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Abstract

In this work we study the existence and regularity dfdhsolutions for impulsive first order partial neutral
functional differential equations with unbounded delay.
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1. Introduction

Neutral differential equations arise in many areas of applied mathematics and for this reason these
equations have received much attention in the last few decades. The literature related to ordinary neutral
functional differential equations is very extensive and we refer the readé&j2joahd the eferences
therin. Partial neutral functional differential equations with delay have been studigddh [

On the other hand, the theory of impulsive differential equations has become an important area of
investigation in recent years, stimulated by their numerous applications to problems arising in mechanics,
electrical engineering, medicine, biology, ecology, etc. Related to this matter we me}@par{d the
references in these works.
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In this work we study the»@stence and regularity of mild solutions for a class of abstract neutral
functional differential equations (ANFDE) with unbounded delay and impulses described in the form

%(X(t) + F(, X)) = AX(t) + G(t, xp), tel =[0,0], (1.2)
Xo=¢ € B, (1.2)
AX(t) = li(Xy), i=1...,n, (2.3)

where A is the infinitesimal genator of an analytic semigroup of linear operatafB(t))i>o, On a
Banach spaceX, | - ||); thehistory x; : (—o0, 0] — X, %¢(0) = x(t + ), belongs to some abstract
phase spacB defined axionatically; F, G, |;j, are gpropriate functions; < t; < --- < t, < o are
prefixed points and\&(t) is the jump @ a function£ att, which isdefined byA&(t) = £(tT) — £(t7).

Ordinary impulsive neutral differential systems have been studied recently in several papers; see
[10-14. The existere of solutions for impulsive partial ANFDE is an untreated topic and that is the
motivation of this work. In relation with this last remark, we consider it important to observe that some
systems isnilar to (1.1)—(1.3) are stidied in [L3,14]. However, in these works the authors impose some
severe assumptions on the semigroup generatédvalyich imply that the underlying spac¢éhas finite
dimension; seef] for details. As a consequence, the systems studied in these works are really ordinary
and not partial.

In this work, A : D(A) ¢ X — X is the infinitesimal gnerator of an analytic semigroup of linear
operdors (T (t))t=0 on X,0 € p(A), andM is a mnstant such thatT (t)|| < M for everyt € I.

The notation(—A)*, « € (0, 1), stands for the fractional power oA and X,, is the domain of — A)“
endowed with the graph norm. For literature relating to semigroup theory, we sugjglest [

We say that dunctionu(-) is anormalized piecewise continuous function[gn ] if u is piecewise
continuous, and left continuous am, r]. We denote by PC([u, t]; X) the sm@ce formed by the
normalized piecewise continuous functions fr¢m t] to X. The notationPC stands for the space
formed by al functionsu € PC([0, u]; X) such thatu(-) is continuous at # tj, u(t”) = u(t) and
u(ti+) exists for alli = 1, ..., n. In this wok, (PC, || - |Ipc) is the pacePC endowed with the norm
IX|lpc = supg; IX(S)]l. Itis clear that(PC, || - | pc) is a Barach space.

In this work we will employ an axiomatic definition for the phase spBo&hich is similar to that
used in [L6]. Specifically, B will be a linear space of functions mappigoo, 0] to X endowed with a
seminorm| - ||z and verifying the following axioms:

(A) If x: (=00, u+b] = X,b > 0,is sich thatx, € B andx|y,, .+t € PC([u, u + b] : X), then for
everyt € [u, u + b] the following conditions hold:
(i) xtisinB,
(i) Ix®I < HlIXtll5,
(ii)) lIxtlls < Kt —pwysuglix@®)[l : p <s <t} + Mt — wliXyls,
whereH > 0is a @nstantK, M : [0, c0) — [1, 00), K is continuousM is locally bounded and
H, K, M are independent of(-).
(B) ThespaceB3 is complete.

Example: The phase space PC; x L2(g, X).

