening rule used. For
the MAFMd and MAFMr the magnitude of the limit of the back-
stress is:

amax ¼ al
  ¼ X4

i¼1

al
i


 ¼

X4

i¼1

ffiffiffi
2
3

r
as

i ð31Þ

Similarly, for the MAFTd and MAFTr the magnitude of the limit of
the back-stress is:

amax ¼ al
  ¼ X4

i¼1

al
i


 ¼

X3

i¼1

ffiffiffi
2
3

r
as

i þ
ffiffiffi
2
3

r
as

4 þ �a
	 


ð32Þ

Assuming that the maximum of the inequalities in (26) occurs at
the limit, under any type of loading, the thermodynamic require-
ments in (26) give the following restrictions on material constants
for the A-model, a-model and r-model, correspondingly:

A2

ðamaxÞ2
P

4
9
;

c2

ðamaxÞ2
P 1; q2 P 1 ð33Þ

Convexity of these models were proven in Plesek et al. (2010). For
the a-model, r-model, and A-model convexity requires the follow-
ing, respectively:

caj j < 1; rj j < 1; aj jAj jk <
3
2

ð34Þ

where Aj jk is the maximum eigenvalue of �A. Note that the
inequalities for convexity in (34) represent necessary and sufficient
conditions for the a and r models, but only a necessary condition for
the A model. A necessary and sufficient condition for the A model
can only be found at the limit, assuming that is the most distorted
yield surface. And in fact looking at the limit for all models gives
restrictions on the parameters as follows:

c2

ðamaxÞ2
> 1; q2 > 1;

A2

ðamaxÞ2
> 0:55 ð35Þ

Notice that the convexity requirement is either the same or more
stringent than the thermodynamic requirement, therefore if con-
vexity is satisfied the thermodynamic requirement is automatically
satisfied. For the a-model, if only constant c is considered, convexity
is always guaranteed. The convexity requirements in (35) along
with definitions of amax from Eqs. (31) and (32) will play an impor-
tant role in the calibration of model parameters.

4. Calibration of models

The various kinematic hardening and directional distortional
hardening rules will be used to fit experimental data on CS 1018
and CS 1026 from Hassan and Kyriakides (1992), Hassan et al.
(1992) and Corona et al. (1996). The model parameters for CS
1026 with kinematic hardening alone are from Dafalias et al.
(2008a) and Bari and Hassan (2000). For the convenience of the
reader and easy comparison with subsequent models, these con-
stants are presented in Table 1.

The model parameters for CS 1018 are slightly different than for
CS 1026. However, the relevant parameters for CS 1026 have been
used as a basis for the determination of the CS 1018 parameters,
due to the fact that the two materials exhibit a very similar
response. In particular, the calibration procedure involved the fine
tuning of the CS 1026 parameters in terms of best fitting the stabi-
lized CS 1018 stress–strain hysteresis loop, which was taken from
published experimental results Corona et al. (1996). Table 2 shows
the model parameters for CS 1018.

For the addition of distortion, the model parameters were deter-
mined by systematically and iteratively guessing and checking.
While such a calibration technique is not ideal, it serves the



(a)

(b)

(c)

(d)

(e)

Fig. 2. Uniaxial ratcheting data from Hassan and Kyriakides (1992) with simulated various kinematic hardening rules with and without directional distortional hardening. In
this case, DDH implies that the A-model was used. Note that this data was used to calibrate the DDH model.
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purposes of this work and allows one to determine which KH rule
generally fits the ratcheting data best and how the addition of DDH
improves the predictions of ratcheting. Current work is underway
to develop a more rigorous means of calibrating the Feigenbaum
and Dafalias (2007, 2008) DDH models.

