On irreducible n-ary quasigroups with reducible retracts

Denis Krotov
Sobolev Institute of Mathematics, pr-t Ak. Koptyuga, 4, Novosibirsk, 630090, Russia

Received 26 October 2006; accepted 22 January 2007
Available online 1 March 2007

Abstract

An n-ary operation $Q: \Sigma^{n} \rightarrow \Sigma$ is called an n-ary quasigroup of order $|\Sigma|$ if in $x_{0}=Q\left(x_{1}, \ldots, x_{n}\right)$ knowledge of any n elements of x_{0}, \ldots, x_{n} uniquely specifies the remaining one. An n-ary quasigroup Q is permutably reducible if $Q\left(x_{1}, \ldots, x_{n}\right)=P\left(R\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right), x_{\sigma(k+1)}, \ldots, x_{\sigma(n)}\right)$ where P and R are $(n-k+1)$-ary and k-ary quasigroups, σ is a permutation, and $1<k<n$. For even n we construct a permutably irreducible n-ary quasigroup of order $4 r$ such that all its retracts obtained by fixing one variable are permutably reducible. We use a partial Boolean function that satisfies similar properties. For odd n the existence of permutably irreducible n-ary quasigroups with permutably reducible ($n-1$)-ary retracts is an open question; however, there are nonexistence results for 5 -ary and 7 -ary quasigroups of order 4 .

(c) 2007 Elsevier Ltd. All rights reserved.

1. Introduction

An n-ary operation $Q: \Sigma^{n} \rightarrow \Sigma$, where Σ is a nonempty set, is called an n-ary quasigroup or n-quasigroup (of order $|\Sigma|$) if in the equality $z_{0}=Q\left(z_{1}, \ldots, z_{n}\right)$ knowledge of any n elements of $z_{0}, z_{1}, \ldots, z_{n}$ uniquely specifies the remaining one [1]. The definition is symmetric with respect to the variables $z_{0}, z_{1}, \ldots, z_{n}$, and sometimes it is convenient to use a symmetric form for the equation $z_{0}=Q\left(z_{1}, \ldots, z_{n}\right)$. For this reason, we will write

$$
\begin{equation*}
Q\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle \stackrel{\text { def }}{\Longleftrightarrow} z_{0}=Q\left(z_{1}, \ldots, z_{n}\right) . \tag{1}
\end{equation*}
$$

If we assign some fixed values to $l \leq n$ variables in the predicate $Q\left\langle z_{0}, \ldots, z_{n}\right\rangle$ then the $(n-l+1)$-ary predicate obtained corresponds to an $(n-l)$-quasigroup. Such a quasigroup is called a retract of Q. We say that an n-quasigroup Q is A-reducible if

$$
\begin{equation*}
Q\left\langle z_{0}, \ldots, z_{n}\right\rangle \Longleftrightarrow Q^{\prime}\left(z_{a_{1}}, \ldots, z_{a_{k}}\right)=Q^{\prime \prime}\left(z_{b_{1}}, \ldots, z_{b_{n-k+1}}\right) \tag{2}
\end{equation*}
$$

E-mail address: krotov@math.nsc.ru.
where $A=\left\{a_{1}, \ldots, a_{k}\right\}=\{0, \ldots, n\} \backslash\left\{b_{1}, \ldots, b_{n-k+1}\right\}$ and Q^{\prime} and $Q^{\prime \prime}$ are k - and $(n-$ $k+1$)-quasigroups. An n-quasigroup is permutably reducible if it is A-reducible for some $A \subset\{0, \ldots, n\}, 1<|A|<n$. In what follows we omit the word "permutably" because we consider only that type of reducibility (often, "reducibility" of n-quasigroups denotes the so-called (i, j)-reducibility; see Remark 1). In other words, an n-quasigroup is reducible if it can be represented as a repetition-free superposition of quasigroups with smaller arities. An n-quasigroup is irreducible if it is not reducible.