Letg: (—oo, —r] — R be a positive function verifying the conditions (g-6) and (g-7)18][ This
means thag(-) is Lebegue integrable oi—oco, —r) and that there exists a non-negative and locally
bounded functiory on (—oo, 0] such thag(é +0) < y(§)g(®), forall§ < 0andd € (—oo, —r) \ Ng,
whereN; C (—oo, —I) is a set with Léesgue measure zero. Lgt= PC; x Lz(g; X),r > 0, be the
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space formed of all classes of functiops (—oo, 0] — X such thatp ||_, gy € PC([—r, 0], X), (")
is Lebegue measurable of—oo, —r] andg(-) | ¢(-)|P is Lebegue integrable of—oo, —r]. The
seminorm in|| - ||z is defired by

—r 1/p
lells 1=( 9(9)||<P(9)||pd9) + sup [le@)ll.

—00 0e[—r,0]

From the proof of 16, Theorem 1.3.8] it follows thaf3 is a phase space which verifies the axioms (A)
and (B) of our work. Moreover, when=0,H =1, M(t) = y(—t)% andK () =1+ (fft g(r)dr)%
fort > 0.
Example: The phase space PCqy(X).

As usual, we say that a function : (—o0,0] — X is normalized piecewise continuous if the
restriction ofgp to any inerval[—r, 0] is anormalized piecewise continuous function.

Letg : (—o0,0] — [1, o) be a continuous function which sdies the conditions (g-1), (g-2)
of [16]. We denote byPCy(X) the pace formed by the normalized piecewise continuous functions
such that% is bounded on(—oo, 0] and byPCS(X) the sibspace ofPCqy(X) formed by tte functions

¢ : (—00,0] — X such that% — 0 asf — —oo. Itis easy to see thaPCq(X) and PCI(X)

endowed with the normilg|s := SUpe(_n.0 555 are phase spaces in the sense considered in this
work.

2. Existenceresults

To sudy the existence of solutions df.()—(1.3), we always assume that the next condition holds.

H; The functionsG,F : | x B — X andl; : B — X,i = 1,...,n, are continuous and satisfy the
following conditions:

() For everyx : (—oo,0] — X such thatxg = ¢ andx|; € PC, the unctiont — G(t, x) is
strongly measurable and the functior> F(t, x;) belongs tgPC.

(if) There are posive congantspg € (0,1), Lr, Lg, Li,i = 1,...,n, such hatF is Xg-valued,
(—=APF : 1 x B— Xiscontinuous and

IG(, ¥1) — G, ¥2)ll < Lgllya—v2ls,  vieBtel,
I=APFE, v1) — (—APFE v2)l < LEllV1 — V2ls, ¥ eB,tel,
i (Y1) — i)l < Lillya — ¥2ll8. Vi € B.

Remark 2.1. Let X : (—o0, 0] — X be such thakg = ¢ andx|, € PC, and asume that i holds.
From the continuity o6 — AT (t — s) in the uniform operator topology ofD, t) and the estimate

Ci-
IAT(t = 9F (8. X5l = (A Tt =9)(~A/F(s. x| = ﬁnemﬁm, Xs)|l:

it follows that the functiore — AT(t — 6)F (6, Xy) is integrable oni0, t) for everyt > 0. Proceeding
similarly we can asgéthat the functions — T (t — S)G(s, Xs) is integrable on0, t] for everyt > 0.

Next, we introduce the concepts of mild and strong solutiong dj-{(1.3).
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Definition 2.1. A functionu : (—oo,0] — X is a mild soution of the impulsive abstract Cauchy
problem (.1)—(1.3) if ugp = ¢; u(:);) € PC and

t
ut) = T(t) () + F(O, ¢)) — F(t,ut) — / AT (t —s)F(s, ug)ds
0

t
+f Tt —9)G(s.u)ds+ Y T(t—t)[li(ug) + AF (G, uy)l, tel. (2.1)
0 O<tj <t
Definition 2.2. A functionu : (—oo, o] — Xis a stong solution of {.1)—(1.3) if up = ¢; u(-);| € PC,;
the functionsu(t) and F(t, uy) are diffaenticble a.e. onl with derivativesu’(t) and d%F(t, uy) in
L1(I; X); Eq. 1.1) is verified a.e. orl and (L.3) is valid for everyi = 1, ..., n.

