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Dorsal and Ventral Cell Types Can Arise
from Common Neural Tube Progenitors
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To challenge the developmental potential of dorsal neural tube cells and test whether single neuroepithelial cells can give
rise to the full range of neural tube derivatives, we grafted a notochord lateral to the closing neural folds. This results in
juxtaposition of dorsal and ventral cell types, by inducing floor plate cells and motor neurons dorsally. Clonal analysis
with the vital dye lysinated rhodamine dextran showed that both ‘‘dorsal’’ and ‘‘ventral’’ neural tube derivatives can arise
from a single precursor. Cells as diverse as sensory ganglion cells, presumptive pigment cells, roof plate cells, motor
neurons, and floor plate cells were observed in the same clone. The presence of such diversity within single clones indicates
that the responses to dorsal and ventral signals are not mutually exclusive; even in the early neural tube, neuroepithelial
cells are not restricted to form only dorsal or ventral neural tube derivatives. q 1995 Academic Press, Inc.

INTRODUCTION et al., 1993; Roelink et al., 1994), and in dorsalin-1, a mem-
ber of the TGF-b family that is localized in the dorsal neural
tube and can induce some neural crest derivatives (BaslerJust after closure, the neural tube appears to be a some-
et al., 1993).what homogeneous neuroepithelium. Shortly thereafter,

Although current dogma suggests that both dorsalizingdistinct cell types appear in the dorsal and ventral portions
and ventralizing signals function after neural tube closure,of the neural tube, reflecting the first overt manifestation
increasing evidence suggests that some properties are estab-of dorsoventral polarity. For example, neural crest cells emi-
lished earlier. For example, a notochord implanted into thegrate from the dorsal neural tube and commissural neurons
dorsal midline prior to neural tube closure does not suppressbegin to differentiate dorsolaterally. In the ventral neural
formation of either neural crest cells or commissural neu-tube, presumptive floor plate cells in the midline assume a
rons (Artinger and Bronner-Fraser, 1992), despite its abilitywedge-shaped morphology and, ventrolaterally, some cells
to induce an ectopic floor plate and motor neurons (vandifferentiate into motor neurons.
Straaten et al., 1989). Furthermore, the birth of the firstA rapidly expanding literature demonstrates that the no-
neurons during gastrulation (Sechrist and Bronner-Fraser,tochord can influence the dorsoventral polarity of the neural
1991) suggests that at least some cell types are specifiedtube (van Straaten et al., 1988, 1989; Yamada et al., 1991),
early.inducing floor plate cells by a contact-mediated signal (Plac-

To test if there is such a stepwise mechanism of neuralzek et al., 1993) and motor neurons by a diffusible signal
tube specification, the normal fates of neural tube cells(Yamada et al., 1993). A logical extension of such studies
must be challenged. The normal differentiation pattern canis the proposal that primary interactions specify the most
be altered by grafting a notochord adjacent to the dorsolat-dorsal and ventral fates of the neural tube, followed by sec-
eral aspect of the closing neural tube in stage 9 to 11 em-ondary interactions within the neural tube that pattern and
bryos (Hamburger and Hamilton, 1951). The implanted no-assign the various cell types. Molecular correlates of this
tochord ventralizes a region of the neural tube that is fatedproposal are found in sonic hedgehog, which is localized in
to give rise to neural crest cells, commissural neurons, andthe notochord and subsequently in the floor plate (Echelard
roof plate cells, inducing some dorsolateral cells to form
ventral motor neurons and floor plate cells (van Straaten et
al., 1988, 1989; Yamada et al., 1993). Two disparate scenar-1 To whom correspondence should be addressed. Fax: (714) 824-

4709. ios are consistent with the ability of dorsally located cells
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592 Artinger, Fraser, and Bronner-Fraser

to form ventral derivatives. First, neural tube cells may have White Leghorn chicken embryos were incubated at 387C
until they reached the 9–11 somite stage (Hamburger andequivalent developmental potentials until relatively late in

development. Interactions with either dorsal or ventral sig- Hamilton, 1951). The eggs were washed with 70% ethanol,
4 ml of albumen was removed, a window was cut in thenals in their local environments then results in phenotype

selection. Alternatively, the neural tube may consist of a shell over the embryo, and India ink (Pelikan Fount, Han-
over, FGR) diluted 1:10 in Howard Ringer’s solution wasmixture of cells with a narrowly restricted range of potential