In $[2,3]$, it was shown that if the maximum arity m of an irreducible retract of an n-quasigroup Q belongs to $\{3, \ldots, n-3\}$ then Q is reducible. Nevertheless, this interval does not contain 2 and $n-2$, and thus cannot guarantee the nonexistence of an irreducible n-quasigroup all of whose $(n-1)$-ary retracts are reducible. In this paper we show that, in the case of order $4 r$, such an n-quasigroup exists for even $n \geq 4$. In the case of odd n, as well as in the case of orders that are not divisible by 4 , the question remains open; however, as the result of an exhaustive computer search, we can state the following:

- There is no irreducible 5- or 7-quasigroup of order 4 such that all its ($n-1$)-ary retracts are reducible.

For given order, constructing irreducible n-quasigroups with reducible ($n-1$)-ary retracts is a more difficult task than simply constructing irreducible n-quasigroups. In the last case we can break the reducibility of an n-quasigroup by changing it locally [4]. For our aims local modifications do not work properly because they also break the reducibility of retracts.

In Section 2 we use a variant of the product of n-quasigroups of order 2 to construct n-quasigroups of order 4 from partial Boolean functions defined on the even (or odd) vertices of the Boolean $(n+1)$-cube. The class constructed plays an important role for the n-quasigroups of order 4; up to equivalence, it gives almost all n-quasigroups of order 4; see [5]. It turns out that the reducibility of such an n-quasigroup is equivalent to a similar property, separability, of the corresponding partial Boolean function. So, for this class the main question is reduced to the same question for partial Boolean functions. In Section 3 we construct a partial Boolean function with the required properties. In Section 4 we consider the graph interpretation of the result.

2. n-Quasigroups of order 4 and partial Boolean functions

In this section we consider n-quasigroups over the set $\Sigma=Z_{2}^{2}=\{[0,0],[0,1],[1,0],[1,1]\}$ and partial Boolean functions defined on the following subsets of the Boolean hypercube $E^{n+1} \stackrel{\text { def }}{=}\{0,1\}^{n+1}$:

$$
E_{\alpha}^{n+1} \stackrel{\text { def }}{=}\left\{\left(x_{0}, \ldots, x_{n}\right) \in E^{n+1} \mid x_{0}+\cdots+x_{n}=\alpha\right\}, \quad \alpha \in\{0,1\} .
$$

All calculations with elements of $\{0,1\}$ are made modulo 2 , while all calculations with indices are modulo $n+1$; for example, x_{-1} means the same as x_{n}. Note that, since any coordinate (say, the 0 th) in E_{0}^{n+1} is the sum of the others, partial Boolean functions defined on E_{0}^{n+1} (as well as on E_{1}^{n+1}) can be considered as Boolean functions on E^{n}; however, the form that is symmetrical with respect to all $n+1$ coordinates helps to improve the presentation, as in the case of n-quasigroups.

We will use the following notation: if $j \geq i$ then

- $\overline{i, j}$ means $i, i+1, \ldots, j$;
- x_{i}^{j} means $x_{i}, x_{i+1}, \ldots, x_{j}$;
- $\left|x_{i}^{j}\right|$ means the sum $x_{i}+x_{i+1}+\cdots+x_{j}$;
- $[x, y]_{i}^{j}$ means $\left[x_{i}, y_{i}\right],\left[x_{i+1}, y_{i+1}\right], \ldots,\left[x_{j}, y_{j}\right]$;
- 0^{k} means k zeros.

Given $\alpha \in\{0,1\}$ and $\lambda: E_{\alpha}^{n+1} \rightarrow\{0,1\}$, define the n-quasigroup $Q_{\alpha, \lambda}$ as

$$
Q_{\alpha, \lambda}\left\langle[x, y]_{0}^{n}\right\rangle \stackrel{\operatorname{def}}{\Longleftrightarrow}\left\{\begin{array}{l}
\left|x_{0}^{n}\right|=\alpha, \tag{3}\\
\left|y_{0}^{n}\right|=\lambda\left(x_{0}^{n}\right)
\end{array}\right.
$$