As Fig. 1 shows, to reach the same stress point, less translation
of the yield surface is needed when directional distortion is in-
cluded. Therefore, the parameters must be changed so that the
amount of kinematic hardening is decreased when directional dis-
tortional hardening is included. Specifically, values for c1—c3 and
as

1—as
3 were decreased in order to lessen the amount of kinematic

hardening and allow room for distortional hardening to occur.
Decreasing c1—c3 slowed the rate of kinematic hardening, while
decreasing as

1—as
3 lowered the limit of kinematic hardening. For
simplicity, since the fourth kinematic hardening rule is unique in
kind, the parameters associated with this fourth kinematic harden-
ing rule were unchanged. Similarly, �a in the threshold models was
left unchanged.

Furthermore, for simplicity, it was assumed that change in the
kinematic hardening parameters would be uniform, i.e. all kine-
matic hardening parameters would all change by an equal percent-
age. This was assumed because the different back-stresses are each
associated with different regions of the stress–strain curve, how-
ever, there is no evidence to suggest that distortion of the yield sur-
face primarily occurs in one region of the stress–strain curve.
Moreover, if percentage change of the kinematic hardening param-
eters is the same across all models, since it is the same material,
the same ‘‘amount’’ of directional distortion should occur.



(a)

(b)

(C)

(d)

(e)

Fig. 3. Uniaxial ratcheting data from Hassan and Kyriakides (1992) simulated with the MAFTr kinematic hardening rule and the various directional distortional hardening
models. Note that this data was used to calibrate the DDH models.
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Once the kinematic hardening parameters were reduced, the
distortional parameters were added with the convexity require-
ment in (35), where amax is given by Eq. (31) for the MAFM models
or (32) for the MAFT models, used as a guide. The distortional
parameters to be used were assumed to be the same vales no mat-
ter the kinematic hardening rule used. Again, this was because the
same amount of distortion is expected for the same material.

The calibration was checked against strain symmetrically stabi-
lized experimental data and uniaxial ratcheting experimental data
from Hassan et al. (1992) and Hassan and Kyriakides (1992),
respectively, on thin walled tubes of CS 1026. The strain symmetric
stabilization was performed before the biaxial ratcheting tests, and
it was found that the hysteresis loops stabilized fairly quickly. For
the simulations, it was assumed that during the strain symmetric
stabilization, the isotropic hardening would saturate and therefore
isotropic hardening was not included in the modeling. The uniaxial
ratcheting experiments were axially stress controlled loading of
the thin walled tubes of CS 1026 at various mean stresses, rxm,
and stress amplitudes, rxa. Iterations were performed until good
fits were achieved for both sets of experimental data.

Ultimately the c1—c3 and as
1—as

3 constants were only decreased
by 1% from their original values for kinematic hardening alone, and
the distortional parameters are given in Table 3. Simulation of uni-
axial ratcheting, which was used for calibration, is shown in Figs. 2
and 3. Fig. 2 shows results using the different kinematic hardening
rules with and without distortion. In this figure, with distortion im-
plies the A-model. Fig. 3 shows results for only one kinematic
hardening rule, MAFTr, but with the different distortional models.
In general, these figures show that all the models can accurately
reproduce the uniaxial data to which they were calibrated. As



(a)

(b)

(c)

(d)

(e)

(f)
Fig. 4. Strain controlled biaxial ratcheting data simulated with various kinematic hardening rule with and without directional distortional hardening. In this case, with
distortion implies that the A-model was used.
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expected, there is no advantage of using the distortional models to
simulate the uniaxial ratcheting data since under uniaxial loading
the normal to the yield surface will not change, with or without
distortion, and thus neither will the direction of plastic strain.
The simulation of the strain symmetrically stabilized curves are
not reproduced here because they very closely match experimental
data in all cases.

In order to add DDH with CS 1018, just as was done for CS 1026,
the material parameters c1 � c3 and as

1 � as
3 constants were de-

creased by 1% from their original values, given in Table 2, for kine-
matic hardening alone. Since the stabilized plot for CS 1018 is very
similar to that for CS 1026, and since no uniaxial ratcheting data
was available for CS 1018, the distortional parameters, A1 and A2,
were assumed to be the same for the two materials and are given
in Table 3. These parameters gave a good fit of the strain
symmetrically stabilized curves found experimentally. The r and
a models for DDH were not used to simulate any CS 1018 data,
therefore q1;q2, and c parameters were not calibrated for CS 1018.

