
European Journal of Combinatorics 29 (2008) 507–513
www.elsevier.com/locate/ejc

On irreducible n-ary quasigroups with reducible retracts

Denis Krotov

Sobolev Institute of Mathematics, pr-t Ak. Koptyuga, 4, Novosibirsk, 630090, Russia

Received 26 October 2006; accepted 22 January 2007
Available online 1 March 2007

Abstract

An n-ary operation Q : Σn
→ Σ is called an n-ary quasigroup of order |Σ | if in x0 = Q(x1, . . . , xn)

knowledge of any n elements of x0, . . . , xn uniquely specifies the remaining one. An n-ary quasigroup Q
is permutably reducible if Q(x1, . . . , xn) = P

(
R(xσ(1), . . . , xσ(k)), xσ(k+1), . . . , xσ(n)

)
where P and R

are (n − k + 1)-ary and k-ary quasigroups, σ is a permutation, and 1 < k < n. For even n we construct a
permutably irreducible n-ary quasigroup of order 4r such that all its retracts obtained by fixing one variable
are permutably reducible. We use a partial Boolean function that satisfies similar properties. For odd n the
existence of permutably irreducible n-ary quasigroups with permutably reducible (n − 1)-ary retracts is an
open question; however, there are nonexistence results for 5-ary and 7-ary quasigroups of order 4.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

An n-ary operation Q : Σ n
→ Σ , where Σ is a nonempty set, is called an n-ary quasigroup or

n-quasigroup (of order |Σ |) if in the equality z0 = Q(z1, . . . , zn) knowledge of any n elements
of z0, z1, . . . , zn uniquely specifies the remaining one [1]. The definition is symmetric with
respect to the variables z0, z1, . . . , zn , and sometimes it is convenient to use a symmetric form
for the equation z0 = Q(z1, . . . , zn). For this reason, we will write

Q〈z0, z1, . . . , zn〉
def

⇐⇒ z0 = Q(z1, . . . , zn). (1)

If we assign some fixed values to l ≤ n variables in the predicate Q〈z0, . . . , zn〉 then the
(n − l + 1)-ary predicate obtained corresponds to an (n − l)-quasigroup. Such a quasigroup
is called a retract of Q. We say that an n-quasigroup Q is A-reducible if

Q〈z0, . . . , zn〉 ⇐⇒ Q′(za1 , . . . , zak ) = Q′′(zb1 , . . . , zbn−k+1) (2)
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where A = {a1, . . . , ak} = {0, . . . , n} \ {b1, . . . , bn−k+1} and Q′ and Q′′ are k- and (n −

k + 1)-quasigroups. An n-quasigroup is permutably reducible if it is A-reducible for some
A ⊂ {0, . . . , n}, 1 < |A| < n. In what follows we omit the word “permutably” because
we consider only that type of reducibility (often, “reducibility” of n-quasigroups denotes the
so-called (i, j)-reducibility; see Remark 1). In other words, an n-quasigroup is reducible if it
can be represented as a repetition-free superposition of quasigroups with smaller arities. An
n-quasigroup is irreducible if it is not reducible.

In [2,3], it was shown that if the maximum arity m of an irreducible retract of an n-quasigroup
Q belongs to {3, . . . , n−3} then Q is reducible. Nevertheless, this interval does not contain 2 and
n − 2, and thus cannot guarantee the nonexistence of an irreducible n-quasigroup all of whose
(n − 1)-ary retracts are reducible. In this paper we show that, in the case of order 4r , such an
n-quasigroup exists for even n ≥ 4. In the case of odd n, as well as in the case of orders that are
not divisible by 4, the question remains open; however, as the result of an exhaustive computer
search, we can state the following:

• There is no irreducible 5- or 7-quasigroup of order 4 such that all its (n − 1)-ary retracts are
reducible.

For given order, constructing irreducible n-quasigroups with reducible (n − 1)-ary retracts is
a more difficult task than simply constructing irreducible n-quasigroups. In the last case we
can break the reducibility of an n-quasigroup by changing it locally [4]. For our aims local
modifications do not work properly because they also break the reducibility of retracts.

