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Abstract The fluidized bed UASB performance was studied in this experiment as a primary unit

the anaerobic unit the advantage of better generated sludge characteristics and smaller tank volume.

The reactor performance was investigated for the treatment of domestic wastewater with unex-

pected industrial water flows at different operational temperatures (14–25 �C) and loading rates.

For each temperature range the reactor performance was studied under different hydraulic loadings

HRT (6, 4, 2.5 h).

The best methane yield rate and COD total removal rate are 0.285 l/g COD total and 70.82%

respectively at warm working temperature 19 �C with OLR 7.76 kg COD/m3/day and HRT 6 h.

On the low temperature operation, the average COD removal of the reactor was 55.28% and

50.33% for HRT of 4 h and 2.5 h respectively. The methane production dropped to 0.1623 &

0.0988 L CH4/g COD with average organic loading rate of 5.34 & 10 kg COD/m3/day for HRT

of 4 h and 2.5 h respectively.

The efficiencies of Total nitrogen removal ranged between 2.23 and 10.83% with an apparent

decrease during the low temperature high rate stages. Nitrite removal was in the range of (23.08–

77)% with up to the 2 mg/L in the effluent water when obtaining high organic loading and warm

temperature. These results demonstrated that the domestic wastewater could be anaerobically trea-

ted in a fluidized bed UASB reactor with very low HRT reaching 2.5 h.
ª 2015 Production and hosting by Elsevier B.V. on behalf of Housing and Building National Research

Center.
Introduction

The conventional aerobic processes that are widely used for

the treatment of domestic wastewater have at least three dis-
tinct disadvantages: their relatively high electrical requirement,
the high operation cost and the high excess sludge production

which requires treatment and disposal that further increases
the operational cost.
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Fig. 1 Reactor set up.
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On the other hand anaerobic processes produce methane
gas that can be collected and used as an energy source in addi-
tion to the low energy consumption. The sludge production is

also minimal, and additional important benefit is that the
anaerobic sludge can be preserved while not being fed for long
periods of time at temperature below 15 �C [1].

The feasibility of the up flow anaerobic sludge blanket reac-
tors UASB for adequate sewage treatment has been investi-
gated since 1980 at both pilot and full scale installations [2],

but at the moment, it is largely restricted to countries with a
relatively cold climate [3].

The anaerobic fluidized bed and the expanded granular
sludge bed reactors, with HRTs of about 2–4 h [4] and the

UASB reactor, with an HRT of 4–8 h [5] offer good results,
while the attached growth process named anaerobic filter needs
a longer HRT on assuming constant organic loading rates for

all systems.
As domestic wastewater flows are relatively huge in large

cities and should be treated at short HRTs to be more feasible

and often are at ambient or low temperatures, complex sub-
strates could leave the reactor before being biodegraded. In
UASB systems, with relatively adequate HRT, the sludge

bed acts as a filter to the SS, thereby increasing their specific
residence time. In this way, the UASB reactor may achieve
high COD and SS removals at a relatively short HRT if com-
pared to the conventional primary sedimentation tanks.

Consequently one of the aims of the study was to study the
influence of the low HRT on the reactor performance.

Material and methods

The Experimental work was carried out at El Berka waste-
water treatment plant. Using domestic wastewater from the

primary sedimentation channel the experimenting set up was
started by the UASB reactor.

The reactor consists of a column portion (130 cm) of about

23 L and a gas–solid separator (GSS) portion (20 cm) of about
6.28 L. The reactor total volume is about 25.60 L this volume
was used to calculate the organic loading and the hydraulic

retention time. The UASB was operated over 100 day under
different temperature ranges (15–25) �C.

The up flow velocity was varied according to the hydraulic
retention time HRT variation, no recirculation was applied.

Effluent recycle was not necessary to fluidize the sludge bed
as sufficient contact between the wastewater and sludge is
guaranteed even at low organic loading rate in UASB reactor

[6]. Fig. 1 shows the reactor setup and the influent water
characteristics are shown in Table 1.
Table 1 Influent water characteristics.

Parameters Unit

pH-value –

Chemical oxygen demand(COD) (mg/L)

Biological oxygen demand(BOD) (mg/L)

Total suspended solids (TSS) (mg/L)

Total volatile solids (VSS) (mg/L)

Total nitrogen (TN) (mg/L)

Ammonia (NH4–N) (mg/L)

Nitrate (NO3–N) (mg/L)

Nitrite (NO2–N) (mg/L)
Experimental methodology

The reactor was operated at ambient temperature, no heat
exchange was introduced. The reactor was operated in the
autumn/winter time where the temperature falls down in

winter reaching about 15 �C. The average influent wastewater
temperature during the experiment is shown in Table 2.