or, equivalently,

$$
\begin{equation*}
Q_{\alpha, \lambda}\left([x, y]_{1}^{n}\right) \stackrel{\text { def }}{=}\left[\left|x_{1}^{n}\right|+\alpha,\left|y_{1}^{n}\right|+\dot{\lambda}\left(x_{1}^{n}\right)\right] \tag{4}
\end{equation*}
$$

where $\dot{\lambda}\left(x_{1}^{n}\right) \stackrel{\text { def }}{=} \lambda\left(\left|x_{1}^{n}\right|+\alpha, x_{1}^{n}\right)$ is a representation of λ as a Boolean function $E^{n} \rightarrow\{0,1\}$. Note that we will use α only in the proof of Theorem $1((\mathrm{~b})$, (c)), and it is not needed for formulating the main result. In Lemma 1 below, we will see that the reducibility property of $Q_{\alpha, \lambda}$ corresponds to a similar property of the function λ.

We say that a partial Boolean function $\lambda: E_{\alpha}^{n+1} \rightarrow\{0,1\}$ is A-separable if

$$
\begin{equation*}
\lambda\left(x_{0}^{n}\right) \equiv \lambda^{\prime}\left(x_{a_{1}}, \ldots, x_{a_{k}}\right)+\lambda^{\prime \prime}\left(x_{b_{1}}, \ldots, x_{b_{m}}\right) \tag{5}
\end{equation*}
$$

where $A=\left\{a_{1}^{k}\right\}=\{\overline{0, n}\} \backslash\left\{b_{1}^{m}\right\}$ and $\lambda^{\prime}: E^{k} \rightarrow\{0,1\}, \lambda^{\prime \prime}: E^{m} \rightarrow\{0,1\}$ are Boolean functions. (Here and elsewhere \equiv means that the two expressions are identical on the region of the left one.) λ is separable if it is A-separable for some $A \subset\{\overline{0, n}\}, 2 \leq|A| \leq n-1$.

Lemma 1. Let $A \subset\{\overline{0, n}\}$. The n-quasigroup $Q_{\alpha, \lambda}$ is A-reducible if and only if the partial Boolean function $\lambda: E_{\alpha}^{n+1} \rightarrow\{0,1\}$ is A-separable.

In the proof, we will use the following simple fact [2,3]:
Lemma 2. Assume two n-quasigroups Q_{1} and Q_{2} are $\{\overline{0, k-1}\}$-reducible. If $Q_{1}\left\langle z_{0}^{k-1}, z_{k}\right.$, $\left.0^{n-k}\right\rangle \Longleftrightarrow Q_{2}\left\langle z_{0}^{k-1}, z_{k}, 0^{n-k}\right\rangle$ and $Q_{1}\left\langle z_{0}, 0^{k-1}, z_{k}^{n}\right\rangle \Longleftrightarrow Q_{2}\left\langle z_{0}, 0^{k-1}, z_{k}^{n}\right\rangle$ then Q_{1} and Q_{2} are identical.

Proof of Lemma 1. Clearly, (5) implies (2) with $Q=Q_{\alpha, \lambda}$ (see (3)), and $Q^{\prime}=Q_{\alpha, \mu}$, $Q^{\prime \prime}=Q_{0, v}$ where $\dot{\mu}=\lambda^{\prime}, \dot{v}=\lambda^{\prime \prime}$ (see (4)).

Let us prove the converse. Suppose $Q_{\alpha, \lambda}$ is A-reducible. Without loss of generality assume $\alpha=0$ and $A=\{\overline{0, k-1}\}$. Using Lemma 2, we can verify that $Q_{0, \lambda}\left\langle[x, y]_{0}^{n}\right\rangle$ defined by (3) is equivalent to

$$
\left\{\begin{array}{l}
\left|x_{0}^{n}\right|=0 \\
\left|y_{0}^{n}\right|=\lambda\left(x_{0}^{k-1},\left|x_{0}^{k-1}\right|, 0^{n-k}\right)+\lambda\left(\left|x_{0}^{k-1}\right|, 0^{k-1},\left|x_{0}^{k-1}\right|, 0^{n-k}\right)+\lambda\left(\left|x_{k}^{n}\right|, 0^{k-1}, x_{k}^{n}\right)
\end{array}\right.
$$