In Section 2 we use a variant of the product of n-quasigroups of order 2 to construct
n-quasigroups of order 4 from partial Boolean functions defined on the even (or odd) vertices
of the Boolean (n +1)-cube. The class constructed plays an important role for the n-quasigroups
of order 4; up to equivalence, it gives almost all n-quasigroups of order 4; see [5]. It turns out
that the reducibility of such an n-quasigroup is equivalent to a similar property, separability, of
the corresponding partial Boolean function. So, for this class the main question is reduced to the
same question for partial Boolean functions. In Section 3 we construct a partial Boolean function
with the required properties. In Section 4 we consider the graph interpretation of the result.

2. n-Quasigroups of order 4 and partial Boolean functions

In this section we consider n-quasigroups over the set Σ = Z2
2 = {[0, 0], [0, 1], [1, 0], [1, 1]}

and partial Boolean functions defined on the following subsets of the Boolean hypercube

En+1 def
={0, 1}

n+1:

En+1
α

def
={(x0, . . . , xn) ∈ En+1

| x0 + · · · + xn = α}, α ∈ {0, 1}.

All calculations with elements of {0, 1} are made modulo 2, while all calculations with indices
are modulo n + 1; for example, x−1 means the same as xn . Note that, since any coordinate (say,
the 0th) in En+1

0 is the sum of the others, partial Boolean functions defined on En+1
0 (as well as on

En+1
1 ) can be considered as Boolean functions on En ; however, the form that is symmetrical with

respect to all n+1 coordinates helps to improve the presentation, as in the case of n-quasigroups.
We will use the following notation: if j ≥ i then

• i, j means i, i + 1, . . . , j ;
• x j

i means xi , xi+1, . . . , x j ;
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• |x j
i | means the sum xi + xi+1 + · · · + x j ;

• [x, y]
j
i means [xi , yi ], [xi+1, yi+1], . . . , [x j , y j ];

• 0k means k zeros.

Given α ∈ {0, 1} and λ : En+1
α → {0, 1}, define the n-quasigroup Qα,λ as

Qα,λ〈[x, y]
n
0〉

def
⇐⇒

{
|xn

0 | = α,

|yn
0 | = λ(xn

0 )
(3)

or, equivalently,

Qα,λ([x, y]
n
1)

def
=

[
|xn

1 | + α, |yn
1 | + λ̇(xn

1 )
]

(4)

where λ̇(xn
1 )

def
= λ(|xn

1 | + α, xn
1 ) is a representation of λ as a Boolean function En

→ {0, 1}. Note
that we will use α only in the proof of Theorem 1((b), (c)), and it is not needed for formulating
the main result. In Lemma 1 below, we will see that the reducibility property of Qα,λ corresponds
to a similar property of the function λ.

We say that a partial Boolean function λ : En+1
α → {0, 1} is A-separable if

λ(xn
0 ) ≡ λ′(xa1 , . . . , xak ) + λ′′(xb1 , . . . , xbm ) (5)

where A = {ak
1} = {0, n} \ {bm

1 } and λ′
: Ek

→ {0, 1}, λ′′
: Em

→ {0, 1} are Boolean functions.
(Here and elsewhere ≡ means that the two expressions are identical on the region of the left one.)
λ is separable if it is A-separable for some A ⊂ {0, n}, 2 ≤ |A| ≤ n − 1.

Lemma 1. Let A ⊂ {0, n}. The n-quasigroup Qα,λ is A-reducible if and only if the partial
Boolean function λ : En+1

α → {0, 1} is A-separable.

In the proof, we will use the following simple fact [2,3]:

Lemma 2. Assume two n-quasigroups Q1 and Q2 are {0, k − 1}-reducible. If Q1〈z
k−1
0 , zk,

0n−k
〉 ⇐⇒ Q2〈z

k−1
0 , zk, 0n−k

〉 and Q1〈z0, 0k−1, zn
k 〉 ⇐⇒ Q2〈z0, 0k−1, zn

k 〉 then Q1 and
Q2 are identical.

Proof of Lemma 1. Clearly, (5) implies (2) with Q = Qα,λ (see (3)), and Q′
= Qα,µ,

Q′′
= Q0,ν where µ̇ = λ′, ν̇ = λ′′ (see (4)).

Let us prove the converse. Suppose Qα,λ is A-reducible. Without loss of generality assume
α = 0 and A = {0, k − 1}. Using Lemma 2, we can verify that Q0,λ〈[x, y]

n
0〉 defined by (3) is

equivalent to{
|xn

0 | = 0,

|yn
0 | = λ(xk−1

0 , |xk−1
0 |, 0n−k) + λ(|xk−1

0 |, 0k−1, |xk−1
0 |, 0n−k) + λ(|xn

k |, 0k−1, xn
k ).

