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Abstract

In this work we study the existence and regularity of mild solutions for impulsive first order partial neutral
functional differential equations with unbounded delay.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Neutral differential equations arise in many areas of applied mathematics and for this reason these
equations have received much attention in the last few decades. The literature related to ordinary neutral
functional differential equations is very extensive and we refer the reader to [1,2] and the references
therein. Partial neutral functional differential equations with delay have been studied in [3–7].

On the other hand, the theory of impulsive differential equations has become an important area of
investigation in recent years, stimulated by their numerous applications to problems arising in mechanics,
electrical engineering, medicine, biology, ecology, etc. Related to this matter we mention [8,9] and the
references in these works.
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In this work we study the existence and regularity of mild solutions for a class of abstract neutral
functional differential equations (ANFDE) with unbounded delay and impulses described in the form

d

dt
(x(t)+ F(t, xt )) = Ax(t)+ G(t, xt ), t ∈ I = [0, σ ], (1.1)

x0 = ϕ ∈ B, (1.2)

�x(ti ) = I i (xti ), i = 1, . . . ,n, (1.3)

where A is the infinitesimal generator of an analytic semigroup of linear operators,(T(t))t≥0, on a
Banach space(X, ‖ · ‖); the history xt : (−∞,0] → X, xt (θ) = x(t + θ), belongs to some abstract
phase spaceB defined axiomatically; F,G, I i , are appropriate functions; 0< t1 < · · · < tn < σ are
prefixed points and�ξ(t) is the jump of a functionξ at t , which isdefined by�ξ(t) = ξ(t+)− ξ(t−).

Ordinary impulsive neutral differential systems have been studied recently in several papers; see
[10–14]. The existence of solutions for impulsive partial ANFDE is an untreated topic and that is the
motivation of this work. In relation with this last remark, we consider it important to observe that some
systems similar to (1.1)–(1.3) are studied in [13,14]. However, in these works the authors impose some
severe assumptions on the semigroup generated byA which imply that the underlying spaceX has finite
dimension; see [7] for details. As a consequence, the systems studied in these works are really ordinary
and not partial.

In this work, A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup of linear
operators (T(t))t≥0 on X,0 ∈ ρ(A), and M̃ is a constant such that‖T(t)‖ ≤ M̃ for every t ∈ I .
The notation(−A)α, α ∈ (0,1), stands for the fractional power ofA and Xα is the domain of(−A)α

endowed with the graph norm. For literature relating to semigroup theory, we suggest [15].
We say that afunctionu(·) is a normalized piecewise continuous function on[µ, τ ] if u is piecewise

continuous, and left continuous on(µ, τ ]. We denote byPC([µ, τ ]; X) the space formed by the
normalized piecewise continuous functions from[µ, τ ] to X. The notationPC stands for the space
formed by all functionsu ∈ PC([0, µ]; X) such thatu(·) is continuous att 
= ti , u(t−i ) = u(ti ) and
u(t+i ) exists for alli = 1, . . . ,n. In this work, (PC, ‖ · ‖PC) is the spacePC endowed with the norm
‖x‖PC = sups∈I ‖x(s)‖. It is clear that(PC, ‖ · ‖PC) is a Banach space.

In this work we will employ an axiomatic definition for the phase spaceB which is similar to that
used in [16]. Specifically,B will be a linear space of functions mapping(−∞,0] to X endowed with a
seminorm‖ · ‖B and verifying the following axioms:

(A) If x : (−∞, µ+ b] → X,b > 0, is such thatxµ ∈ B andx|[µ,µ+b] ∈ PC([µ,µ + b] : X), then for
everyt ∈ [µ,µ+ b] the following conditions hold:
(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K (t − µ) sup{‖x(s)‖ : µ ≤ s ≤ t} + M(t − µ)‖xµ‖B,
whereH > 0 is a constant;K ,M : [0,∞) → [1,∞), K is continuous,M is locally bounded and
H, K ,M are independent ofx(·).

(B) ThespaceB is complete.