The experiment routine water analysis was done according
to the standard method for water and wastewater analysis [4],

the physical and chemical analysis included the measure of
chemical oxygen demand (COD) and the sulfate concentration
of influent and effluent was analyzed by DR-2800 spectropho-

tometer (HACH company, USA) in accordance with manufac-
turer’s manual. Raw samples were used for total COD and
0.45 lm-filtered samples for dissolved COD. After sampling,
Min. Average Max.

6.71 7.44 7.93

400 1105 2240

178 695 1913

172 788.60 2080

120 532 1410

47.20 52.75 58.30

15 28.10 41.60

2.5 7 11.50

9 11.50 14



Table 2 Experiment operational parameters.

HRT (h) V up (m/h) CODinfluent (mg/L) OLR (kg COD/m3 day) Temperature

(Degree centigrade)

Stage (1): reactor start up

(6–8) (0.18–0.24) (640–1643) (1.87–4.81) (21–25)

Stage (2): HRT= 6 h

6 0.24 (640–1998) (2.5–7.76) (21–25)

Stage (3): HRT= 4 h

4 0.35 400–1600 (2.44–9.37) (21–25)

Stage (4): HRT= 2.5 h

2.5 0.56 (1065–2240) (10.38–21.85) (21–25)

Stage (5): HRT= 4 h low Temperature

4 0.35 (736–1072) (4.31–6.28) (14–16)

Stage (6): HRT= 2.5 h low Temperature

2.5 0.56 (464–1728) (4.53–16.86) (14–16)
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effluent was homogenized for suspended solids (SS) and total
COD measurement. The COD removal efficiency was calcu-

lated by the different between influent total COD and effluent
total COD, though many UASB researches calculate the dif-
ference between the total influent COD and soluble effluent

COD [7]. The Biological oxygen demand (BOD), total sus-
pended solids (TSS), total volatile solids (VSS), pH, and
alkalinity were also measured. Gas production rate was mea-

sured by water displacement. It should be mentioned that
the CH4 in the liquid phase as well as the effluent water
escaped gas is not measured.

The volatile Fatty acid (VFA) was measured for each Stage

to monitor any accumulation of volatile acids (acetate, butyric,
propionic, etc.) which inhibits the methanogenic bacterial
degradation action. Fig. 4-1 shows the reactor setup. The

experiment operational parameters are shown in Table 4-3.
The reactor was fed with anaerobic flocculent sludge col-

lected from a pilot study digester for the domestic wastewater

sludge in El Berka WWTP. The inoculum sludge characteristic
is shown in Table 3.

Results and discussion

The startup period began on the 19th of October, 2013 where
the water temperature in El Berka WWTP water (23–25) �C. A
range of (25–30) �C is generally preferred to support more
optimum biological reaction rates and to provide more stable
treatment [9]. Then the experiment continued in the winter
temperature where the temperature ranged between 14 and

16 �C.
Experts suggest that the hydraulic retention times (HRTs)

should not be allowed to less than 6 h and it should be less

than 18 h during start-up period to treat any type of wastewa-
ter. At lower HRT, the possibility of washout is more promi-
nent. This makes it difficult to maintain the effective number

of useful microorganisms in the system [10].
Table 3 Characteristics of the inoculated sludge.

Parameter Value Units

TSS 4460 mg/L

VSS 3340 mg/L
During the startup period the wastewater load on El Berka
WWTP was high and the COD loading reached about

2000 mg/L, and was reflected on the organic loading fed to
the UASB reactor. Then afterward the COD organic loading
was in the average range of the treatment plant which ranges

between 400 and 600 mg/L. Fig. 3 shows the average influent
and effluent COD as well as the COD removal efficiency dur-
ing the startup period.

The Total alkalinity as calcium carbonate equivalent was
also monitored, the alkalinity monitoring importance prevails
the assessment of pH, and since the pH values imply the con-
sumption of high amount of alkalinity, reducing the buffering

capacity of the medium.
In an anaerobic digester, a bicarbonate alkalinity (as

CaCO3) of about 1000–3000 mg/L was required for stable

operation [11]. Disparity to this, an average alkalinity with a
range of 220–390 mg/L was successful for the operation of a
UASB reactor over 200 days [2]. On this basis, sufficient

alkalinity was available in the reactor that causes no drop in
the pH during the experiment period; Fig. 2 shows the reactor
alkalinity during the experiment.