Letu(-) be a strong solution and assume thathdlds. From the semigroup theory, we get

t t

u(t) = T(t)e0) —/ T — s)%F(s, us)ds-i-/ Tt —s)G(s, ug)ds, t € [0, t1),
0 0

which implies that
f
uct;) = T(t)(e0) + F(O, 9)) — F(t, utf) _/o AT(t — s)F (s, ug)ds
t
+f lT(t — 5)G(s, ug)ds.
0

By using thatu(-) is a solution of {.1) on (t1, to) and thatu(tf) = u(ty) + l1(uy,), we sedhat

t
ut) = T(t —t)u)) + F;, Ug)) — F(t,up) — / AT(t — S)F (s, us)ds

t1

t
+f T(t —s)G(s, ug)ds
t

1

t t

=T{)(e0) + F(0,¢)) — F(t,u) — /0 AT(t —9)F(s, us)ds+/0 T(t —s)G(s, us)ds
+ Tt —to) [11(Uy) + AF (t, U], t e (i, t2).

Reiterating these procedure, we can concludeubatis also a mild slution of (1.1)—(1.3).

Remark 2.2. Our definition of a mild stution is different from that introduced iriB,14].

In the following result, tie main esult of this work K, = sup,, K(s).

Cl_/go'ﬁ

Theorem 2.1. If © = K, [Le(|(=A)#|(1+2nM) + £

exids aunique mild solution of1.2)—(1.3).

)+ M(oLg+Y", L] < 1, then here

Proof. On the metric spacBPC = {u : (—oo,0] — X; Ug = ¢, u|; € PC} endowed wih the meric
d(u,v) = |Ju—v|pc, we define tle operatorl” : BPC — BPC by
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@), t <0,
t
F T —9G(S, x)ds+ Y Tt —t)[lix) +AF®t, )],  tel.

O<tj <t

From Remark 2.1 we know thats — T(t — S)G(S, Xs) ands — AT(t — S)F (s, Xs) are integrable
on [0, t) for everyt e |. Thus, I" is well defined with values ifPC. Let u,v € BPC. Using that
IAF (i, uy) — AF (G, vl < 2LEKo [(=A) P llI(u — v))i I pe, we get

[ CiplL
I7u®) = To@®l < 1=A) P ILEur = wlls +f0 [ﬁ

+ MY (Lillug — v lls + 201 (=A) PILEK U — vy llpe)
ti<t

+ MLG} llus — vs||5ds

- Cq_poP ~ n
< K, [LF<||<—A>—ﬁ||(1+2nM>+ 15" )+M (ULG+ZLi>:|||(U—U)II||PC’

i=1

and hencel(I'u, I'v) < @d(u, v), which proves thatl" is a ontraction on3PC. Thus, there exists a
unique mild solution of 1.1)—(1.3). This complées theproof. O

In the next result, fox € X, Xx : (—oo, 0] — X repreents the @inction defined byt (#) = 0 for
0 < 0 andAXyx(0) = x, and(S(1))t=0 is the family of linearoperators defined b$(t)y(6) = v (0)
on [—t,0] and S(t)¥(0) = ¥ (t + ) on (—oo, —t]. Moreover, for the sakeof brevity, we put
to =0,thy1 = o andlg = 0.

Theorem 2.2. Assume that the hypothesesTtieoren®.1 are satisfied and let (1) be the unique mild
soluion of (1.1)—(1.3). If X is reflexive, K1 x B) ¢ D(A) and the next condition holds:

(@ uy + X“(uti) € B,u(ti) + li(uy) € D(A) andt — S(t)(uy + X“(uti)) is Lipschitz ont;, tj 1] for
everyi=0,...n,

then u-) is a strong solution of1.1)—(1.3).

