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Abstract

We generalize a result of Zwara concerning the degeneration of modules over Artinian algebras
to that over general algebras. In fact, Rbe any algebra over a field and &t and N be finitely
generated lefR-modules. Then, we show thaf degenerates t& if and only if there is a short

¢
exact sequence of finitely generated IBfmodules 0— Z % M @ Z — N — 0 such that the
endomorphismy on Z is nilpotent. We give several applications of this theorem to commutative
ring theory.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper we shall give a necessary and sufficient condition for degeneration
of modules (Theorem 2.2). To be more preciseRdte any algebra over a field and gt
andN be finitely generated lef®-modules. We shall prove thM degenerates t if and
only if there is a short exact sequence of finitely generated®laftodules

¢
O—>ZM>M€BZ—>N—>O

such that the endomorphisgnon Z is nilpotent.

This is obviously a generalization of a theorem of G. Zwara [5], who proves this
equivalence for a finite dimensional algebra over a field. In that case the nilpotency
condition foryr is not necessary.
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We shall give a precise definition of degenerations, more precisely degenerations along
discrete valuation rings, and discuss it to prove the above necessary and sufficient condition
in Section 2. We should notice there that our choice&Zoppearing in the short exact
sequence is different from Zwara’s.

In the previous paper [3], we consider a distinct type of degeneration that we call
a degeneration along an affine line to distinguish it from the degeneration along a discrete
valuation ring. In Section 3, we shall prove that a degeneration along a discrete valuation
ring implies a degeneration along an affine line.

As applications of the theorem to commutative ring theory, we comment several remarks
in Section 4. For example, we can show that the “G-dimension 0” property for a module is
an open property as well as the &ximal Cohen—Macaulay” property.

2. Degenerationsalong DVR

In this sectionk always denotes a field arkl is ak-algebra. Note thaR may not be
commutative nor Noetherian.

Definition 2.1. For finitely generated lefR-modulesM andN, we say tha degenerates
to N along a discrete valuation ring, of is a degeneration a#/ along a DVR, if there
is a discrete valuation ringV, tV, k) that is ak-algebra (where is a prime element) and
a finitely generated lefR ®; V-moduleQ which satisfies the following conditions:

(1) Q isflat as av-module;
(2) Q/tQ = N as a leftR-module;
3) O[1/t]1=M ®; V[1/t] as aleftR ®; V[1/t]-module.

The following theorem is the main theorem of this paper, which gives a perfect condition
for the degeneration along a DVR.

Theorem 2.2. The following conditions are equivalent for finitely generatediefhodules
M andN:

(1) N is a degeneration aff along a DVR.
(2) There is a short exact sequence of finitely generatedileftodules

b
O—>Z£>MGBZ—>N—>O,

such that the endomorphisgnon Z is nilpotent, i.e.p" = 0for n > 1.

Proof. (1) = (2). Suppose that there are a discrete valuation (Mg V, k) that is a
k-algebra and a finitely generated |&ft®; V-moduleQ suchthatQ is V-flat, 0/tQ = N
andQ[1/t1= M ® V[1/1].
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First of all we note thatM ®; V is a finitely generatedR ®; V-submodule of
M ®; V[1/t] = Q[1/¢] and hence thaM ®; V C (1/t")Q for a largen. ReplacingQ
with (1/t") Q if necessary, we may assume thétg; V C Q.

Now we claim that

(i) M ® V isadirect summand a as a leftR-module.

In fact, the natural inclusioy — V[1/¢] is a splitting monomorphism ok-modules,
sincek is a field. It follows that the map ®; V — M Qi V[1/t] = Q[1/¢] is a splitting
monomorphism of leflR-modules. Restricting the splitting map onfy we see that the
natural inclusiolM ®; V — Q is also a splitting mnomorphism of lefiR-modules.

We also have the following direct decomposition:

(i) MRV =M® (M ®;tV) as aleftR-module.

This is obvious from the direct decomposititn=k @ ¢V as ak-module. From (i) and
(i) we obtain the following isomorphism of leR-modules:

(i) O/ MRUtV)EMS Q/(M Qi V).
We should note that
(iv) Q/(M ®; V) is finitely generated as a leR-module.

Actually, since(M ®; V)[1/t] = Q[1/t], we see that"Q C M ®; V for a large
integern. ThereforeQ/(M ®; V) is a finitely generated left module ov&®; V/(t").
Noting that R ®; V/(t") is finitely generated as a lefR-module, we conclude that
0/(M ®; V) is finitely generated over.

Now we consider a lefR-module homomorphism

fiO/M@k V) — Q/(M @ tV),
which is defined byf (x + M ®; V) =tx + M ®; tV for anyx € Q. And we claim that
(v) fis a monomorphism and Cokgh) = N.