The VFA value of the treated effluent was monitored dur-

ing the startup stage. Methanogenesis, in particular is known
to become unstable when the VFA/alkalinity ratio value is
above 0.3 [12,13]. Throughout the experiment the effluent

VFA values were in range of (78–139) mg/L. and the VFA/
Alkalinity ration ranged between 0.1 and 0.124.

During start-up period COD:N:P ratio reached 293:4:1.

COD, N and P Supplementation were not done as it was very
near to the range stated in the literatures 300:5:1 for efficient
rapid start-up [14,15].

Biogas production

The biogas during the experiment was measured by water dis-
placement method. Table 4 shows the measured biogas pro-

duction rate and the calculated methane converted to
methane gas over the entire experimental period for the warm
and cold temperatures. The volumetric methane production

rate and the organic loading rate are illustrated in Fig. 4.
The methane gas production along with the experiment

ranged between 71 and 285 mL/g COD removed. The rate of

gas production was lower than the theoretical value of
350 mL/g COD removed reported by Metcalf and Eddy [9].
It may be due to the effects of ammonia nitrogen present in
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Fig. 3 COD influent, UASB effluent and COD removal efficiency.

Table 4 Biogas production.

Phase Organic loading rate

(kg COD/m3/day)

HRT (h) Conversion factor

(Liters CH4/g COD)

Biogas production

(Liters/g COD removed/day)

Stage (1) (1.87–4.81) (6–8) 0.220 11.57

Stage (2) (2.5–7.76) 6 0.256 20.15

Stage (3) (2.44–9.37) 4 0.198 8.36

Stage (4) (2.44–9.37) 2.5 0.143 7.57

Stage (5) (4.31–6.28) 4 0.162 7.15

Stage (6) (4.53–16.86) 2.5 0.098 3.43
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concentrations higher than the beneficiary levels in the
influent.

At HRT below 4 h the measured methane Gas production

was decreased to its minimum range (71 mL/g COD removed).
This can be attributed to the low temperature range and higher
organic loading rate. Low temperature, high loading rate with
high per stage of SS all result the shorter SRT and lower down

the biogas production and COD removal efficiency [16,17].
It should be noticed that in this experiment the measured

methane was only the free methane gas while at low HRT

the ration between soluble methane and methane gas produc-
tion increases [7]. Consequently the calculated conversion rate
may be no accurate.
Influent and effluent water TSS and VSS

During the startup period the reactor TSS removal was

quite sufficient as the up flow velocity was low (0.4 m/h),
the gas production rate was low ranging between 4.89
and 12.05 (l/g COD removed/day) and the washout was

avoided. When the HRT was decreased the up flow velocity
was increased to decrease the TSS and VSS removal
efficiency.

During the cold temperature Runs the anaerobic microor-
ganisms and in specific the methanogenic bacteria growth
was declined leading to lower reactor performance and the
accumulation of the suspended solids in the reactor that leads
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Table 5 Average TSS & VSS of influent and effluent waters during the experiment.

Phase TSS VSS

Influent Effluent Removal% Influent Effluent Removal%

Stage (1) 220–543 70–165 68.18–72.97 140–230 42–60 69.44–73.91

Stage (2) 172–2080 67–541 58.47–73.99 120–1410 45–365 62.5–74.11

Stage (3) 218–1230 120–789 33.33–58 148–830 78–530 33.78–50.32

Stage (4) 530–1254 388–824 26.79–34.29 360–730 221–543 24.49–38.61

Stage (5) 236–2000 130–845 44.92–57.75 160–1360 88–754 38–45

Stage (6) 450–1500 283–687 33.33–55.71 305–1130 200–626 34.43–46.02
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to the rising of the sludge blanket that exceeded to washout

accordingly. The average removal efficiency of TSS & VSS is
shown in Table 5.