Comparing with (3), we find that λ(xn
0 ) ≡ λ′(xk−1

0 ) + λ′′(xn
k ) where

λ′(xk−1
0 )

def
= λ(xk−1

0 , |xk−1
0 |, 0n−k) + λ(|xk−1

0 |, 0k−1, |xk−1
0 |, 0n−k),

λ′′(xn
k )

def
= λ(|xn

k |, 0k−1, xn
k ).

Therefore λ is {0, k − 1}-separable. �
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The following main theorem results from Lemma 1 and Theorem 2 from the next section.
Although the proof depends on Theorem 2, it is straightforward, and placing it first hardly leads
to a mishmash.

Theorem 1. Let n ≥ 4 be even and f (xn
0 )

def
=

∑n
i=0

∑bn/4c

i=1 xi xi+ j for all xn
0 ∈ En+1

0 . Then:

(a) The n-quasigroup Q0, f is irreducible.
(b) Every (n − 1)-ary retract Qi

[α,γ ]
obtained from Q0, f by fixing the i th variable [xi , yi ] :=

[α, γ ] is reducible.
(c) Q0, f has an irreducible (n − 2)-ary retract.

Proof. The theorem is a corollary of the properties of the function f discussed in the next
section.

(a) By Lemma 1, the claim follows directly from Theorem 2(a).
(b) It is straightforward that Qi

[α,γ ]
= Qα, f i

α+γ where f i
α is obtained from f by fixing the i th

variable xi := α. So, by Lemma 1, the reducibility of Qi
[α,γ ]

is a corollary of the separability

of f i
α (Theorem 2(b)).

Similarly, (c) follows from the fact that fixing two variables we can get a non-separable
subfunction of f (Theorem 2(c)). �

Remark 1. An n-quasigroup is called (i, j)-reducible if it is {i, . . . , i + j − 1}-reducible for
some i ∈ {1, . . . , n} and j ∈ {2, . . . , n − 1} meeting i + j − 1 ≤ n. Clearly, the property of
(i, j)-reducibility is stronger than the permutable reducibility and is not invariant under changing
the argument order; this property was considered e.g. in [1]. Using an appropriate argument

permutation (more precisely, replacing f by f ′(x0, x1, . . . , xn)
def
= f (x0, x2, . . . , x2n mod (n+1))),

we can strengthen the statement of Theorem 1(b) getting the (i, j)-reducible (n −1)-ary retracts.

Remark 2. Using Q0, f (or Q0, f ′ , see Remark 1), it is not difficult to construct an irreducible
n-quasigroup of order 4r with reducible ((i, j)-reducible) (n − 1)-ary retracts for any r > 0:
if (G, ∗) is a commutative group of order |G| = r ≤ ∞ then the n-quasigroup Q(G,∗)

f (and,
similarly, its retracts) defined as

Q(G,∗)
f ([w, z]n

1)
def
=[w1 ∗ · · · ∗ wn, Q0, f (z

n
1)], wi ∈ G, zi ∈ Z2

2 (6)

inherits all the reducibility properties of Q0, f (and its retracts). Indeed, if Q0, f is A-reducible

then, obviously, Q(G,∗)
f is A-reducible too. Conversely, let Q(G,∗)

f be A-reducible. Since the group

(G, ∗) is commutative, we can assume without loss of generality that A = {0, k − 1}. Using
Lemma 2, we can check that

Q(G,∗)
f ([w, z]n

1) ≡ [w1 ∗ · · · ∗ wn, Q0, f (z
k−1
1 , q−1(Q0, f (0k−1, zn

k )), 0n−k)]

with q(z)
def
= Q0, f (0k−1, z, 0n−k). Comparing with (6) gives a reduction of Q0, f .

3. Properties of the partial Boolean function f

In this section we prove the key theorem of the paper:
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Fig. 1. It is natural to represent a square-free (i.e., without monomials of type x2
i ) quadratic form over Z2 by the graph

whose i th and j th vertices are connected if and only if the form contains the monomial xi x j . The figure presents the
graph corresponding to the form (7) with n = 8, n = 10, and n = 12.