fates (either presumptive dorsal or ventral) scattered injected under the blastoderm to aid in visualization of the
embryo. The vitelline membrane was deflected using anthroughout the neural tube. Ventral or dorsal phenotypes

may arise because of the selective survival or differentiation electrolytically sharpened tungsten needle.
Isolated notochords were grafted dorsolateral to the clos-of the proper cell types in response to ventral or dorsal

signals. In the first of these scenarios, the notochord plays ing neural tube at prospective wing bud levels. A pulled
glass needle was used to make an incision 3–5 somites inan instructive role; in the second, its role is selective.

Single-cell lineage analysis provides a simple and straight- length in the unsegmented mesoderm region lateral to the
neural tube. A donor notochord was transferred in 2 ml offorward means to distinguish between these divergent pos-

sible scenarios, by determining the fates and assessing the medium using a pipetman and was placed in the vicinity
of the incision. The notochord was oriented parallel to thedevelopmental potentials of individual neural tube cells.

One good cell lineage marker is lysinated rhodamine dex- incision and inserted between the dorsal neural tube and
the unsegmented mesoderm using a glass needle.tran (LRD; Gimlich and Braun, 1986), which is a large, mem-

brane impermeant dye that is passed only to progeny by
cell division. In our previous experiments, we have analyzed

Single-Cell Microinjectionthe cell phenotypes that can arise from single cells within
the dorsal neural tube injected with LRD and have shown Within 1 hr after implantation of the notochord, the em-

bryos were placed under a Zeiss epifluorescence microscopethat neural crest progenitors: (1) are multipotent, having
the ability to form multiple neural crest phenotypes; and with oblique lighting from a fiber optic illuminator. Thin-

walled aluminosilicate microelectrodes (A-M Systems; re-(2) are not segregated from other neural tube precursors, as
they also give rise to neuronal types forming in the dorsal sistance of 50–120 MV) were filled at the tip with LRD

(Molecular Probes; 100 mg/ml) and then back-filled withneural tube (Bronner-Fraser and Fraser, 1988, 1989).
Here, we test whether a single cell can give rise to the 1.2 M LiCl. The microelectrode was held by a Huxley style

3-axis micromanipulator (Newport Instruments) and a dor-full range of neural tube derivatives. We challenge the devel-
opmental potential of dorsal neural tube cells by grafting a sal neural fold cell was impaled by a negative current pulse.

Injection of dye was achieved iontophoretically, using 4-nAnotochord lateral to the closing neural folds. This results
in juxtaposition of dorsal neuroepithelial cells with ventral pulses of current (250-msec pulses, 2 Hz). The membrane

resistance and resting potential, which can be used to assesscell types, by inducing floor plate cells and motor neurons
dorsally. After injecting lineage tracer into individual neuro- the health of the cell during the injection, were monitored

via a Neurodata amplifier and Gould digital storage oscillo-epithelial cells, the results show that both dorsal and ven-
tral neural tube derivatives can arise from a common pre- scope. After the injection, the microelectrode was with-

drawn rapidly from the cell and the labeled cell observedcursor. This suggests that neuroepithelial cells are not re-
stricted to form only dorsal or ventral neural tube using epifluorescence optics to confirm that only one cell

was injected. The embryos were then returned to the incu-derivatives in the early neural tube.
bator until the time of fixation (0–2 days postinjection).

MATERIALS AND METHODS Histology

Embryos were fixed in 4% paraformaldehyde in phos-Notochord Grafts
phate-buffered saline (PBS) overnight, embedded in paraffin,
and serially sectioned. The slides were deparaffinized andQuail embryos (Coturnix coturnix japonica) were incu-

bated at 387C until they reached stage 10–12 (Hamburger coverslipped in buffered glycerol before observation. For
embryos to be processed for neurofilament immunoreactiv-and Hamilton, 1951). The trunk region was dissected out

of the embryo using an electrolytically sharpened tungsten ity, embryos were flash-frozen in isopentane cooled in liq-
uid nitrogen, methanol freeze-substituted at 0807C,needle. The notochords were isolated from surrounding tis-

sues with collagenase (160 units/ml; Worthington Biochem- brought gradually to 47C, dehydrated, embedded in para-
plast, and serially sectioned at 10 mm (Bronner-Fraser andical, Freehold, NJ) for 15 min on ice followed by 7 min

at 377C. The notochords then were allowed to recover in Fraser, 1989). Slides were deparaffinized in histosol, cover-
slipped in mineral oil for examining LRD fluorescence, andcomplete medium consisting of modified Eagle’s medium

plus 15% horse serum and 10% embryo extract for 1 hr then stained with neurofilament antibodies as described be-
low. Embryos to be processed for 16.5 HZ, FP-1, anti-on ice.
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593Dorsal and Ventral Cells from Common Progenitors