Comparing with (3), we find that $\lambda\left(x_{0}^{n}\right) \equiv \lambda^{\prime}\left(x_{0}^{k-1}\right)+\lambda^{\prime \prime}\left(x_{k}^{n}\right)$ where

$$
\begin{aligned}
& \lambda^{\prime}\left(x_{0}^{k-1}\right) \stackrel{\text { def }}{=} \lambda\left(x_{0}^{k-1},\left|x_{0}^{k-1}\right|, 0^{n-k}\right)+\lambda\left(\left|x_{0}^{k-1}\right|, 0^{k-1},\left|x_{0}^{k-1}\right|, 0^{n-k}\right) \\
& \lambda^{\prime \prime}\left(x_{k}^{n}\right) \stackrel{\text { def }}{=} \lambda\left(\left|x_{k}^{n}\right|, 0^{k-1}, x_{k}^{n}\right)
\end{aligned}
$$

Therefore λ is $\{\overline{0, k-1}\}$-separable.

The following main theorem results from Lemma 1 and Theorem 2 from the next section. Although the proof depends on Theorem 2, it is straightforward, and placing it first hardly leads to a mishmash.

Theorem 1. Let $n \geq 4$ be even and $f\left(x_{0}^{n}\right) \stackrel{\text { def }}{=} \sum_{i=0}^{n} \sum_{i=1}^{\lfloor n / 4\rfloor} x_{i} x_{i+j}$ for all $x_{0}^{n} \in E_{0}^{n+1}$. Then:
(a) The n-quasigroup $Q_{0, f}$ is irreducible.
(b) Every $(n-1)$-ary retract $Q_{[\alpha, \gamma]}^{i}$ obtained from $Q_{0, f}$ by fixing the ith variable $\left[x_{i}, y_{i}\right]:=$ $[\alpha, \gamma]$ is reducible.
(c) $Q_{0, f}$ has an irreducible $(n-2)$-ary retract.

Proof. The theorem is a corollary of the properties of the function f discussed in the next section.
(a) By Lemma 1, the claim follows directly from Theorem 2(a).
(b) It is straightforward that $Q_{[\alpha, \gamma]}^{i}=Q_{\alpha, f_{\alpha}^{i}+\gamma}$ where f_{α}^{i} is obtained from f by fixing the i th variable $x_{i}:=\alpha$. So, by Lemma 1, the reducibility of $Q_{[\alpha, \gamma]}^{i}$ is a corollary of the separability of f_{α}^{i} (Theorem 2(b)).

Similarly, (c) follows from the fact that fixing two variables we can get a non-separable subfunction of f (Theorem 2(c)).

Remark 1. An n-quasigroup is called (i, j)-reducible if it is $\{i, \ldots, i+j-1\}$-reducible for some $i \in\{1, \ldots, n\}$ and $j \in\{2, \ldots, n-1\}$ meeting $i+j-1 \leq n$. Clearly, the property of (i, j)-reducibility is stronger than the permutable reducibility and is not invariant under changing the argument order; this property was considered e.g. in [1]. Using an appropriate argument permutation (more precisely, replacing f by $\left.f^{\prime}\left(x_{0}, x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} f\left(x_{0}, x_{2}, \ldots, x_{2 n \bmod (n+1)}\right)\right)$, we can strengthen the statement of Theorem 1(b) getting the (i, j)-reducible $(n-1)$-ary retracts.