To prove this, we should note thatis a nonzero divisor orQ. Consequently, if
fx+M®QV)=0,thentx e M ®; tV =t(M ® V) and we haver € M ®; V. This
implies thatf is a monomorphism. Since the image ois rQ/(M ®; tV), itis easy to
see that the cokernel gfis isomorphictoQ/tQ = N.

Taking the direct decompiti®n (iii) into account, we may describe the monomorphism
f as follows:

f:<z):Q/(M®k V)=>M&Q/(M&V).
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Thus denotingQ/(M ®; V) by Z, we have the following exact sequence of finitely
generated lefR-modules:

¢
O—>ZM>M€B2—>N—>O.

It remains to prove that
(vi) ¢ is a nilpotent endomorphism d.

To prove this, lett : 9/ (M ® tV) — Q/(M ®; V) be the natural projection induced
from the decomposition (iii). Then it is easy to see that the morplgisaidentical with the
compositionr - f: Q/(M ®; V) - Q/(M ®; V) thatis just a homothety by the element
Since(M ®; V)[1/t] = Q[1/t] and sinceQ is a finitely generate® ®; V-module, we
haver" (Q/(M ® V)) =0 for a large integer. Therefore we see thgt” = 0 as desired.

(2) = (1). Suppose that there is an exact sequence of finitely generatédiedtdules

=)
0O—-Z—5MaZ—-N-—=0,

such thaty is nilpotent. Considering a trivial exact sequence

. .0
02z vezMm—o

we shall combine these two exact sequences aldfglg-interval. More precisely, leV
be the discrete valuation ririgt],), wherer in an indeterminate ovér, and consider a left
R ®; V-homomorphism

PR 1A—1)

g:j®t+f®(1_t):(1®t+1ﬁ®(1—t)

>:Z®kV—>(M@Z)®kV.

First of all, we claim that
(i) gis a monomorphism.

To prove this, letS be a multiplicatively closed subset &fz] consisting of all the
elements of the form % tp(t) (p(¢) € k[t]). Note that, sinceV = S~1k[r], we have
X @ V = S~1X[r] for any left R-module X. Therefore, it is enough to prove that the

mapping
g=tj+A-nf:Zlt] > M[t]® Z[t]

is a monomorphism of lefR[r]-modules, sincg = S~1g’. To show this, let = Yo, zit!
(z» # 0) be a nonzero element @f[¢]. Then we have

N

g@)=)Y (jt ™t + fd—nr'),

i=r
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where the coefficient of of the right-hand side i (z,) that is nonzero, sinc¢ is an
injection. Thus we show that (¢) # 0, hence thag’ is a monomorphism.

Now we denote the cokernel of the monomorphishy Q, which is a finitely generated
left R ®; V-module and there is an exact sequence

0> ZxVEZxV)®MV)— Q— 0.
We claim that
(i) QisflatoverV andQ/tQ=N.
To prove this, we note that ®y V/tV = f that is an injection. Sinc& ®; V and
M ®; V are flat overV, it follows that Tor}’(Q, V/tV) =0 and therefor@ is flat overV.
Furthermore, we see th@/tQ = Cokel(g ®y V/tV) = Coker(f) = N as a leftR-

module.
Now it remains to prove the following claim to complete the proof.

(i) QO[1/t11= M ®; V[1/t] as a leftR ®; V-module.

The variabler is of course a unit in the center of the rily®; V[1/t]. Thus the
morphismg ®y V[1/¢] is essentially the same as the morphism

s¢
Z @ Vit Yy vit/ne z e VI,
wheres = (1—1)/t € V[1/t]. Note thatsyr: Z @ V[1/t] — Z ® V[1/t] is nilpotent
as well asyr, hence 1+ sy is an automorphism oX ®; V[1/t]. Thus we have an
isomorphismQ[1/t] = M ®; V[1/t] from the following commutative diagram:

(11%)
0 Z VIY1 — L M VIYN®Z & VI — Q[1/1] — = 0

\L 1 —sp(Ltsy)~L l
0 (14sy)1 )
00— Z® VI[1/t] = M & VI/t]® Z Qi VI[1/t] —= M @ V[1/t] — 0.

1
This completes the proof of the theorenta

Remark 2.3. As G. Zwara has shown in [5], iR is an Artinian k-algebra, then the
following conditions are equivalent for finitely generated IRfmodulesM andN:

(1) N is a degeneration off along a DVR.
(2)) There is a short exact sequence of finitely generatedileftodules

¢
OaZ&LM@ZaNea
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Note here that we need not the nilpotency assumptioir fékctually, suppose that there
is such an exact sequence as in the condi@n Then, since Engl(Z) is an Artinian ring,
we decomposé& asZ’ @ Z” and according to this decomposition, we can desailzes

/
(1/6 1/f),,):Z/GBZ”—> VARSYAS

wherey’ is an isomorphism ang” is nilpotent (Fitting theorem). Therefore, we obtain
an exact sequence of the following type:

d’//
O—>Z"M>M@Z”—>N—>O,
such thaty” is nilpotent. In this way, our theorem contains the theorem of Zwara.
By the proof of (2)= (1) of the theorem, we get the following result as a corollary.

