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Abstract

We generalize a result of Zwara concerning the degeneration of modules over Artinian al
to that over general algebras. In fact, letR be any algebra over a field and letM andN be finitely
generated leftR-modules. Then, we show thatM degenerates toN if and only if there is a shor

exact sequence of finitely generated leftR-modules 0→ Z
(φ
ψ)−−→ M ⊕ Z → N → 0 such that the

endomorphismψ on Z is nilpotent. We give several applications of this theorem to commuta
ring theory.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper we shall give a necessary and sufficient condition for degen
of modules (Theorem 2.2). To be more precise, letR be any algebra over a field and letM

andN be finitely generated leftR-modules. We shall prove thatM degenerates toN if and
only if there is a short exact sequence of finitely generated leftR-modules

0→ Z
(φ

ψ)−−→ M ⊕ Z → N → 0

such that the endomorphismψ onZ is nilpotent.
This is obviously a generalization of a theorem of G. Zwara [5], who proves

equivalence for a finite dimensional algebra over a field. In that case the nilpo
condition forψ is not necessary.
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We shall give a precise definition of degenerations, more precisely degenerations
discrete valuation rings, and discuss it to prove the above necessary and sufficient co
in Section 2. We should notice there that our choice ofZ appearing in the short exa
sequence is different from Zwara’s.

In the previous paper [3], we consider a distinct type of degeneration that we
a degeneration along an affine line to distinguish it from the degeneration along a d
valuation ring. In Section 3, we shall prove that a degeneration along a discrete va
ring implies a degeneration along an affine line.

As applications of the theorem to commutative ring theory, we comment several re
in Section 4. For example, we can show that the “G-dimension 0” property for a mod
an open property as well as the “maximal Cohen–Macaulay” property.

2. Degenerations along DVR

In this sectionk always denotes a field andR is a k-algebra. Note thatR may not be
commutative nor Noetherian.

Definition 2.1. For finitely generated leftR-modulesM andN , we say thatM degenerate
to N along a discrete valuation ring, orN is a degeneration ofM along a DVR, if there
is a discrete valuation ring(V , tV , k) that is ak-algebra (wheret is a prime element) an
a finitely generated leftR ⊗k V -moduleQ which satisfies the following conditions:

(1) Q is flat as aV -module;
(2) Q/tQ ∼= N as a leftR-module;
(3) Q[1/t] ∼= M ⊗k V [1/t] as a leftR ⊗k V [1/t]-module.

The following theorem is the main theorem of this paper, which gives a perfect con
for the degeneration along a DVR.

Theorem 2.2. The following conditions are equivalent for finitely generated leftR-modules
M andN :

(1) N is a degeneration ofM along a DVR.
(2) There is a short exact sequence of finitely generated leftR-modules

0 → Z
(φ

ψ)−−→ M ⊕ Z → N → 0,

such that the endomorphismψ onZ is nilpotent, i.e.,ψn = 0 for n � 1.

Proof. (1) ⇒ (2). Suppose that there are a discrete valuation ring(V , tV , k) that is a
k-algebra and a finitely generated leftR⊗k V -moduleQ such thatQ is V -flat,Q/tQ ∼= N

andQ[1/t] ∼= M ⊗k V [1/t].
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First of all we note thatM ⊗k V is a finitely generatedR ⊗k V -submodule of
M ⊗k V [1/t] ∼= Q[1/t] and hence thatM ⊗k V ⊆ (1/tn)Q for a largen. ReplacingQ
with (1/tn)Q if necessary, we may assume thatM ⊗k V ⊆ Q.

Now we claim that

(i) M ⊗k V is a direct summand ofQ as a leftR-module.

In fact, the natural inclusionV → V [1/t] is a splitting monomorphism ofk-modules,
sincek is a field. It follows that the mapM ⊗k V → M ⊗k V [1/t] ∼= Q[1/t] is a splitting
monomorphism of leftR-modules. Restricting the splitting map ontoQ, we see that the
natural inclusionM ⊗k V → Q is also a splitting monomorphism of leftR-modules.

We also have the following direct decomposition:

(ii) M ⊗k V = M ⊕ (M ⊗k tV ) as a leftR-module.

This is obvious from the direct decompositionV = k ⊕ tV as ak-module. From (i) and
(ii) we obtain the following isomorphism of leftR-modules:

(iii) Q/(M ⊗k tV ) ∼= M ⊕ Q/(M ⊗k V ).