5. Fitting of ratcheting data

5.1. Results

Figs. 4–6 show how the various kinematic hardening rules, with
and without directional distortional hardening, simulate experi-
mental results. For these figures, DDH refers to the A-model. Figs.
7,8 show how different directional distortional hardening models
simulate experimental ratcheting results.

The experimental data for Figs. 4,5 and Figs. 7,8 is from Hassan
et al. (1992). In the experiments, thin walled tubes of carbon steel



(a)

(b)

(c)

(d)

(e)

(f)
Fig. 5. Stress controlled biaxial ratcheting data simulated with various kinematic hardening rule with and without directional distortional hardening. In this case, with
distortion implies that the A-model was used.
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1026 were first stabilized by strain symmetric axial cycles in the
range of �1% and in approximately 12 cycles the hysteresis loops
were stable. Following the strain symmetric cycling the specimens
were unloaded to approximately zero axial stress and strain,
although typically some small residual circumferential strain re-
mained non-zero. Note that when simulating the strain controlled
biaxial ratcheting data in Figs. 4 and 7, the material was assumed
to begin in a virgin state, i.e. the stabilization of the material was
not simulated. However, when simulating the complex load paths
and the stress controlled biaxial ratcheting in Figs. 5, 6 and 8, the
stabilization was simulated before the ratcheting. Generally, simu-
lating the stabilization makes little difference to the ratcheting
predictions.

For the strain controlled results in Figs. 4 and 7, after the stabil-
ization, Hassan et al. (1992) preloaded the tubes using stress con-
trol with various internal pressures. These internal pressures
resulted in circumferential stress that vary between rh ¼ 0:120r0

and rh ¼ 0:357r0, where r0 ¼ 39:8 ksi. The tubes were then cycli-
cally loaded using strain control in the axial direction with various
amplitude of the strain cycle ranging between exc ¼ 0:4% and
exc ¼ 0:65%, while the internal pressure remained constant.

For the stress controlled results in Figs. 5 and 8, after the stabil-
ization, Hassan et al. (1992) preloaded the tubes using stress con-
trol with various internal pressures. While the internal pressure
remained constant, the tubes were then cyclically loaded using
stress control in the axial direction with various amplitudes of
stress and various mean stress values. Figs. 5 and 8 show the mean
axial strain exm and the mean circumferential strain ehm per cycle,
which are both predicted values.

Fig. 6 shows how the various models perform in more complex
paths. In this figure the experimental data is from Corona et al.
(1996). The various load paths are shown in the figure, and include



(a)

(b)

(c)

(d)

(e)

Fig. 6. Strain controlled biaxial ratcheting data from complex load paths simulated with various kinematic hardening rule with and without directional distortional
hardening. In this case, with distortion implies that the A-model was used.
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a bowtie path, a reverse bowtie path, and hourglass path and two
slanted paths. All these complex load paths are achieved using
strain controlled loading. As with the Hassan et al. (1992) experi-
mental results, the material was cyclically loaded symmetrically
and stabilized before any ratcheting tests. Please note that in this
figure, the experimental result in (b), (c) and (e) are from thin
walled tubes of CS 1018. Observe that there is almost no difference
between the simulated results with and without DDH for CS 1018,
and only minimal difference for CS 1026.

5.2. Discussion

Comparing the different kinematic hardening models in Figs. 4
and 6 it can be seen that with strain controlled loading, which in-
cludes the complex load paths in Fig. 6, the MAFTr and MAFMr
more accurately simulate the experimental data that the MAFTd
and MAFMd models with d ¼ 0:5. This fact might have been ex-
pected since Bari and Hassan (2002) choose to use a much smaller
value of d, 0.18, to simulate the same data. When d ¼ 0:5 was cho-
sen, to avoid the potential for softening, the model behaves more
like the AF model and less like the Burlet and Cailletaud model,
and thus ratcheting is over predicted, as is usually seen with the
AF model.