Example: The phase space PCr × L2(g, X).
Let g : (−∞,−r ] → R be a positive function verifying the conditions (g-6) and (g-7) of [16]. This

means thatg(·) is Lebesgue integrable on(−∞,−r ) and that there exists a non-negative and locally
bounded functionγ on (−∞,0] such thatg(ξ + θ) ≤ γ (ξ)g(θ), for all ξ ≤ 0 andθ ∈ (−∞,−r ) \ Nξ ,
whereNξ ⊆ (−∞,−r ) is a set with Lebesgue measure zero. LetB := PCr × L2(g; X), r ≥ 0, be the
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space formed of all classes of functionsϕ : (−∞,0] → X such thatϕ |[−r,0] ∈ PC([−r,0], X), ϕ(·)
is Lebesgue measurable on(−∞,−r ] and g(·) | ϕ(·) |p is Lebesgue integrable on(−∞,−r ]. The
seminorm in‖ · ‖B is defined by

‖ϕ‖B :=
(∫ −r

−∞
g(θ)‖ϕ(θ)‖pdθ

)1/p

+ sup
θ∈[−r,0]

‖ϕ(θ)‖.

From the proof of [16, Theorem 1.3.8] it follows thatB is a phase space which verifies the axioms (A)

and (B) of our work. Moreover, whenr = 0, H = 1,M(t) = γ (−t)
1
2 andK (t) = 1 + (

∫ 0
−t g(τ )dτ )

1
2

for t ≥ 0.
Example: The phase space PCg(X).

As usual, we say that a functionϕ : (−∞,0] → X is normalized piecewise continuous if the
restriction ofϕ to any interval[−r,0] is a normalized piecewise continuous function.

Let g : (−∞,0] → [1,∞) be a continuous function which satisfies the conditions (g-1), (g-2)
of [16]. We denote byPCg(X) the space formed by the normalized piecewise continuous functionsϕ

such thatϕg is bounded on(−∞,0] and byPC0
g(X) the subspace ofPCg(X) formed by the functions

ϕ : (−∞,0] → X such thatϕ(θ)g(θ) → 0 asθ → −∞. It is easy to see thatPCg(X) andPC0
g(X)

endowed with the norm‖ϕ‖B := supθ∈(−∞,0]
‖ϕ(θ)‖
g(θ) are phase spaces in the sense considered in this

work.

2. Existence results

To study the existence of solutions of (1.1)–(1.3), we always assume that the next condition holds.

H1 The functionsG, F : I × B → X and I i : B → X, i = 1, . . . ,n, are continuous and satisfy the
following conditions:

(i) For everyx : (−∞, σ ] → X such thatx0 = ϕ andx|I ∈ PC, the function t → G(t, xt ) is
strongly measurable and the functiont → F(t, xt ) belongs toPC.

(ii) There are positive constantsβ ∈ (0,1), L F , LG, Li , i = 1, . . . ,n, such that F is Xβ -valued,
(−A)βF : I × B → X is continuous and

‖G(t, ψ1)− G(t, ψ2)‖ ≤ LG‖ψ1 − ψ2‖B, ψi ∈ B, t ∈ I ,

‖(−A)βF(t, ψ1)− (−A)βF(t, ψ2)‖ ≤ L F‖ψ1 − ψ2‖B, ψi ∈ B, t ∈ I ,

‖I i (ψ1)− I i (ψ2)‖ ≤ Li ‖ψ1 − ψ2‖B, ψi ∈ B.

Remark 2.1. Let x : (−∞, σ ] → X be such thatx0 = ϕ andx|I ∈ PC, and assume that H1 holds.
From the continuity ofs → AT(t − s) in the uniform operator topology on[0, t) and the estimate

‖AT(t − s)F(s, xs)‖ = ‖(−A)1−βT(t − s)(−A)βF(s, xs)‖ ≤ C1−β
(t − s)1−β ‖(−A)βF(s, xs)‖,

it follows that the functionθ → AT(t − θ)F(θ, xθ ) is integrable on[0, t) for everyt > 0. Proceeding
similarly we can assert that the functions → T(t − s)G(s, xs) is integrable on[0, t] for everyt > 0.