We should note that

(iv) Q/(M ⊗k V ) is finitely generated as a leftR-module.

Actually, since(M ⊗k V )[1/t] = Q[1/t], we see thattnQ ⊆ M ⊗k V for a large
integern. ThereforeQ/(M ⊗k V ) is a finitely generated left module overR ⊗k V /(tn).
Noting that R ⊗k V /(tn) is finitely generated as a leftR-module, we conclude tha
Q/(M ⊗k V ) is finitely generated overR.

Now we consider a leftR-module homomorphism

f :Q/(M ⊗k V ) −→ Q/(M ⊗k tV ),

which is defined byf (x + M ⊗k V ) = tx + M ⊗k tV for anyx ∈ Q. And we claim that

(v) f is a monomorphism and Coker(f ) ∼= N .

To prove this, we should note thatt is a nonzero divisor onQ. Consequently, if
f (x + M ⊗k V ) = 0, thentx ∈ M ⊗k tV = t (M ⊗k V ) and we havex ∈ M ⊗k V . This
implies thatf is a monomorphism. Since the image off is tQ/(M ⊗k tV ), it is easy to
see that the cokernel off is isomorphic toQ/tQ ∼= N .

Taking the direct decomposition (iii) into account, we may describe the monomorphi
f as follows:

f =
(

φ
)

: Q/(M ⊗k V ) → M ⊕ Q/(M ⊗k V ).

ψ
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Thus denotingQ/(M ⊗k V ) by Z, we have the following exact sequence of finite
generated leftR-modules:

0 → Z
(φ
ψ)−−→ M ⊕ Z → N → 0.

It remains to prove that

(vi) ψ is a nilpotent endomorphism onZ.

To prove this, letπ :Q/(M ⊗k tV ) → Q/(M ⊗k V ) be the natural projection induce
from the decomposition (iii). Then it is easy to see that the morphismψ is identical with the
compositionπ ·f :Q/(M ⊗k V ) → Q/(M ⊗k V ) that is just a homothety by the element .
Since(M ⊗k V )[1/t] = Q[1/t] and sinceQ is a finitely generatedR ⊗k V -module, we
havetn(Q/(M ⊗k V )) = 0 for a large integern. Therefore we see thatψn = 0 as desired.

(2) ⇒ (1). Suppose that there is an exact sequence of finitely generated leftR-modules

0 → Z
f =(φ

ψ)−−−−→ M ⊕ Z → N → 0,

such thatψ is nilpotent. Considering a trivial exact sequence

0 → Z
j=(0

1)−−−−→ M ⊕ Z → M → 0,

we shall combine these two exact sequences along a[0,1]-interval. More precisely, letV
be the discrete valuation ringk[t](t), wheret in an indeterminate overk, and consider a lef
R ⊗k V -homomorphism

g = j ⊗ t + f ⊗ (1− t) =
(

φ ⊗ (1− t)

1⊗ t + ψ ⊗ (1− t)

)
: Z ⊗k V → (M ⊕ Z) ⊗k V .

First of all, we claim that

(i) g is a monomorphism.

To prove this, letS be a multiplicatively closed subset ofk[t] consisting of all the
elements of the form 1+ tp(t) (p(t) ∈ k[t]). Note that, sinceV = S−1k[t], we have
X ⊗k V = S−1X[t] for any left R-moduleX. Therefore, it is enough to prove that t
mapping

g′ = tj + (1− t)f : Z[t] → M[t] ⊕ Z[t]
is a monomorphism of leftR[t]-modules, sinceg = S−1g′. To show this, letζ = ∑s

i=r zi t
i

(zr 
= 0) be a nonzero element ofZ[t]. Then we have

g′(ζ ) =
s∑(

j (zi)t
i+1 + f (zi)(1− t)t i

)
,

i=r
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where the coefficient oftr of the right-hand side isf (zr ) that is nonzero, sincef is an
injection. Thus we show thatg′(ζ ) 
= 0, hence thatg′ is a monomorphism.

Now we denote the cokernel of the monomorphismg by Q, which is a finitely generate
left R ⊗k V -module and there is an exact sequence

0 → Z ⊗k V
g−→ (Z ⊗k V ) ⊕ (M ⊗k V ) → Q → 0.