CRABP, and HNK-1 antibodies were dehydrated, embedded PBS and incubated for 1 hr with secondary antibodies.
Highly fluoresceinated antibodies (Antibodies Inc.) againstin polyester wax (90% polyethylene glycol/10% hexadeca-

nol), and serially sectioned at 10 mm. mouse IgGs were used to label 16.5HZ and FP-1 antibodies.
HNK-1 antibody was recognized using FITC-conjugated an-
tibodies against mouse IgMs. The slides were then washed

Immunocytochemistry in PBS and coverslipped with gelmount for analysis. No
significant fluorescent signal was detectable with the sec-

A monoclonal antibody against the nonphosphorylated ondary antibodies alone.
form of the intermediate molecular weight neurofilament
protein (NF-M; provided by Dr. Virginia Lee, Lee et al.,
1987) was used to identified neurons and their processes. Microscopy
For verification of the phenotype of motor neurons, floor

Slides with whole-mounted or sectioned embryos wereplate cells, commissural neurons, and dorsal root ganglion
viewed with an Olympus Vanox or a Zeiss Axiophot epi-cells, respectively, we used monoclonal antibodies 16.5HZ,
fluorescence microscope. A rhodamine filter set was usedFP-1, anti-CRABP, and HNK-1. 16.5HZ is a motor neuron
to visualize the LRD-labeled cells; a fluorescein filter setmarker obtained from the Developmental Studies Hybrid-
was used to visualize immunoreactivity with the variousoma Bank (maintained by the Department of Pharmacology
antibodies used in this study. Data were recorded photo-and Molecular Sciences at the Johns Hopkins University
graphically on ektachrome film or electronically using aSchool of Medicine, Baltimore, MD, and the Department
Hamamatsu SIT video camera and stored on removable Ber-of Biology at the University of Iowa, Iowa City, IA, under
nouilli discs. Image processing was accomplished using thecontract number NO1-HD-2-3144 from the NICHD).
Vidim software system (Fraser, Stolberg, and Belford, un-CRABP monoclonal antibody (kindly provided by Drs. U.
published) for the Imaging Technology LM processor. MostEriksson and M. Maden) recognizes commissural neurons
images presented are superimposed fluorescence and trans-(Eriksson et al., 1987) and was processed as described pre-
mitted light images, superimposed using the Vidim soft-viously (Artinger and Bronner-Fraser, 1992). FP-1 antibody
ware program or Adobe Photoshop on a Macintosh com-(kindly provided by Drs. T. Yamada and T. Jessell) specifi-
puter. Typically, the fluorescence images are presented incally recognizes floor plate cells (Yamada et al., 1991). HNK-
the red and/or green channels and the transmitted light is1 antibody recognizes neural crest cells and some of their
presented primarily in the blue channel.neuronal derivatives including dorsal root ganglion cells.

For neurofilament immunoreactivity, paraffin sections
were deparaffinized and rehydrated. Approximately 20 ml of
antibody solution, diluted 1:300 in PBS containing 0.1% RESULTS
BSA, was applied to each section and incubated overnight
in a humidified chamber at either 4 or 257C. After incuba- Verification of Single-Cell Injection
tion with primary antibodies, sections were washed in PBS
for 5 min and incubated for 1–1.5 hr with FITC-conjugated We iontophoretically injected LRD into individual cells

in the dorsal portion of the closing neural tube after dorso-antibodies against mouse IgGs. Sections were washed in
PBS and coverslipped with gelmount (Biomeda). For 16.5 lateral implantation of an exogenous notochord. Following

dye injection, we verified the presence of a single dye-la-HZ, FP-1, and HNK-1 antibody staining, embryos were pro-
cessed as follows: Polyester wax sections were rehydrated beled cell by direct visualization under the epifluorescence

microscope. The labeled cells appeared as elongated, colum-and undiluted hybridoma supernatant was applied to se-
lected slides, which were incubated in a humidified cham- nar neuroepithelial cells stretching from the luminal to the

pial surface of the closing neural tube (Fig. 1A). In a fewber overnight at 257C. The sections were then washed in