Remark 2. Using $Q_{0, f}$ (or $Q_{0, f^{\prime}}$, see Remark 1), it is not difficult to construct an irreducible n-quasigroup of order $4 r$ with reducible ((i, j)-reducible) $(n-1)$-ary retracts for any $r>0$: if $(G, *)$ is a commutative group of order $|G|=r \leq \infty$ then the n-quasigroup $Q_{f}^{(G, *)}$ (and, similarly, its retracts) defined as

$$
\begin{equation*}
Q_{f}^{(G, *)}\left([w, z]_{1}^{n}\right) \stackrel{\text { def }}{=}\left[w_{1} * \cdots * w_{n}, Q_{0, f}\left(z_{1}^{n}\right)\right], \quad w_{i} \in G, z_{i} \in Z_{2}^{2} \tag{6}
\end{equation*}
$$

inherits all the reducibility properties of $Q_{0, f}$ (and its retracts). Indeed, if $Q_{0, f}$ is A-reducible then, obviously, $Q_{f}^{(G, *)}$ is A-reducible too. Conversely, let $Q_{f}^{(G, *)}$ be A-reducible. Since the group $(G, *)$ is commutative, we can assume without loss of generality that $A=\{\overline{0, k-1}\}$. Using Lemma 2, we can check that

$$
Q_{f}^{(G, *)}\left([w, z]_{1}^{n}\right) \equiv\left[w_{1} * \cdots * w_{n}, Q_{0, f}\left(z_{1}^{k-1}, q^{-1}\left(Q_{0, f}\left(0^{k-1}, z_{k}^{n}\right)\right), 0^{n-k}\right)\right]
$$

with $q(z) \stackrel{\text { def }}{=} Q_{0, f}\left(0^{k-1}, z, 0^{n-k}\right)$. Comparing with (6) gives a reduction of $Q_{0, f}$.

3. Properties of the partial Boolean function f

In this section we prove the key theorem of the paper:

Fig. 1. It is natural to represent a square-free (i.e., without monomials of type x_{i}^{2}) quadratic form over Z_{2} by the graph whose i th and j th vertices are connected if and only if the form contains the monomial $x_{i} x_{j}$. The figure presents the graph corresponding to the form (7) with $n=8, n=10$, and $n=12$.

Theorem 2. Let $n \geq 4$ be even and the partial Boolean function $f: E_{0}^{n+1} \rightarrow\{0,1\}$ be represented by the following polynomial:

$$
\begin{equation*}
f\left(x_{0}^{n}\right) \stackrel{\text { def }}{=} \sum_{i=0}^{n} \sum_{j=1}^{\lfloor n / 4\rfloor} x_{i} x_{i+j} \tag{7}
\end{equation*}
$$

(see Fig. 1). Put $m \stackrel{\text { def }}{=}\lfloor(n+2) / 4\rfloor$. Then:
(a) The partial Boolean function f is not separable.
(b) For all $i \in\{\overline{0, n}\}$ and $\alpha \in\{0,1\}$ the subfunction $f_{\alpha}^{i}: E_{\alpha}^{n} \rightarrow\{0,1\}$ obtained from $f\left(x_{0}^{n}\right)$ by fixing $x_{i}:=\alpha$ is $\{i+m, i-m\}$-separable (here and in what follows, for subfunctions we leave the same numeration of variables as for the original function).
(c) For all $i \in\{\overline{0, n}\}$ and $\alpha, \beta \in\{0,1\}$ the subfunction $g_{\alpha, \beta}^{i}: E_{\alpha+\beta}^{n-1} \rightarrow\{0,1\}$ obtained from $f\left(x_{0}^{n}\right)$ by fixing $x_{i}:=\alpha, x_{i+m}:=\beta$ is not separable.

Proof. (a) Let A be an arbitrary subset of $\{\overline{0, n}\}$ such that $2 \leq|A| \leq n-1$, and let $B \stackrel{\text { def }}{=}\{\overline{0, n}\} \backslash A$. We will show that f is not A-separable, using the following two simple facts:

Lemma 3. Assume a partial Boolean function $f: E_{0}^{n+1} \rightarrow\{0,1\}$ is A-separable. Then each (partial) subfunction f^{\prime} obtained from $f\left(x_{0}^{n}\right)$ by fixing some variables $x_{v_{1}}, \ldots, x_{v_{k}}$ is A^{\prime}-separable with $A^{\prime} \stackrel{\text { def }}{=} A \backslash\left\{v_{1}^{k}\right\}$.