We claim that

(ii) Q is flat overV andQ/tQ ∼= N .

To prove this, we note thatg ⊗V V/tV = f that is an injection. SinceZ ⊗k V and
M ⊗k V are flat overV , it follows that TorV1 (Q,V/tV ) = 0 and thereforeQ is flat overV .
Furthermore, we see thatQ/tQ = Coker(g ⊗V V/tV ) = Coker(f ) ∼= N as a leftR-
module.

Now it remains to prove the following claim to complete the proof.

(iii) Q[1/t] ∼= M ⊗k V [1/t] as a leftR ⊗k V -module.

The variablet is of course a unit in the center of the ringR ⊗k V [1/t]. Thus the
morphismg ⊗V V [1/t] is essentially the same as the morphism

Z ⊗k V [1/t] ( sφ
1+sψ)−−−−→ M ⊗k V [1/t] ⊕ Z ⊗k V [1/t],

wheres = (1− t)/t ∈ V [1/t]. Note thatsψ :Z ⊗k V [1/t] → Z ⊗k V [1/t] is nilpotent
as well asψ , hence 1+ sψ is an automorphism onZ ⊗k V [1/t]. Thus we have an
isomorphismQ[1/t] ∼= M ⊗k V [1/t] from the following commutative diagram:

0 Z ⊗k V [1/t]
( sφ

1+sψ)
M ⊗k V [1/t] ⊕ Z ⊗k V [1/t]

(
1 −sφ(1+sψ)−1

0 (1+sψ)−1 )

Q[1/t] 0

0 Z ⊗k V [1/t]
(0

1)
M ⊗k V [1/t] ⊕ Z ⊗k V [1/t] M ⊗k V [1/t] 0.

This completes the proof of the theorem.�
Remark 2.3. As G. Zwara has shown in [5], ifR is an Artinian k-algebra, then the
following conditions are equivalent for finitely generated leftR-modulesM andN :

(1) N is a degeneration ofM along a DVR.
(2′) There is a short exact sequence of finitely generated leftR-modules

0 → Z
(φ

ψ)−−→ M ⊕ Z → N → 0.
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Note here that we need not the nilpotency assumption forψ . Actually, suppose that ther
is such an exact sequence as in the condition(2′). Then, since EndR(Z) is an Artinian ring,
we decomposeZ asZ′ ⊕ Z′′ and according to this decomposition, we can describeψ as

(
ψ ′ 0
0 ψ ′′

)
: Z′ ⊕ Z′′ → Z′ ⊕ Z′′,

whereψ ′ is an isomorphism andψ ′′ is nilpotent (Fitting theorem). Therefore, we obta
an exact sequence of the following type:

0 → Z′′ (
φ′′
ψ′′)−−−→ M ⊕ Z′′ → N → 0,

such thatψ ′′ is nilpotent. In this way, our theorem contains the theorem of Zwara.

By the proof of (2)⇒ (1) of the theorem, we get the following result as a corollary.

Corollary 2.4. Suppose thatM degenerates toN along a DVR. Then as a discre
valuation ringV we can always take the ringk[t](t).

Remark 2.5. Assume that there is an exact sequence of finitely generated leftR-modules

0 → N ′ p−→ M
q−→ N ′′ → 0.

Then it is easy to see thatM degenerates toN ′ ⊕ N ′′ along a DVR. In fact, we have onl
to notice that there is an exact sequence

0 → N ′ (p
0)−−→ M ⊕ N ′ (q 0

0 1)−−−→ N ′′ ⊕ N ′ → 0,

where the mappingψ : N ′ → N ′ is the zero mapping, hence nilpotent.

3. Degenerations along affine lines

We have considered a different kind of degenerations in the previous paper [3], main
for maximal Cohen–Macaulay modules over acommutative Cohen–Macaulay local rin
To distinguish it from the degenerations defined in Definition 2.1, we make the follow
definition.

Definition 3.1. In this definition we assume thatk is an algebraically closed field to identi
the affine line withk. And let R be a k-algebra as before. For finitely generated
R-modulesM andN , we say thatM degenerates toN along an affine line, orN is a
degeneration ofM along an affine line, if there is a finitely generated left moduleQ over
R ⊗k k[t] which satisfies the following conditions:
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(1) Q is flat as ak[t]-module.
(2) For anyc ∈ k, let us denoteQ/(t − c)Q by Qc, which is a finitely generated le

R-module. Then,Q0 ∼= N as a leftR-module.
(3) There is a non-empty Zariski open subsetU of A

1
k
∼= k such that ifc ∈ U , thenQc

∼= M

as a leftR-module.