Corollary 2.4. Suppose thatV¥ degenerates taV along a DVR. Then as a discrete
valuation ringV we can always take the ririiz] ).

Remark 2.5. Assume that there is an exact sequence of finitely generateg-lefvdules
0>N & ML N 0.

Then it is easy to see thaf degenerates ty’ & N” along a DVR. In fact, we have only
to notice that there is an exact sequence

p q0
O_)Nl (O) M@Nl (Ol NN@N/—)O,

where the mapping : N’ — N’ is the zero mapping, hence nilpotent.

3. Degenerationsalong affinelines

We have considered a different kind of degeations in the previous paper [3], mainly
for maximal Cohen—Macaulay modules ovet@nmutative Cohen—Macaulay local ring.
To distinguish it from the degeerations defined in Definition 2.1, we make the following
definition.

Definition 3.1. In this definition we assume thais an algebraically closed field to identify
the affine line withk. And let R be ak-algebra as before. For finitely generated left
R-modulesM and N, we say thatM degenerates t&/ along an affine line, oWV is a
degeneration oM along an affine line, if there is a finitely generated left moddlever

R & k[t] which satisfies the following conditions:
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(1) Qisflat as a&[¢]-module.

(2) For anyc € k, let us denoteQ/(t — ¢)Q by Q., which is a finitely generated left
R-module. ThenQg = N as a leftR-module.

(3) Thereis a non-empty Zariski open subSeatf A,} Zksuchthatifc € U,thenQ. =M
as a leftR-module.

Compare this with [3, Definition 4.1].
Now we prove an implication between degenerations in the following theorem. But one
should remark that the converse implication does not hold in general. See Remark 4.2.

Theorem 3.2. Assume that is an algebraically closed field and th&tis a left Noetherian
k-algebra. LetM and N be finitely generated leR-modules. If degenerates t&/ along
a DVR, thenM degenerates t&v along an affine line.

Proof. Suppose thatM degenerates tav along a DVR. As we have shown in
Corollary 2.4, we may tak& = S~1k[r] as a discrete valuation ring, whe§e= {1+1p(t) |
p(t) € k[t]}. Thus, there is a finitely generated* R[r]-module Q such thatQ is flat
overV, Q/tQ = N andQ[1/1]1= M ®; S~ k[, t~1]. Now take a finitely generategl[¢]-
submoduleQ’ of Q so thatS~1Q’ = Q.

First of all, we claim that

() Q’isflatoverk[z].

To show this, it is enough to prove that the multiplication map fiy) on Q' is
an injection for any nonzero elemeptr) € k[¢]. Since Q is flat over S~1k[¢], the
multiplication by p(¢) on Q is either an injection or a bijection. Sing' is a submodule
of Q, the claim follows.

Recall that for an elemeite k, the R-module Q.. is defined to b&d’/(r — ¢) Q’. Next
we claim that

(i) Qp=N as ankR-module.

To show this note thaV = Q/rQ = S~1(Q'/t Q") = S‘lQ{) by our choice. Sinc&;,
is an R[¢]-module but annihilated by, any element of acts onQ, as the identity. Thus
we haveN = S~10[ = Q.

To finish the proof we are proving that

(iii) there is a non-empty open subdétc A,} =k suchthatQ,. = M foranyc #0inU.
Note that there is an isomorphism 6f1R[r]-modules;S~1Q'[1/f] = Q[1/1] =

M ®i S~1k[r,:71]. Therefore, it follows from the next lemma that one can choose an
elementyy (¢) € S such that

Q'[1/ 1)) = M ® k[t t—l]q(,)
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as anR[t],-module. Now define an open subdétC k as{c € k | g(c) # 0}. Then, for
c#0eU,amapping: :k[t,t =1, — k defined bya(p(1)) = p(c) (p(t) € klt, 1 Hy)
is a well-definedc-algebra map. Taking tensor product of thjs, t—l]q(,)—algebrak with
the above, we have

~ -1
Q/[l/t]CI(f) Opfr,i—11 k= (M Rk k[t’ t ]q(t)) ®k[tst_1]q(t) k

q(1)

and this show®)!. = M as desired. O

It remains to prove the following lemma that is well-known and easily proved. We leave
its proof to the reader as an exercise.

Lemma 3.3. Let A be a left Noetherian ring and le& be a multiplicatively closed subset
in the center ofA. For finitely generated left-modulesX andY, if S~1X is isomorphic to
S~1y asaleftS~1A-module, then there is an element S such thatX[1/s] is isomorphic
toY[1l/s] as aleftA[1/s]-module.