Lemma 4. Let $\gamma_{01}, \gamma_{02}, \gamma_{03}, \gamma_{12}, \gamma_{13}, \gamma_{23} \in\{0,1\}$. A partial Boolean function

$$
h\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \stackrel{\text { def }}{=} \gamma_{01} x_{0} x_{1}+\gamma_{02} x_{0} x_{2}+\gamma_{03} x_{0} x_{3}+\gamma_{12} x_{1} x_{2}+\gamma_{13} x_{1} x_{3}+\gamma_{23} x_{2} x_{3}:
$$

$E_{0}^{4} \rightarrow\{0,1\}$ is $\{0,1\}$-separable only if $\gamma_{02}+\gamma_{03}+\gamma_{12}+\gamma_{13}=0$.
(Lemma 3 is straightforward from the definition. Proof of Lemma 4: From the $\{0,1\}$-separability of h we derive $h(0,0,0,0)+h(1,1,1,1)=h(1,1,0,0)+h(0,0,1,1)$. Substituting the definition of h, we get $\gamma_{02}+\gamma_{03}+\gamma_{12}+\gamma_{13}=0$.)

Consider the cyclic sequence $a_{i}=i \cdot m \bmod (n+1), i=0, \ldots, n$. Since $n+1=4 m \pm 1$, we see that m and $n+1$ are relatively prime, and $\left\{a_{0}^{n}\right\}=\{\overline{0, n}\}$. At least one of the following holds (recall that indices are calculated modulo $n+1$):
(1) $a_{i}, a_{i+1} \in A, a_{i+2}, a_{i+3} \in B$ or $a_{i}, a_{i+1} \in B, a_{i+2}, a_{i+3} \in A$ for some i. Assigning zeros to all variables of $f\left(x_{0}^{n}\right)$ except $x_{a_{i}}, x_{a_{i+1}}, x_{a_{i+2}}, x_{a_{i+3}}$ we get the partial Boolean function

$$
f^{\prime}\left(x_{a_{i}}, x_{a_{i+1}}, x_{a_{i+2}}, x_{a_{i+3}}\right) \equiv \begin{cases}x_{a_{i}} x_{a_{i+1}}+x_{a_{i+1}} x_{a_{i+2}}+x_{a_{i+2}} x_{a_{i+3}}, & \text { if } n \equiv 0 \bmod 4, \\ x_{a_{i}} x_{a_{i+3}}, & \text { if } n \equiv 2 \bmod 4\end{cases}
$$

(see Fig. 1, the dark nodes), which is not $\left\{a_{i}, a_{i+1}\right\}$-separable, by Lemma 4. Therefore f is not A-separable, by Lemma 3.
(2) $a_{i}, a_{i+2} \in A, a_{i+1} \in B$ or $a_{i}, a_{i+2} \in B, a_{i+1} \in A$ for some i. Without loss of generality assume $0 \in A, m \in B, 2 m \in A$. Note that the polynomial (7) contains exactly one of the monomials $x_{0} x_{b}, x_{2 m} x_{b}$ for each $b \neq 0, m, 2 m$. Take $b \in B \backslash\{m\}$. Assigning zeros to all variables of $f\left(x_{0}^{n}\right)$ except $x_{0}, x_{m}, x_{2 m}, x_{b}$ we get the partial Boolean function

$$
f^{\prime \prime}\left(x_{0}, x_{2 m}, x_{m}, x_{b}\right) \equiv \begin{cases}x_{0} x_{m}+x_{m} x_{2 m}+\alpha x_{0} x_{b}+\beta x_{m} x_{b}+\bar{\alpha} x_{2 m} x_{b}, & \text { if } n \equiv 0 \bmod 4, \\ \alpha x_{0} x_{b}+\beta x_{m} x_{b}+\bar{\alpha} x_{2 m} x_{b}, & \text { if } n \equiv 2 \bmod 4\end{cases}
$$