Next, we introduce the concepts of mild and strong solutions of (1.1)–(1.3).
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Definition 2.1. A function u : (−∞, σ ] → X is a mild solution of the impulsive abstract Cauchy
problem (1.1)–(1.3) if u0 = ϕ; u(·)|I ∈ PC and

u(t) = T(t)(ϕ(0)+ F(0, ϕ))− F(t,ut )−
∫ t

0
AT(t − s)F(s,us)ds

+
∫ t

0
T(t − s)G(s,us)ds +

∑
0<ti<t

T(t − ti )[I i (uti )+ �F(ti ,uti )], t ∈ I . (2.1)

Definition 2.2. A functionu : (−∞, σ ] → X is a strong solution of (1.1)–(1.3) if u0 = ϕ; u(·)|I ∈ PC;
the functionsu(t) and F(t,ut ) are differentiable a.e. onI with derivativesu′(t) and d

dt F(t,ut ) in
L1(I ; X); Eq. (1.1) is verified a.e. onI and (1.3) is valid for everyi = 1, . . . ,n.

Let u(·) be a strong solution and assume that H1 holds. From the semigroup theory, we get

u(t) = T(t)ϕ(0)−
∫ t

0
T(t − s)

d

dt
F(s,us)ds +

∫ t

0
T(t − s)G(s,us)ds, t ∈ [0, t1),

which implies that

u(t−1 ) = T(t1)(ϕ(0)+ F(0, ϕ))− F(t−1 ,ut−1
)−

∫ t1

0
AT(t − s)F(s,us)ds

+
∫ t1

0
T(t − s)G(s,us)ds.

By using thatu(·) is a solution of (1.1) on (t1, t2) and thatu(t+1 ) = u(t−1 )+ I1(ut1), we seethat

u(t) = T(t − t1)(u(t
+
1 )+ F(t+1 ,ut+1

))− F(t,ut )−
∫ t

t1
AT(t − s)F(s,us)ds

+
∫ t

t1
T(t − s)G(s,us)ds

= T(t)(ϕ(0)+ F(0, ϕ))− F(t,ut )−
∫ t

0
AT(t − s)F(s,us)ds +

∫ t

0
T(t − s)G(s,us)ds

+ T(t − t1)
[
I1(ut1)+ �F(t1,ut1)

]
, t ∈ (t1, t2).

Reiterating these procedure, we can conclude thatu(·) is also a mild solution of (1.1)–(1.3).

Remark 2.2. Our definition of a mild solution is different from that introduced in [13,14].

In the following result, the main result of this work,Kσ = sups∈I K (s).

Theorem 2.1. If Θ = Kσ [L F (‖(−A)−β‖(1+2nM̃)+ C1−βσβ
β

)+ M̃(σ LG +∑n
i=1 Li )] < 1, then there

exists aunique mild solution of(1.1)–(1.3).

Proof. On the metric spaceBPC = {u : (−∞, σ ] → X; u0 = ϕ, u|I ∈ PC} endowed with the metric
d(u, v) = ‖u − v‖PC , we define the operatorΓ : BPC → BPC by
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Γ x(t) =


ϕ(t), t ≤ 0,

T(t)(ϕ(0)+ F(0, ϕ))− F(t, xt )−
∫ t

0
AT(t − s)F(s, xs)ds

+ ∫ t
0 T(t − s)G(s, xs)ds + ∑

0<ti<t
T(t − ti )[I i (xti )+ �F(ti , xti )], t ∈ I .