4. Remarksfor commutative Noetherian algebras

In the rest of the paper, we assume tRais a commutative Noetherian algebra over
a fieldk. In this case we have the following result as a corollary of Theorem 2.2.

Corollary 4.1. Suppose thaM and N are R-modules of finite length. Then the following
conditions are equivalent

(1) N is a degeneration a#f along a DVR.
(2) There is an exact sequence

¢
O—>ZM>MGBZ—>N—>O,
whereZ is also a module of finite length.

In particular, if M degenerates t&v along a DVR, then we must have an equality of the
lengths £gr(M) = LRr(N).

Proof. (1) = (2). Suppose thaM degenerates t&v along a DVR. Then by virtue of
Theorem 2.2, there is an exact sequence

¢
O—>ZM>M@Z—>N—>O,

where s is a nilpotent endomorphism. Now lgetbe any prime ideal oR that is not
a maximal ideal. Sincé/ and N are of finite length, we see thaf, = N, = 0. Thus
taking a localization ap of the above exact sequence, we see thatZ, — Z, is an



Y. Yoshino / Journal of Algebra 278 (2004) 217-226 225

isomorphism. Since, is nilpotent as well, we conclude that, = 0. This is true for any
non-maximal prime idegl, and thusZ is of finite length. In this case, it follows from the
exact sequence thég (M) + £r(Z) = Lr(N) + Lr(Z), hencelr(M) = Lg(N).

(2) = (1). Suppose that there is such an exact sequence as in (2). Note thark sl
an Artinian algebra, hence ltlye completely same manner as in Remark 2.3 we may have
an exact sequence of the same type but with the nilpagteiterefore M degenerates to
N along a DVR by Theorem 2.2.0

Remark 4.2. There is an example where the opposite direction of the implication in
Theorem 3.2 does not hold.

For example, leR = k[[x] be the formal power series ring over an algebraically closed
field k and letM = R/(x) andN = R/(x2). SinceM andN have distinct lengthsy can
never be a degeneration &f along a DVR by Corollary 2.4. On the other hand, consider
the R[¢]-module O = R[t]/(x? — tx). It is easy to see that AgB1 0 = {(x), (x — 1)},
hence any nonzero element/df] is a nonzero divisor o). This implies thatQ is flat
overk[t]. For any element € k, note thatQ. = R/(x(x — ¢)), hence thaQg = R/(x?)
andQ. = R/(x) for ¢ #0, sincex — c is a unit inR. Therefore, from the definition, the
moduleM degenerates t&y along an affine line. Note th#tere is an exact sequence

1
0= R R/ @ R =Y R/(x2) > 0,

however the endomorphis® <> R is not nilpotent.

Remark 4.3. Let R be a Cohen—Macaulay local ring and MtandN be maximal Cohen—
Macaulay modules oveR. If N is a degeneration g along a DVR, then there is an exact
sequence

¢
O—>ZM>M@Z—>N—>O,

where ¢ is nilpotent. In such a case, we can show tHats also a maximal Cohen—
Macaulay module. Hence, we can take such a short exact sequence inside the category
of maximal Cohen—Macaulay modules (cf. [2]).

To show thatZ is maximal Cohen—Macaulay, létbe the Krull dimension oR and
let K be the residue field of the local ring. Since Ex§ (K, M) = Ext,(K,N) =0
for 0 < i < d, it follows from the induced long exact sequence of cohomologies
that Ext, (K, y) :Ext, (K, Z) — Ext,(K, Z) is an isomorphism for & i < d. Since
Ext‘k(K, ¥) is a nilpotent map as well ag, we see that Ei';et(K, Z)=0for0<i <d,
and this shows thaf is also a maximal Cohen—Macaulay module.

Remark 4.4. Auslander and Bridger [1] give a definition of G-dimension, which we denote
by G-dimg M for a finitely generate®®-moduleM. In our subsequent work [4], we have
shown the following fact:
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(1) Ifthere is an exact sequence of finitely generateahodules
0O—-Z—->M®dZ— N-—0,
then we have an inequality G-djp < G-dimg N.
Combining this with Theorem 2.2, we have the following result as a corollary:

(2) Assume thar is a Noetherian commutative algebra over a flelthd letM andN be
finitely generatedR-modules. Suppose that is a degeneration o/ along a DVR.
Then the inequality G-digmM < G-dimg N holds.

In particular, if N has G-dimension 0, then so do#s in this case. We infer from
this that if there is an algebraic set that parameterizes a family of finitely generated
R-modules, then the set of points corresponding to modules with G-dimension 0 should
form an open subset. By this property, we may say that the property for a module having
G-dimension 0 is an ‘open’ property. This generalizes a well-known fact that the maximal
Cohen—Macaulay property for modules over a&rstein local ring is an open property.
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