FIG. 1. Transverse sections through embryos after grafting a notochord lateral to the closing neural tube, followed by microinjection of
lysinated rhodamine dextran (LRD) into a dorsal neural fold cell. (A) In an embryo fixed immediately after injection, a single neuroepithelial
cell in the dorsal neural tube (NT) and adjacent to the ectopic notochord (N*) is labeled with dye. (B–D) An embryo fixed 2 days after
injection contained labeled cells in neural crest-derived dorsal root ganglia and other dorsal neural tube derivatives. In (B), dye is apparent
in roof plate cells (arrow), and in an adjacent section (C, viewed at higher magnification), a labeled cell was observed in the dorsal root
ganglion (large arrowhead) and in a commissural neuron (large arrow) and its ventrally directed axon (small arrow) in the dorsolateral neural
tube. (D) shows the same view as (C) in fluorescence only to better visualize the axonal process of commissural neurons. N, notochord.
FIG. 2. An embryo fixed 2 days postinjection of a single neural tube cell which contributed to motor neurons, Schwann cells, and
nonneuronal cells. At low magnification (A), a group of labeled cells is apparent close to the ectopic notochord (N*). At higher magnification
(B), the ventral root (VR) of the same embryo contains label in Schwann cell bodies (straight arrows) as well as in axonal processes (large
arrowhead).
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595Dorsal and Ventral Cells from Common Progenitors

FIG. 3. An embryo fixed 2 days after injection which contained labeled neural crest derivatives, as well as both dorsal and ventral neural
tube derivatives. At low magnification (A), labeled cells are seen in the DRG (straight arrow) and a cell that appears to be a commissural
neuron (curved arrow). (B) In other sections of this same embryo, other labeled cells form undifferentiated neuroepithelial cells and
migrating neural crest cells. In adjacent sections, labeled cells are evident in the DRG (C; arrow), in the induced floor plate (D), and in
motor neurons (E; large arrow) and motor axons (small arrow) emanating from the lateral portion of the neural tube ventral to the ectopic
notochord.
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TABLE 1
Distribution of LRD-Labeled Clones after Notochord Implantation

Dorsal Ventral Rostrocaudal
No. extent

Class embryos Type NT COM RP DRG SA PIG SC MN FP (mm)

1 12 D X 20–150
2 1 D X 20
3 2 D X 20
4 10 D X X 30–160
5 2 D X X 70–140
6 4 D X X X 90–100
7 1 D X X X X 150
8 1 D X X X X X 90
9 1a D X X X 140

10 2 D / V X X 90
11 1 D / V X X X —
12 1 D / V X X X 150
13 2 D / V X X X X 130–170
14 3 D / V X X X 60–210
15 2 D / V X X X 180
16 1a D / V X X X 120
17 1a D / V X X X X 160
18 1 D / V X X X X 130
19 1 D / V X X X X 110
20 1 D / V X X X X X X 320

Note. TOTAL, 50. NT, Neural tube cell; COM, commissural neuron; RP, roof plate cell; DRG, dorsal root ganglion cell; SA, sympatho-
adrenal cell; PIG, presumptive pigment cell; SC, Schwann cell; MN, motor neuron; FP, floor plate cell; D, dorsal only clone; D / V, dorsal
plus ventral clone.

a Derived from apparent mitotic pair.

cases, the labeled cells appeared to be an interconnected cells in the dorsal midline. Motor neurons (MN) were distin-
mitotic pair (Table 1). guished by round cell bodies and axons emanating from the

neural tube; floor plate (FP) cells were identified by their
wedge-shaped morphology.