These results suggest that when the BCD modification is used,
the variable r given by Eq. (13) is preferred over the fixed d. From
the strain controlled biaxial ratcheting simulations in Figs. 4 and 6
it seems that the MAFMr kinematic hardening model most accu-
rately matches experimental tests. However, Fig. 5 shows that
MAFTr model performs constantly better than the MAFMr model
in stress controlled loading. Therefore one might conclude that
the MAFTr model overall performs the best out of the kinematic
hardening rules used in this study without the use of DDH. This
is why only the MAFTr model was used to compare the perfor-
mance of the different directional distortional hardening models
in Figs. 7 and 8.

However, given that the difference of the MAFTr from the
MAFMr model simulations is not that great, while the latter has
the advantage of avoiding the necessity to check if the threshold
is exceeded at each step, the use of MAFMr can be often preferable
than the use of MAFTr.
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(b)

(c)

(d)
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(f)
Fig. 7. Strain controlled biaxial ratcheting data simulated with the MAFTr kinematic hardening rule and various directional distortional models.
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From Figs. 4 and 6 it can be seen that directional distortional
hardening can improve predictions of strain controlled biaxial rat-
cheting, although only very minimally. Similar results in Fig. 7
show that virtually identical results are obtained for strain con-
trolled biaxial ratcheting simulations with the various directional
distortional models. This can be understood by the fact that mini-
mal distortion occurs to the yield surface with the material param-
eters identified. For example, for the loading in Fig. 4a, using the
MAFTr kinematic hardening rule, there is less than a 3% difference
between all components of nr versus the same components of n.
Other load conditions give similar very small differences between
nr and n. Since directional distortional hardening makes little dif-
ference in results for the complex load paths in Fig. 6, these load
conditions were not simulated with the various different direc-
tional distortional models.

For stress controlled ratcheting the results are much different.
Fig. 5 shows that consistently the inclusion of directional
distortional hardening improves stress controlled biaxial ratchet-
ing predictions, often significantly. The only exception to this sig-
nificant improvement of predictions is Fig. 5a, where there is
zero internal pressure, so it is merely uniaxial ratcheting where
it is not expected for distortion to make an improvement.

Fig. 8 suggests that, while inclusion of directional distortion
very much improves stress controlled biaxial ratcheting predic-
tions, the choice of the directional distortional model makes little
difference. Therefore, one may choose to work with the a-model
since it is the simplest and gives approximately as accurate results
as the more complicated directional distortional models.
6. Conclusion

In this work, it was shown that directional distortional
hardening improves ratcheting predictions, particularly biaxial
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Fig. 8. Stress controlled biaxial ratcheting data simulated with the MAFTr kinematic hardening rule and various directional distortional models.
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stress controlled predictions, over kinematic hardening alone.
Furthermore, it was shown that of the different directional distor-
tional hardening models used, there seemed to be fairly little dif-
ference in the accuracy of ratcheting simulations, therefore one
may choose to use the simplest model, the a model from
Feigenbaum and Dafalias (2008). However, it must be pointed
out that if one would like to simulate also the distortion of the
yield surface shape, then the A model is definitively superior to
the a and r models as shown in Feigenbaum and Dafalias (2007,
2008). Comparing the various kinematic hardening rules (with or
without distortion), it seems that, of those studied MAFTr generally
performs the best, although MAFMr performs nearly as well, and
generally the variable r as the weight factor performs better than
the fixed d ¼ 0:5 with the BCD modification.

Now that it has been shown that directional distortional hard-
ening can dramatically improve predictions of biaxial stress con-
trolled ratcheting, in order to make use of these models in real
engineering applications of ratcheting problems it is imperative
that a systematic calibration technique be developed. Current work
is underway to develop such a technique.
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