Sludge characteristics

The total amount of sludge in the reactor was calculated to
determine the appropriate SRT to obtain high concentration
of methanogenic bacteria. The daily change in the sludge

amount was calculated by the mass balance between the
accumulated biomass and the amount of daily biomass washed
out (VSS in effluent waters). The growth characteristics were

determined by the growth yield Yg, decay constant Kd of
retained sludge, as described by Syutsubo et al. [18] in Eq. (1)

dx

dt
¼ � ds

dt

� �
Yg � Kd � Xi�1 �

dx

dt

� �
lost;i

ð1Þ

where dx
dt
is the Daily biomass accumulation rate (gVSS/day), ds

dt

the Daily substrate consumption accumulation rate

(gCOD/day), dx
dt
Lost the Daily biomass washout rate per reac-

tor (gVSS/day) and (Xi�1) the Biomass in the reactor on day

(i�1) (gVSS per reactor).
As a result of fitting the 5 points, the error (r) was minimum

for the growth yield Yg = 0.02 gm VSS/gCOD. It was found

that the growth yield Yg was very close to that reported by
Takahashi et al. [19] which was estimated by 0.029 gVSS/
gCOD. While it is double the value of 0.13 gVSS/gCOD

reported by Yoochatchaval et al. [8]. The decay rate was calcu-
lated to be Kd = 0.0001 l/day, which was very near to the value
reported by Yoochatchaval et al. [8]. The SRT was calculated
accordingly and adjusted to 90 ± 10 days.
The biomass concentration profiles were obtained by the

TSS and VSS concentrations taken from sampling ports at
various heights of the reactor. At the time of reactor startup,
VSS/TSS was 0.75. There was a stable percent of VSS/TSS

ratio throughout the operation. Fig. 5 shows the sludge profile
along the reactor height at the cold temperature Runs. While
Fig. 6 shows the volatile solids to total solids ratio.
Denitrification

The Nitrogenous compounds were measured to examine deni-

trification without affecting the COD removal. Some work has
shown that denitrification and methanogenesis could
simultaneously occur to remove nitrogen and carbon from

wastewater with high COD:P:N ratio, in which organic COD
and nitrate were used as substrates [20–22]. Table 6 shows
the average values for the NOx and TP in influent and effluent
waters.

The efficiencies of total nitrogen removal ranged between
2.23 and 10.83% with an apparent decrease during the low
temperature stage (stages 5 & 6) where all anaerobic bacterial

growth was inhibited and then decreased further more in the
low temperature with high hydraulic loading i.e. very short
SRT in stage 6.

Nitrite removal was in the range of (23.08–77)% with up to
the 2 mg/L in the effluent water when obtaining high organic
loading and warm temperature (Stage 4). The methanogenic
bacteria were affected by the very low SRT that causes the

denitrification bacteria to be a predominant in the reactor.
The maximum efficiency of ammonium removal reached

about 13.58% at stage 4 where the HRT was in the range of
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Table 6 Nitrogen contents in influent and effluent waters.

Phase TN NH4–N NO3–N NO2–N

inf eff % inf eff % inf eff % inf eff %

(1) – – – – – – – – – – – –

(2) 58.3 57 2.2 15 14 6.7 11.5 7.5 34.8 – –

(3) – – – 16.5 15.4 6.6 4.4 1.9 56.8 14 9 35.7

(4) 50.8 45.3 10.8 16.2 14.0 13.6 5.40 4.20 22.2 9 2 77.8

(5) 52 48.5 6.7 41.6 40.2 3.4 3.10 1.40 54.8 11 08 23.0

(6) 47.2 45 4.6 40.6 38.4 5.4 2.50 1.50 40 – – –
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2.5 h. This value was near the values reported by José [23]. The
relatively low removal efficiency in longer retention time runs
was due to the ammonification effect, where the ammonia per-

cent in the reactor increases due to particulate-N hydrolysis
and acidification.

These results demonstrated that the domestic wastewater

could be anaerobically treated in a fluidized bed UASB reactor
with very low HRT reaching 2 h.

Conclusion

This experiment had proven that the UASB can be used as a
primary treatment unit achieving good COD removal with
very low hydraulic retention time reaching 2.5 h with removal
efficiency of 38.89%.

The UASB reactor can accommodate with the low ambient

temperature of and average of (14–16) �C without affecting the
reactor performance in COD removal efficiency.

The UASB can be a feasible process used as a denitrifica-

tion unit to remove a portion of the domestic wastewater
ammonia, and denitrifying nitrate to nitrite prior to the
nitrification process in aerobic unit. Decreasing the air supply

required for the nitrification process.
Methane yield rate and methanogen activity were both

increased with relatively high temperature. And the amount
of biogas production was affected by OLR. The highest
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methane yield rate was 0.285 l/gCOD total at highest tempera-
ture 19 �C. And largest amount of biogas value is 30.10 l/g
COD removed/day with highest OLR 7.76 kg COD/m3/day.

The optimal feasible working temperature of UASB as per
the Egyptian climate is 18–25 �C with HRT 4.0 h, OLR 2–
7.7 kg COD/m3/day if not considering energy consumption

and capital cost evolved in bigger UASB unit.
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