Distribution of LRD-Labeled Clones after Although morphological criteria coupled with a cell’s po-
Notochord Implantation sition can be quite reliable for scoring cell phenotype, we

used antibody markers to verify differentiated cell typesAfter injection, embryos were incubated for 2 additional
in several embryos. The following antibodies were used asdays (reaching stage 22 to 23 according to the criterion of
molecular markers: (1) anti-neurofilament antibody wasHamburger and Hamilton, 1951), by which time many neu-
used to distinguish neuronal from nonneuronal cells; (2)ral crest cells had completed their migration and undergone
HNK-1 antibody, together with position, was used to iden-overt cytodifferentiation. As summarized in Table 1, la-
tify dorsal root ganglion cells; (3) CRABP antibody was usedbeled cells were identified in 50 embryos in which the noto-
to identify commissural neurons; (4) FP-1 was used to iden-chord was properly located adjacent to the neural tube.
tify floor plate cells; and (5) the 16.5 HZ antibody was usedCriteria for classification of phenotype. The labeled
to identify motor neurons.neural tube cells formed a wide variety of cell types easily

Clones contributing to single-cell types. In 12 embryosrecognized by their characteristic positions and morphol-
(Class 1), only undifferentiated labeled columnar neuroepi-ogy; these include dorsal root ganglion cells (DRG) adjacent
thelial cells were found in the neural tube. Three otherto the neural tube, sympathoadrenal cells (SA) around the
embryos only had derivatives in the neural crest, with 1dorsal aorta, Schwann cells (SC) along the ventral roots, and
(Class 2) contributing to pigment cells and 2 others (Classpigment cells (PIG) under the epidermis. Within the neural
3) only to DRG cells. The remaining 35 clones producedtube, commissural neurons (COM) were recognizable by
cells in multiple derivatives, including cells in the neuraltheir rounded cell bodies and ventrally directed axons (Se-
tube and neural crest. Clones tended to be relatively com-christ and Bronner-Fraser, 1989; Yaginuma et al., 1990),

whereas roof plate cells (RP) were identified as arc-shaped pact in their rostrocaudal extent, ranging from 20 to 210
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597Dorsal and Ventral Cells from Common Progenitors

mm for the majority of clones, although a single clone (Class a common precursor. To test if there is such a common
precursor in the presence of the endogenous notochord20) extended over 320 mm (Table 1).

Clones contributing to dorsal neural crest/tube deriva- alone, we injected single neural tube cells near the ventral
midline of normal stage 11–12 embryos in the midtrunktives only. Nineteen clones (Classes 4–9) comprised both

neural crest derivatives and various neural tube cell types region. Of the seven clones identified, three gave rise exclu-
sively to motor neurons and one gave rise to motor neurons(commissural neurons, roof plate cells, and undifferentiated

dorsal neuroepithelial cells). These dorsal neural tube/crest plus small cells with the appearance of interneurons. Two
clones contained both motor neurons (Figs. 5A and 5B; neu-clones comprised neural tube cells plus cells in a single

(Classes 4–7) or in multiple (Classes 8 and 9) neural crest rofilament-positive) and wedge-shaped floor plate cells (Fig.
5C; neurofilament-negative); one contained motor neuronsderivatives. A typical dorsal clone (Class 7), which con-

tained neuroepithelial cells, roof plate cells, commissural and commissural neurons. Thus, floor plate cells and neu-
rons can share a common lineage in the early neural tube,neurons, and DRG cells, is illustrated in Figs. 1B–1D.

Clones contributing to both dorsal and ventral neural consistent with previous fate mapping experiments in the
hindbrain (Fraser et al., 1990). The distribution of labeledtube derivatives. In 16/50 embryos, clones contributed

progeny to both dorsal and ventral derivatives in various cells indicates a large degree of lateromedial dispersal of
cells, consistent with previous analyses at hindbrain (Frasercombinations. Three clones contained neuroepithelial cells

and/or roof plate cells and motor neurons either with or et al., 1990) and trunk (Leber et al., 1990; Stern et al., 1991a)
levels.without roof plate cells (Classes 10 and 11). One clone (Class

12) contained motor neurons and Schwann cells along the
ventral root (Fig. 2), as well as undifferentiated neuroepithe-
lial cells. Twelve other clones (Classes 13–20) were com- DISCUSSION
prised of neural crest derivatives as well as dorsal and ven-
tral neural tube derivatives in multiple combinations (Table The neural tube is polarized along the dorsoventral axis

such that its dorsal portion forms neural crest cells, roof1). Some clones had motor neurons or floor plate cells in
combination with DRG cells (Classes 14–16) and pigment plate cells, and commissural neurons, whereas its ventral