Compare this with [3, Definition 4.1].
Now we prove an implication between degenerations in the following theorem. Bu

should remark that the converse implication does not hold in general. See Remark 4

Theorem 3.2. Assume thatk is an algebraically closed field and thatR is a left Noetherian
k-algebra. LetM andN be finitely generated leftR-modules. IfM degenerates toN along
a DVR, thenM degenerates toN along an affine line.

Proof. Suppose thatM degenerates toN along a DVR. As we have shown
Corollary 2.4, we may takeV = S−1k[t] as a discrete valuation ring, whereS = {1+ tp(t) |
p(t) ∈ k[t]}. Thus, there is a finitely generatedS−1R[t]-moduleQ such thatQ is flat
overV , Q/tQ ∼= N andQ[1/t] ∼= M ⊗k S−1k[t, t−1]. Now take a finitely generatedR[t]-
submoduleQ′ of Q so thatS−1Q′ = Q.

First of all, we claim that

(i) Q′ is flat overk[t].

To show this, it is enough to prove that the multiplication map byp(t) on Q′ is
an injection for any nonzero elementp(t) ∈ k[t]. Since Q is flat over S−1k[t], the
multiplication byp(t) on Q is either an injection or a bijection. SinceQ′ is a submodule
of Q, the claim follows.

Recall that for an elementc ∈ k, theR-moduleQ′
c is defined to beQ′/(t − c)Q′. Next

we claim that

(ii) Q′
0
∼= N as anR-module.

To show this note thatN ∼= Q/tQ ∼= S−1(Q′/tQ′) = S−1Q′
0 by our choice. SinceQ′

0
is anR[t]-module but annihilated byt , any element ofS acts onQ′

0 as the identity. Thus
we haveN ∼= S−1Q′

0 = Q′
0.

To finish the proof we are proving that

(iii) there is a non-empty open subsetU ⊂ A
1
k
∼= k such thatQ′

c
∼= M for anyc 
= 0 in U .

Note that there is an isomorphism ofS−1R[t]-modules;S−1Q′[1/t] = Q[1/t] ∼=
M ⊗k S−1k[t, t−1]. Therefore, it follows from the next lemma that one can choos
elementq(t) ∈ S such that

Q′[1/t]q(t)
∼= M ⊗k k

[
t, t−1]
q(t)
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as anR[t]q(t)-module. Now define an open subsetU ⊂ k as{c ∈ k | q(c) 
= 0}. Then, for
c 
= 0 ∈ U , a mappingh : k[t, t−1]q(t) → k defined byh(p(t)) = p(c) (p(t) ∈ k[t, t−1]q(t))

is a well-definedk-algebra map. Taking tensor product of thisk[t, t−1]q(t)-algebrak with
the above, we have

Q′[1/t]q(t) ⊗k[t,t−1]q(t)
k ∼= (

M ⊗k k
[
t, t−1]

q(t)

) ⊗k[t,t−1]q(t)
k

and this showsQ′
c
∼= M as desired. �

It remains to prove the following lemma that is well-known and easily proved. We l
its proof to the reader as an exercise.

Lemma 3.3. Let A be a left Noetherian ring and letS be a multiplicatively closed subs
in the center ofA. For finitely generated leftA-modulesX andY , if S−1X is isomorphic to
S−1Y as a leftS−1A-module, then there is an elements ∈ S such thatX[1/s] is isomorphic
to Y [1/s] as a leftA[1/s]-module.

4. Remarks for commutative Noetherian algebras

In the rest of the paper, we assume thatR is a commutative Noetherian algebra ov
a fieldk. In this case we have the following result as a corollary of Theorem 2.2.

Corollary 4.1. Suppose thatM andN are R-modules of finite length. Then the followi
conditions are equivalent:

(1) N is a degeneration ofM along a DVR.
(2) There is an exact sequence

0 → Z
(φ

ψ)−−→ M ⊕ Z → N → 0,

whereZ is also a module of finite length.

In particular, if M degenerates toN along a DVR, then we must have an equality of
lengths; �R(M) = �R(N).