Theorem 2. Let n ≥ 4 be even and the partial Boolean function f : En+1
0 → {0, 1} be

represented by the following polynomial:

f (xn
0 )

def
=

n∑
i=0

bn/4c∑
j=1

xi xi+ j (7)

(see Fig. 1). Put m
def
=b(n + 2)/4c. Then:

(a) The partial Boolean function f is not separable.
(b) For all i ∈ {0, n} and α ∈ {0, 1} the subfunction f i

α : En
α → {0, 1} obtained from f (xn

0 ) by
fixing xi := α is {i + m, i − m}-separable (here and in what follows, for subfunctions we
leave the same numeration of variables as for the original function).

(c) For all i ∈ {0, n} and α, β ∈ {0, 1} the subfunction gi
α,β : En−1

α+β → {0, 1} obtained from
f (xn

0 ) by fixing xi := α, xi+m := β is not separable.

Proof. (a) Let A be an arbitrary subset of {0, n} such that 2 ≤ |A| ≤ n−1, and let B
def
={0, n}\ A.

We will show that f is not A-separable, using the following two simple facts:

Lemma 3. Assume a partial Boolean function f : En+1
0 → {0, 1} is A-separable. Then

each (partial) subfunction f ′ obtained from f (xn
0 ) by fixing some variables xv1 , . . . , xvk is

A′-separable with A′ def
= A \ {vk

1}.

Lemma 4. Let γ01, γ02, γ03, γ12, γ13, γ23 ∈ {0, 1}. A partial Boolean function

h(x0, x1, x2, x3)
def
= γ01x0x1 + γ02x0x2 + γ03x0x3 + γ12x1x2 + γ13x1x3 + γ23x2x3 :

E4
0 → {0, 1} is {0, 1}-separable only if γ02 + γ03 + γ12 + γ13 = 0.

(Lemma 3 is straightforward from the definition. Proof of Lemma 4: From the {0, 1}-separability
of h we derive h(0, 0, 0, 0) + h(1, 1, 1, 1) = h(1, 1, 0, 0) + h(0, 0, 1, 1). Substituting the
definition of h, we get γ02 + γ03 + γ12 + γ13 = 0.)

Consider the cyclic sequence ai = i · m mod (n + 1), i = 0, . . . , n. Since n + 1 = 4m ± 1,
we see that m and n + 1 are relatively prime, and {an

0 } = {0, n}. At least one of the following
holds (recall that indices are calculated modulo n + 1):
(1) ai , ai+1 ∈ A, ai+2, ai+3 ∈ B or ai , ai+1 ∈ B, ai+2, ai+3 ∈ A for some i . Assigning zeros to
all variables of f (xn

0 ) except xai , xai+1 , xai+2 , xai+3 we get the partial Boolean function

f ′(xai , xai+1 , xai+2 , xai+3) ≡

{
xai xai+1 + xai+1 xai+2 + xai+2 xai+3 , if n ≡ 0 mod 4,

xai xai+3 , if n ≡ 2 mod 4
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(see Fig. 1, the dark nodes), which is not {ai , ai+1}-separable, by Lemma 4. Therefore f is not
A-separable, by Lemma 3.
(2) ai , ai+2 ∈ A, ai+1 ∈ B or ai , ai+2 ∈ B, ai+1 ∈ A for some i . Without loss of generality
assume 0 ∈ A, m ∈ B, 2m ∈ A. Note that the polynomial (7) contains exactly one of the
monomials x0xb, x2m xb for each b 6= 0, m, 2m. Take b ∈ B \ {m}. Assigning zeros to all
variables of f (xn

0 ) except x0, xm, x2m, xb we get the partial Boolean function

f ′′(x0, x2m, xm, xb) ≡

{
x0xm + xm x2m + αx0xb + βxm xb + ᾱx2m xb, if n ≡ 0 mod 4,

αx0xb + βxm xb + ᾱx2m xb, if n ≡ 2 mod 4

with α, β ∈ {0, 1}, ᾱ
def
= 1 − α. In any case, f ′′(x0, xm, x2m, xb) is not {0, 2m}-separable, by

Lemma 4. It follows that f is not A-separable, by Lemma 3.
(b) Without loss of generality we assume i = 0. Put

x̃k
def
= |xk−1

k−bn/4c
| + |xk+bn/4c

k+1 | = |xk+bn/4c

k−bn/4c
| + xk .