portion forms motor neurons and floor plate cells. Previouscells (Class 13). Other clones (Classes 17–20) contained
more complex arrays of derivatives. For example, one clone single-cell lineage analyses have shown that neural crest

cells and dorsal neural tube cells share common ancestors(Class 20) was composed of COM, DRG, RP, MN and FP
cells in addition to undifferentiated neuroepithelial cells (Bronner-Fraser and Fraser, 1988, 1989); however, no clones

contained descendants in both the dorsal and ventral por-and migrating neural crest cells (Fig. 3). The presence of
such diverse cell types in single clones suggests that precur- tion of the neural tube. In the present study, we have chal-

lenged the developmental potential of dorsal neural tubesor cells in the closing neural tube are not restricted to form
dorsal or ventral derivatives. cells and tested whether single neuroepithelial cells can

give rise to the full range of neural tube derivatives. Clonal
analysis after notochord grafting definitively shows thatDetermination of Cell Phenotype Using Antibody both dorsal and ventral neural tube derivatives can arise

Markers from a single precursor. Cells as diverse as sensory ganglion
cells, presumptive pigment cells, roof plate cells, motorSelected sections from ten of the embryos described above

were treated with molecular markers to verify cell pheno- neurons, and floor plate cells were observed in the same
clone. The wide variety of phenotypes coexisting withintype. The typical appearance of HNK-1-immunoreactive,

LRD-labeled DRG cells is illustrated in Fig. 4A (n Å 3). single clones (Table 1) argues strongly for the presence of
multipotent precursors in the early neural tube. After noto-LRD-labeled commissural neurons were identified by

CRABP immunoreactivity (Fig. 4B; n Å 3). Motor neurons chord implantation, 30% of the clones gave rise to both
dorsal neural tube/neural crest and ventral neural tube de-in portions of the neural tube near the grafted notochord

were identified by neurofilament immunoreactivity (Fig. rivatives, extending previous analyses of cell fate using ret-
roviral infection (Leber et al., 1990) or dye injection (Stern4C) or by using the 16.5HZ antibody (n Å 3). Floor plate

cells in the neural tube immediately adjacent to the grafted et al., 1991a). Even clones that remained in ventral regions
were often multipotent, giving rise to divergent cell typesnotochord were recognized by FP-1 immunoreactivity (n Å

1; Fig. 4D). In no cases did the antibody staining contradict ranging from motor neurons to floor plate cells and other
unidentified cell types. Because the position of the im-the classification made by morphological criteria alone.
planted notochord varies from embryo to embryo, there may
be considerable variability regarding the relative propor-LRD-Labeled Clones from Ventral Neural Tube tions of dorsalizing and ventralizing signals; for example,

Injections in Normal Embryos some clones in which the notochord is more distant from
the neural tube may have received a dominant dorsalizingInterestingly, two of the embryos described above con-

tained both floor plate cells and motor neurons arising from signal. However, the results clearly show that a single neu-
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roepithelial cell can generate both dorsal and ventral cell these interactions start during gastrulation, this lends fur-
ther support to the idea that dorsoventral polarity may begintypes.

The range of phenotypes within single clones argues at early stages. The results presented here show that these
tissue-level asymmetries do not reflect single cell restric-against any model in which position directly dictates phe-

notype or in which a stepwise commitment of neural tube tions; instead, cells moving through distinct territories
must adopt and lose the appropriate dispositions as theycells progresses from a primary ventral or dorsal state to

final phenotype. Consistent with this lack of dorsoventral enter and leave a territory.
Our results demonstrate that individual early neural tuberestriction, recent experiments in which the cranial neural

crest is ablated show that ventrally positioned neural tube cells are multipotent in their ability to form a variety of
neural tube derivatives (including both dorsal and ventralcells can regulate to reform the neural crest (Scherson et al.,