Proof. Letu' € C([ti, ti+1]: X),i =0,...,n, be sub thatu' = uon(t, ti11]. Itis easy to prove that
u'(-) is a mild solution, in the sense introduced &, [of the astract Cauchy problem

d
a(x(t) + F(t, X)) = AX(®) + G(t, xo), te [t tipal, (2.2)
Xy = Uy + X wy)- (2.3)

From [5, Theorem 3.1], we infer that' (-) is a strong solution of2.2) and @.3). This means that' and
t — F(t, (u')y) are diffaentisble a.e. ort;, tj1]; that(u')’ and%F(t, u;) belong toLL([t;, ti+1]; X)
and that 2.2) is verified a.e. orit;, tj+1]. This is enough for concluding that-) is a strong slution of
1.1)-1.3. O
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3. Example

Next, we study Example 4.1 oB] subjected to impulsive conditions. Le¢ = L?([0, 7]), B =
PCo x L?(g, X), thephase space introduced $ection 1 andA : D(A) ¢ X — X be the operator
Af = {7 with domainD(A) = {f € X : 7 € X, f(0) = f(z) = 0}. It is wel known
that A is the infinitesimal generat of an analytic semigroupT (t))t>o on X. The spetrum of Ais
discrete with eigenvaluesn?, n € N, and &sociated normalized eigenvectapg) = (£ 2y1/2 sin(n&).
Moreover, the sefz, : n € N} is an orthonormal basis oK, T(t)f = Y 22, e™" t(f, Zn)zn for
f e Xand(—A)*f = =32 1n2°‘(f Zn)zy for f e X,. It follows from these expressions that

ITOI < et I(=AITO)| < 97}2 for eacht > 0 and that|(—A)~%/2|| = 1.
Consider the first order neutral differential equation with unbounded delay and impulses:

9 t e 82
a |:U(t, S) + f_oo/(; b(t =S, 1, S)U(S’ ﬁ)dﬂds] 8§2u(t ";:) + aO("i:)u(t S)

t
+ay(t, &) +f a(t —s)u(s, &)ds, tel =[0, 0], (3.1)
u,0) =u, ) =0, tel, (3.2)
u(t,&) =¢(r,£), t=<0,  &eJ=[0mn] (3.3)
g
Au(t)(§) = pi (ti — s)u(s, £)ds, £ eJ=1[0mr], (3.4)

where O< t; < --- < ty < o are prefixed numbers and e B. To sudy this system we will assume
thatag: J — R, a; : | x J — R are continuous functions and that the following conditions hold:

(i) The functions®2s.1:6) bg’ ) j = 0,1, are measurable d x J2, b(s, n, ) = b(s, 5, 0) = 0, for every

s,m) eRx JandNg = [T [° [T g5 (b(z, 0, ©))? dndrdz < oo.

(i) The functionsa : R — R, p, : R — R are continuous/®_ZC0dy < oo andL; :=

\ J—c0 ~9®)
: 1 :
(ffoo%(_g’))de)z <ooforalli=1,...,n

By defining the operatorG, F, |; by

0 T
F(t v)(E) = f fo b(—. 1, £)y (. mdnd,
0

G, y)©) = ao(é)l/f(O,S)+/ a(—0)y(r, §)dr,

0 —0o0
li (¥)(&) 1=f Pi (=) Y (S, §)ds,

we can model3.1)—(3.4) as the abséct system:( 1—(1.3. Moreover, the mapg (t, -), G, -), |; are

bounded linear operator$F (t, )| < N2 IG(t, )| < (fooo aé(ee))d9> +sup lao@®)| forallt € |
and|lj|| < Lj foreveryi =1,...,n
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Proposition 3.1. Assume that the previous conditions are verified. If

1 1
0 2 0 a(— 2
1+ < g(r)dr) Nf (142n++v2e) + 0o (/ a-9) d0>

o —o 9(0)

n
+suplao@)| | + Y Li | <1
§ed i=1

where N = [ ffoo I ﬁ(%b(r, n, £))2dndrdz, then here exists a unique mild solution(-y

of (3.1)—(3.4). Moreover, if ¢ and W(-) verify the nditions inTheoren®.2, the Unction% is

a2
measurable and N= [ [° [* ﬁ(%)zdndsdg < 00, then W) is a strong solution.

Proof. A easy estimigon using (i) pernts us to pove thatF is X%-valued ad thatF : | x B — X% is

1
continuous. Moreove(,—A)% F(t, -) is abounded linear operator am(d—A)%F(t, I < Nf for each
t € I. Now, the exigence of a mild solutin is a consequence dheorem 2.1
The regularity asertion ftlows directly fromTheorem 2.2since under these additional conditions,
the functionAF : | x B — X is well defined and continuous. The proof is completed
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