From Remark 2.1, we know thats → T(t − s)G(s, xs) ands → AT(t − s)F(s, xs) are integrable
on [0, t) for every t ∈ I . Thus,Γ is well defined with values inPC. Let u, v ∈ BPC. Using that
‖�F(ti ,uti )− �F(ti , vti )‖ ≤ 2L F Kσ‖(−A)−β‖‖(u − v)|I ‖PC , we get

‖Γu(t) − Γv(t)‖ ≤ ‖(−A)−β‖L F‖ut − vt‖B +
∫ t

0

[
C1−βL F

(t − s)1−β + M̃ LG

]
‖us − vs‖Bds

+ M̃
∑
ti ≤t

(Li ‖uti − vti ‖B + 2‖(−A)−β‖L F Kσ‖(u − v)|I ‖PC)

≤ Kσ

[
L F

(
‖(−A)−β‖(1 + 2nM̃)+ C1−βσβ

β

)
+ M̃

(
σ LG +

n∑
i=1

Li

)]
‖(u − v)|I ‖PC,

and henced(Γu,Γv) ≤ Θd(u, v), which proves thatΓ is a contraction onBPC. Thus, there exists a
unique mild solution of (1.1)–(1.3). This completes theproof. �

In the next result, forx ∈ X,Xx : (−∞,0] → X represents the function defined byXx(θ) = 0 for
θ < 0 andXx(0) = x, and(S(t))t≥0 is the family of linearoperators defined byS(t)ψ(θ) = ψ(0)
on [−t,0] and S(t)ψ(θ) = ψ(t + θ) on (−∞,−t]. Moreover, for the sakeof brevity, we put
t0 = 0, tn+1 = σ and I0 = 0.

Theorem 2.2. Assume that the hypotheses ofTheorem2.1 are satisfied and let u(·) be the unique mild
solution of (1.1)–(1.3). If X is reflexive, F(I × B) ⊂ D(A) and the next condition holds:

(a) uti + XIi (uti )
∈ B,u(ti ) + I i (uti ) ∈ D(A) and t → S(t)(uti + XIi (uti )

) is Lipschitz on[ti , ti+1] for
every i = 0, . . . n,

then u(·) is a strong solution of(1.1)–(1.3).

Proof. Let ui ∈ C([ti , ti+1] : X), i = 0, . . . ,n, be such thatui = u on (ti , ti+1]. It is easy to prove that
ui (·) is a mild solution, in the sense introduced in [5], of the abstract Cauchy problem

d

dt
(x(t)+ F(t, xt )) = Ax(t)+ G(t, xt ), t ∈ [ti , ti+1], (2.2)

xti = uti + XIi (uti )
. (2.3)

From [5, Theorem 3.1], we infer thatui (·) is a strong solution of (2.2) and (2.3). This means thatui and
t → F(t, (ui )t ) are differentiable a.e. on[ti , ti+1]; that (ui )′ and d

dt F(t,ui
t ) belong toL1([ti , ti+1]; X)

and that (2.2) is verified a.e. on[ti , ti+1]. This is enough for concluding thatu(·) is a strong solution of
(1.1)–(1.3). �
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3. Example

Next, we study Example 4.1 of [5] subjected to impulsive conditions. LetX = L2([0, π ]), B =
PC0 × L2(g, X), thephase space introduced inSection 1, and A : D(A) ⊂ X → X be the operator
Af = f ′′ with domain D(A) := { f ∈ X : f ′′ ∈ X, f (0) = f (π) = 0}. It is well known
that A is the infinitesimal generator of an analytic semigroup(T(t))t≥0 on X. The spectrum of A is
discrete with eigenvalues−n2,n ∈ N, and associated normalized eigenvectorszn(ξ) := ( 2

π
)1/2 sin(nξ).

Moreover, the set{zn : n ∈ N} is an orthonormal basis ofX, T(t) f = ∑∞
n=1 e−n2t 〈 f, zn〉zn for

f ∈ X and (−A)α f = −∑∞
n=1 n2α〈 f, zn〉zn for f ∈ Xα. It follows from these expressions that

‖T(t)‖ ≤ e−t , ‖(−A)
1
2 T(t)‖ ≤ e

−t
2 t−

1
2√

2
for eacht > 0 and that‖(−A)−1/2‖ = 1.