1993; Sechrist et al., 1995). Despite the clear asymmetries cell types) as well as various neural crest derivatives. In
combination with other studies on dorsoventral patterningobserved with molecular and morphological markers in the

early neural tube, we find no evidence for commitment at of the neural tube (reviewed in Jessell and Dodd, 1993),
the present results shed light on the signaling mechanismsa single-cell level. Instead, such gene expression domains

must be viewed as rather dynamic, persisting in the face of within the neural tube and suggest the model presented in
Fig. 6. Prior to neural tube closure, there is likely to bethe considerable cell mixing seen here and in previous stud-

ies (Leber et al., 1990). planar signaling between the nonneural ectoderm and the
presumptive neural plate that promotes dorsal properties;This lack of strict lineage restriction cannot be taken as

evidence for an absence of any dorsoventral predisposition such interactions are suggested by tissue culture experi-
ments in which juxtaposition of the ectoderm and the earlywithin the closing neural tube. For example, there is evi-

dence that ventral midline cells in the neural plate may be ventral neural plate results in the formation of neural crest
cells (Selleck and Bronner-Fraser, 1995; Dickinson et al.,biased toward a floor plate fate at very early stages. Removal

of the notochord from stage 10 embryos results in the ab- 1995). Similarly, juxtaposition of epidermis and neural plate
in amphibians results in generation of neural crest cellssence of a floor plate 2 days later (Yamada et al., 1993) but

delayed differentiation of the floor plate occurs after 4 days apparently from both tissues (Moury and Jacobson, 1989,
1990). Concurrently, signals such as sonic hedgehog from(Artinger and Bronner-Fraser, 1993). Furthermore, floor

plate cells can develop in isolated neural plates (Artinger the notochord (Echelard et al., 1993), and perhaps its precur-
sor in Hensen’s node, promote ventral properties. Althoughand Bronner-Fraser, 1993), suggesting that the cells in the

neural plate are not completely equivalent, perhaps because these signals can generate striking dorsoventral differences
in the neural tube, they cannot be producing a stepwiseof earlier interactions with the chordamesoderm in

Hensen’s node. Consistent with this scenario, dorsoventral commitment of neural tube cells to strict dorsal or ventral
fates. Implantation of a notochord during tube closure re-rotation of the neural tube (without the notochord) shortly

after its closure results in an upside-down neural tube, with sults in cells that respond to both dorsal and ventral signals.
The diverse cell types observed in our single-cell data indi-neural crest cells emerging ventrally and motor axons

emerging dorsally (Weston and Butler, 1966; Stern et al., cate that some neuroepithelial cells are uncommitted at the
time of injection and can respond to both signals. The re-1991b). Similarly, early interactions may predispose the dor-

sal aspect of the neural tube to give rise to neural crest, sults of grafting experiments and analyses of normal devel-
opment suggest that dorsal and ventral signals are providedas a notochord grafted dorsally during neural tube closure

cannot prevent neural crest emigration (Artinger and Bron- continuously, beginning during gastrulation and continuing
past the time of neural tube closure, and may be composedner-Fraser, 1992). Interactions between the nonneural ecto-

derm and neural plate can result in the induction of neural of multiple and/or overlapping signals. Thus, the specifica-
tion of dorsal and ventral fates cannot be a unitary event increst cells as well as dorsal neural tube markers (Selleck

and Bronner-Fraser, 1995; Dickinson et al., 1995). Because response to one or two signals. Instead, the results presented

FIG. 4. Embryos labeled with monoclonal antibodies to identify selective cell types. (A) An embryo with an HNK-1 immunoreactive
(green), LRD-labeled cell (red) in the dorsal root ganglion (DRG). (B) Another embryo after immunoperoxidase staining with anti-CRABP
(brown) in the lateral portion of the neural tube (NT) which also contains LRD (arrow). (C) A section through the embryo shown in Fig.
2, after staining with neurofilament antibodies (green), shows that the labeled cells (red) include motor neurons (large arrowhead) with
axons coursing toward the ventral root (straight arrow) as well as other LRD-labeled neurofilament-negative cells. (D) An embryo in which
an induced floor plate, recognized by FP-1 staining (green), is present adjacent to the implanted notochord (N*). Some of the LRD-labeled
cells (red) within the floor plate are FP-1 immunoreactive (appearing yellow).
FIG. 5. Transverse sections through a normal embryo 2 days after LRD was injected into a single cell at the ventral midline. (A and B)
A labeled cell (arrow) in the ventral neural tube (NT) in the position of a motor neuron, containing neurofilament immunoreactivity. (C)
An adjacent section illustrates a floor plate cell, characterized by its wedge-shaped morphology, in the same clone as the motor neuron.
The oval-shaped cell is a blood cell which autofluoresces.
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here and elsewhere are most consistent with a mechanism
in which the specification of cell fate is a continuous pro-
cess, based on signaling beginning during gastrulation and
continuing past the time of neural tube closure.
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