Note that m + bn/4c = n/2, and m − bn/4c is 0 or 1; in both cases,

|xn
0 | ≡ (x̃m + xm + x̃−m + x−m + x0) .

Since |xn
0 | equals zero everywhere on En+1

0 , we can represent f as follows:

f (xn
0 ) ≡

n∑
i=0

bn/4c∑
j=1

xi xi+ j + (x̃m + xm + x̃−m + x−m + x0) (x̃m + x−m)

≡

n∑
i=0

bn/4c∑
j=1

xi xi+ j + xm x̃m + x−m x̃−m + (xm + x−m + x0)x−m + S

where S does not depend on xm and x−m . It is easy to see that this representation does not
contain any monomial xk xk′ with k ∈ {−m, m}, k′

6∈ {0, −m, m}. This means that after fixing x0
we obtain a {−m, m}-separable partial Boolean function.
(c) Without loss of generality assume i = 0. Let A be an arbitrary subset of {1, m − 1, m + 1, n}

such that 2 ≤ |A| ≤ n − 2; let B
def
={1, m − 1, m + 1, n} \ A. If the sequence ai , i = 0, n is

defined as in (a) then either (1) or (2) holds or
(3) A = {a2, an} = {2m, −m} or B = {2m, −m} (recall that the numbers a0 = 0 and a1 = m
correspond to the fixed variables). As in the cases (1) and (2), assigning zeros to all variables
of g0

α,β(xm−1
1 , xn

m+1) = f (α, xm−1
1 , β, xn

m+1) except x2m, x−m, x1, xn , we find that g0
α,β is not

A-separable by Lemmas 3 and 4. �

In the proof of the part (b) we exploit the fact that after removing a vertex, say 0, in the
corresponding graph (see Fig. 1) the remaining vertex set will be the disjoint union of the two
vertices m and −m and their neighborhoods. This partly explains why our construction does not
work in the case of even n +1. In the following remark we compare our results with the situation
with (total) Boolean functions.

Remark 3. Say that a Boolean function µ(x1, . . . , xn) : En
→ {0, 1} is separable if it is A-

separable for some A ⊂ {1, n} where 1 ≤ |A| ≤ n − 1 and A-separability means the same
as for partial Boolean functions. Then (*) every non-separable n-ary Boolean function µ has a
non-separable (n − 1)-ary subfunction obtained from µ by fixing some variable. (Assume the
contrary; consider a maximal non-separable k-ary subfunction µ′; and prove that µ = µ′

+ µ′′



D. Krotov / European Journal of Combinatorics 29 (2008) 507–513 513

for some (n −k)-ary µ′′ where the free variables in µ′ and µ′′ do not intersect). Our investigation
shows that the situation with the partial Boolean functions on En+1

0 is more complex; a statement
like (*) fails for even n and holds for n = 5 and n = 7. Question: does it hold for every odd n?

4. Remark. Switching separability of graphs

As noted in the comments on Fig. 1, each square-free quadratic form p(xn
0 ) over Z2 can be

represented by the graph with n + 1 vertices {0, . . . , n} such that vertices i and j are adjacent
if and only if p(xn

0 ) contains the monomial xi x j . In this section we define the concept of
graph switching separability that corresponds to the separability of the corresponding quadratic
polynomial considered as a partial Boolean function En+1

0 → {0, 1}.
We first define a graph transformation, which is known as a graph switching or Seidel

switching. The result of switching a set U ⊆ V in a graph G = (V, E) is defined as the graph with

the same vertex set V and the edge set E M EU,V \U where EU,V \U
def
={{u, v} | u ∈ U, v ∈ V \U }.

We say that the graph G = (V, E) is switching-separable if V = V1 ∪ V2 where |V1| ≥ 2,
|V2| ≥ 2, V1 ∩ V2 = ∅, and for some U ⊆ V switching U in G gives a graph with no
edges between V1 and V2. Clearly, if a graph is switching-separable then all its switchings are
switching-separable. The class of all switchings of a graph is known as a switchings class and is
equivalent to a two-graph; see e.g. [6]. From Theorem 2 and the computer search reported in the
introduction, we can derive the following:

Corollary 1. For every odd |V | ≥ 5 there exists a non-switching-separable graph G = (V, E)

such that every subgraph generated by |V | − 1 vertices is switching-separable. If |V | = 6 or
|V | = 8 then such graphs do not exist.
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