Proof. (1) ⇒ (2). Suppose thatM degenerates toN along a DVR. Then by virtue o
Theorem 2.2, there is an exact sequence

0 → Z
(φ

ψ)−−→ M ⊕ Z → N → 0,

whereψ is a nilpotent endomorphism. Now letp be any prime ideal ofR that is not
a maximal ideal. SinceM andN are of finite length, we see thatMp = Np = 0. Thus
taking a localization atp of the above exact sequence, we see thatψp :Zp → Zp is an
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isomorphism. Sinceψp is nilpotent as well, we conclude thatZp = 0. This is true for any
non-maximal prime idealp, and thusZ is of finite length. In this case, it follows from th
exact sequence that�R(M) + �R(Z) = �R(N) + �R(Z), hence�R(M) = �R(N).

(2) ⇒ (1). Suppose that there is such an exact sequence as in (2). Note that EndR(Z) is
an Artinian algebra, hence bythe completely same manner as in Remark 2.3 we may
an exact sequence of the same type but with the nilpotentψ . Therefore,M degenerates t
N along a DVR by Theorem 2.2.�
Remark 4.2. There is an example where the opposite direction of the implicatio
Theorem 3.2 does not hold.

For example, letR = k[[x]] be the formal power series ring over an algebraically clo
field k and letM = R/(x) andN = R/(x2). SinceM andN have distinct lengths,N can
never be a degeneration ofM along a DVR by Corollary 2.4. On the other hand, consi
the R[t]-moduleQ = R[t]/(x2 − tx). It is easy to see that AssR[t ] Q = {(x), (x − t)},
hence any nonzero element ofk[t] is a nonzero divisor onQ. This implies thatQ is flat
overk[t]. For any elementc ∈ k, note thatQc

∼= R/(x(x − c)), hence thatQ0 ∼= R/(x2)

andQc
∼= R/(x) for c 
= 0, sincex − c is a unit inR. Therefore, from the definition, th

moduleM degenerates toN along an affine line. Note thatthere is an exact sequence

0 → R
(1

x)−−→ R/(x) ⊕ R
(x,−1)−−−−→ R/(x2) → 0,

however the endomorphismR x−→ R is not nilpotent.

Remark 4.3. Let R be a Cohen–Macaulay local ring and letM andN be maximal Cohen–
Macaulay modules overR. If N is a degeneration ofM along a DVR, then there is an exa
sequence

0 → Z
(φ

ψ)−−→ M ⊕ Z → N → 0,

whereψ is nilpotent. In such a case, we can show thatZ is also a maximal Cohen
Macaulay module. Hence, we can take such a short exact sequence inside the c
of maximal Cohen–Macaulay modules (cf. [2]).

To show thatZ is maximal Cohen–Macaulay, letd be the Krull dimension ofR and
let K be the residue field of the local ringR. Since ExtiR(K,M) = ExtiR(K,N) = 0
for 0 � i < d , it follows from the induced long exact sequence of cohomolo
that ExtiR(K,ψ) : ExtiR(K,Z) → ExtiR(K,Z) is an isomorphism for 0� i < d . Since
ExtiR(K,ψ) is a nilpotent map as well asψ , we see that Exti

R(K,Z) = 0 for 0� i < d ,
and this shows thatZ is also a maximal Cohen–Macaulay module.

Remark 4.4. Auslander and Bridger [1] give a definition of G-dimension, which we den
by G-dimR M for a finitely generatedR-moduleM. In our subsequent work [4], we hav
shown the following fact:
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(1) If there is an exact sequence of finitely generatedR-modules

0 → Z → M ⊕ Z → N → 0,

then we have an inequality G-dimR M � G-dimR N .

Combining this with Theorem 2.2, we have the following result as a corollary:

(2) Assume thatR is a Noetherian commutative algebra over a fieldk and letM andN be
finitely generatedR-modules. Suppose thatN is a degeneration ofM along a DVR.
Then the inequality G-dimR M � G-dimR N holds.

In particular, if N has G-dimension 0, then so doesM in this case. We infer from
this that if there is an algebraic set that parameterizes a family of finitely gene
R-modules, then the set of points corresponding to modules with G-dimension 0 s
form an open subset. By this property, we may say that the property for a module h
G-dimension 0 is an ‘open’ property. This generalizes a well-known fact that the ma
Cohen–Macaulay property for modules over a Gorenstein local ring is an open property
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