with $\alpha, \beta \in\{0,1\}, \bar{\alpha} \stackrel{\text { def }}{=} 1-\alpha$. In any case, $f^{\prime \prime}\left(x_{0}, x_{m}, x_{2 m}, x_{b}\right)$ is not $\{0,2 m\}$-separable, by Lemma 4. It follows that f is not A-separable, by Lemma 3.
(b) Without loss of generality we assume $i=0$. Put

$$
\tilde{x}_{k} \stackrel{\text { def }}{=}\left|x_{k-\lfloor n / 4\rfloor}^{k-1}\right|+\left|x_{k+1}^{k+\lfloor n / 4\rfloor}\right|=\left|x_{k-\lfloor n / 4\rfloor}^{k+\lfloor n / 4\rfloor}\right|+x_{k} .
$$

Note that $m+\lfloor n / 4\rfloor=n / 2$, and $m-\lfloor n / 4\rfloor$ is 0 or 1 ; in both cases,

$$
\left|x_{0}^{n}\right| \equiv\left(\tilde{x}_{m}+x_{m}+\tilde{x}_{-m}+x_{-m}+x_{0}\right) .
$$

Since $\left|x_{0}^{n}\right|$ equals zero everywhere on E_{0}^{n+1}, we can represent f as follows:

$$
\begin{aligned}
f\left(x_{0}^{n}\right) & \equiv \sum_{i=0}^{n} \sum_{j=1}^{\lfloor n / 4\rfloor} x_{i} x_{i+j}+\left(\tilde{x}_{m}+x_{m}+\tilde{x}_{-m}+x_{-m}+x_{0}\right)\left(\tilde{x}_{m}+x_{-m}\right) \\
& \equiv \sum_{i=0}^{n} \sum_{j=1}^{\lfloor n / 4\rfloor} x_{i} x_{i+j}+x_{m} \tilde{x}_{m}+x_{-m} \tilde{x}_{-m}+\left(x_{m}+x_{-m}+x_{0}\right) x_{-m}+S
\end{aligned}
$$

where S does not depend on x_{m} and x_{-m}. It is easy to see that this representation does not contain any monomial $x_{k} x_{k^{\prime}}$ with $k \in\{-m, m\}, k^{\prime} \notin\{0,-m, m\}$. This means that after fixing x_{0} we obtain a $\{-m, m\}$-separable partial Boolean function.
(c) Without loss of generality assume $i=0$. Let A be an arbitrary subset of $\{\overline{1, m-1}, \overline{m+1, n}\}$ such that $2 \leq|A| \leq n-2$; let $B \stackrel{\text { def }}{=}\{\overline{1, m-1}, \overline{m+1, n}\} \backslash A$. If the sequence $a_{i}, i=\overline{0, n}$ is defined as in (a) then either (1) or (2) holds or
(3) $A=\left\{a_{2}, a_{n}\right\}=\{2 m,-m\}$ or $B=\{2 m,-m\}$ (recall that the numbers $a_{0}=0$ and $a_{1}=m$ correspond to the fixed variables). As in the cases (1) and (2), assigning zeros to all variables of $g_{\alpha, \beta}^{0}\left(x_{1}^{m-1}, x_{m+1}^{n}\right)=f\left(\alpha, x_{1}^{m-1}, \beta, x_{m+1}^{n}\right)$ except $x_{2 m}, x_{-m}, x_{1}, x_{n}$, we find that $g_{\alpha, \beta}^{0}$ is not A-separable by Lemmas 3 and 4 .

In the proof of the part (b) we exploit the fact that after removing a vertex, say 0 , in the corresponding graph (see Fig. 1) the remaining vertex set will be the disjoint union of the two vertices m and $-m$ and their neighborhoods. This partly explains why our construction does not work in the case of even $n+1$. In the following remark we compare our results with the situation with (total) Boolean functions.