Consider the first order neutral differential equation with unbounded delay and impulses:

∂

∂t

[
u(t, ξ)+

∫ t

−∞

∫ π

0
b(t − s, η, ξ)u(s, η)dηds

]
= ∂2

∂ξ2
u(t, ξ)+ a0(ξ)u(t, ξ)

+ a1(t, ξ) +
∫ t

−∞
a(t − s)u(s, ξ)ds, t ∈ I = [0, σ ], (3.1)

u(t,0) = u(t, π) = 0, t ∈ I , (3.2)

u(τ, ξ) = ϕ(τ, ξ), τ ≤ 0, ξ ∈ J = [0, π ], (3.3)

�u(ti )(ξ) =
∫ ti

−∞
pi (ti − s)u(s, ξ)ds, ξ ∈ J = [0, π ], (3.4)

where 0< t1 < · · · < tn < σ are prefixed numbers andϕ ∈ B. To study this system we will assume
thata0 : J → R, a1 : I × J → R are continuous functions and that the following conditions hold:

(i) The functions∂
i b(s,η,ξ )
∂ξ i , i = 0,1, are measurable onR × J2,b(s, η, π) = b(s, η,0) = 0, for every

(s, η) ∈ R × J andN0 := ∫ π
0

∫ 0
−∞

∫ π
0

1
g(τ) (b(τ, η, ζ ))

2 dηdτdζ < ∞.

(ii) The functionsa : R → R, pi : R → R are continuous,
∫ 0
−∞

a2(−θ)
g(θ) dθ < ∞ and Li :=

(
∫ 0
−∞

p2
i (θ)

g(θ) dθ)
1
2 < ∞ for all i = 1, . . . ,n.

By defining the operatorsG, F, I i by

F(t, ψ)(ξ) :=
∫ 0

−∞

∫ π

0
b(−τ, η, ξ)ψ(τ, η)dηdτ,

G(t, ψ)(ξ) := a0(ξ)ψ(0, ξ)+
∫ 0

−∞
a(−τ )ψ(τ, ξ)dτ,

I i (ψ)(ξ) :=
∫ 0

−∞
pi (−s)ψ(s, ξ)ds,

we can model (3.1)–(3.4) as the abstract system (1.1)–(1.3). Moreover, the mapsF(t, ·),G(t, ·), I i are

bounded linear operators,‖F(t, ·)‖ ≤ N
1
2
0 , ‖G(t, ·)‖ ≤

(∫ 0
−∞

a(−θ)
g(θ) dθ

) 1
2 + supξ∈I |a0(ξ)| for all t ∈ I

and‖I i ‖ ≤ Li for everyi = 1, . . . ,n.
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Proposition 3.1. Assume that the previous conditions are verified. If1 +
(∫ 0

−σ
g(τ )dτ

)1
2
N

1
2
1 (1 + 2n + √

2e)+ σ

(∫ 0

−∞
a(−θ)
g(θ)

dθ

) 1
2

+ sup
ξ∈J

|a0(ξ)|
+

n∑
i=1

Li

 < 1,

where N1 := ∫ π
0

∫ 0
−∞

∫ π
0

1
g(τ)(

∂
∂ζ

b(τ, η, ζ ))2dηdτdζ , then there exists a unique mild solution, u(·),
of (3.1)–(3.4). Moreover, if ϕ and u(·) verify the conditions inTheorem2.2, the function ∂2b(θ,η,ξ )

∂ξ2 is

measurable and N2 = ∫ π
0

∫ 0
−∞

∫ π
0

1
g(s) (

∂2b(s,η,ξ )
∂ξ2 )2dηdsdξ < ∞, then u(·) is a strong solution.

Proof. A easy estimation using (i) permits us to prove thatF is X 1
2
-valued and thatF : I × B → X 1

2
is

continuous. Moreover,(−A)
1
2 F(t, ·) is a bounded linear operator and‖(−A)

1
2 F(t, ·)‖ ≤ N

1
2
1 for each

t ∈ I . Now, the existence of a mild solution is a consequence ofTheorem 2.1.
The regularity assertion follows directly fromTheorem 2.2, since under these additional conditions,

the functionAF : I × B → X is well defined and continuous. The proof is completed.�
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