Remark 3. Say that a Boolean function $\mu\left(x_{1}, \ldots, x_{n}\right): E^{n} \rightarrow\{0,1\}$ is separable if it is A separable for some $A \subset\{\overline{1, n}\}$ where $1 \leq|A| \leq n-1$ and A-separability means the same as for partial Boolean functions. Then $\left({ }^{*}\right)$ every non-separable n-ary Boolean function μ has a non-separable $(n-1)$-ary subfunction obtained from μ by fixing some variable. (Assume the contrary; consider a maximal non-separable k-ary subfunction μ^{\prime}; and prove that $\mu=\mu^{\prime}+\mu^{\prime \prime}$
for some ($n-k$)-ary $\mu^{\prime \prime}$ where the free variables in μ^{\prime} and $\mu^{\prime \prime}$ do not intersect). Our investigation shows that the situation with the partial Boolean functions on E_{0}^{n+1} is more complex; a statement like $\left(^{*}\right)$ fails for even n and holds for $n=5$ and $n=7$. Question: does it hold for every odd n ?

4. Remark. Switching separability of graphs

As noted in the comments on Fig. 1, each square-free quadratic form $p\left(x_{0}^{n}\right)$ over Z_{2} can be represented by the graph with $n+1$ vertices $\{0, \ldots, n\}$ such that vertices i and j are adjacent if and only if $p\left(x_{0}^{n}\right)$ contains the monomial $x_{i} x_{j}$. In this section we define the concept of graph switching separability that corresponds to the separability of the corresponding quadratic polynomial considered as a partial Boolean function $E_{0}^{n+1} \rightarrow\{0,1\}$.

We first define a graph transformation, which is known as a graph switching or Seidel switching. The result of switching a set $U \subseteq V$ in a graph $G=(V, E)$ is defined as the graph with the same vertex set V and the edge set $E \triangle E_{U, V \backslash U}$ where $E_{U, V \backslash U} \stackrel{\text { def }}{=}\{\{u, v\} \mid u \in U, v \in V \backslash U\}$. We say that the graph $G=(V, E)$ is switching-separable if $V=V_{1} \cup V_{2}$ where $\left|V_{1}\right| \geq 2$, $\left|V_{2}\right| \geq 2, V_{1} \cap V_{2}=\emptyset$, and for some $U \subseteq V$ switching U in G gives a graph with no edges between V_{1} and V_{2}. Clearly, if a graph is switching-separable then all its switchings are switching-separable. The class of all switchings of a graph is known as a switchings class and is equivalent to a two-graph; see e.g. [6]. From Theorem 2 and the computer search reported in the introduction, we can derive the following:

Corollary 1. For every odd $|V| \geq 5$ there exists a non-switching-separable graph $G=(V, E)$ such that every subgraph generated by $|V|-1$ vertices is switching-separable. If $|V|=6$ or $|V|=8$ then such graphs do not exist.

References

[1] V.D. Belousov, n-Ary Quasigroups, Shtiintsa, Kishinev, 1972 (in Russian).
[2] D.S. Krotov, On decomposability of distance 2 MDS codes, in: Proc. Ninth Int. Workshop on Algebraic and Combinatorial Coding Theory ACCT'2004, Kranevo, Bulgaria, 2004, pp. 247-253.
[3] D.S. Krotov, On reducibility of n-quasigroups, Discrete Math. (2006) (submitted for publication). eprint math.CO/0607284, arXiv.org, Available at: http://arxiv.org/abs/math/0607284.
[4] D.S. Krotov, V.N. Potapov, On reconstructing reducible n-ary quasigroups and switching subquasigroups (2006) (in preparation). eprint math.CO/0608269, arXiv.org, Available at: http://arxiv.org/abs/math/0608269.
[5] V.N. Potapov, D.S. Krotov, Asymptotics for the number of n-quasigroups of order 4, Siberian Math. J. 47 (4) (2006) 720-731, doi:10.1007/s11202-006-0083-9. Translated from Sibirsk. Mat. Zh. 47(4) (2006) 873-887.
[6] E. Spence, Two-graphs, in: C.J. Colbourn, J.H. Dinitz (Eds.), CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 686-694.

