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A Model for Shear Stress Sensing and Transmission
in Vascular Endothelial Cells

Bori M. Mazzag, John S. Tamaresis, and Abdul I. Barakat
Department of Mechanical and Aeronautical Engineering, University of California, Davis, California

ABSTRACT Arterial endothelial cell (EC) responsiveness to flow is essential for normal vascular function and plays a role in
the development of atherosclerosis. EC flow responses may involve sensing of the mechanical stimulus at the cell surface with
subsequent transmission via cytoskeleton to intracellular transduction sites. We had previously modeled flow-induced
deformation of EC-surface flow sensors represented as viscoelastic materials with standard linear solid behavior (Kelvin
bodies). In the present article, we extend the analysis to arbitrary networks of viscoelastic structures connected in series and/or
parallel. Application of the model to a system of two Kelvin bodies in parallel reveals that flow induces an instantaneous
deformation followed by creeping to the asymptotic response. The force divides equally between the two bodies when they
have identical viscoelastic properties. When one body is stiffer than the other, a larger fraction of the applied force is directed to
the stiffer body. We have also probed the impact of steady and oscillatory flow on simple sensor-cytoskeleton-nucleus
networks. The results demonstrated that, consistent with the experimentally observed temporal chronology of EC flow
responses, the flow sensor attains its peak deformation faster than intracellular structures and the nucleus deforms more rapidly
than cytoskeletal elements. The results have also revealed that a 1-Hz oscillatory flow induces significantly smaller
deformations than steady flow. These results may provide insight into the mechanisms behind the experimental observations
that a number of EC responses induced by steady flow are not induced by oscillatory flow.

INTRODUCTION

By virtue of their location at the interface between the

bloodstream and the vascular wall, arterial endothelial cells

(ECs) are continuously exposed to a highly dynamic shear (or

frictional) stress environment. The ability of ECs to respond

and adapt to changes in fluid mechanical shear stress is

essential for fundamental processes including vasoregulation

in response to acute changes in blood flow and arterial wall

remodeling in response to chronic hemodynamic alterations

(Pohl et al., 1986; Langille and O’Donnell, 1986). Further-

more, abnormalities and/or inadequacies in endothelial

responsiveness to shear stress are involved in the develop-

ment of atherosclerosis (Nerem, 1992; Davies, 1995).

Recent research has established that shear stress intricately

regulates EC structure and function. This occurs via a coordi-

nated sequence of biological events that begins with very

rapid responses that include activation of flow-sensitive K1

and Cl� channels (Olesen et al., 1988; Jacobs et al., 1995;

Barakat et al., 1999; Nakao et al., 1999) and of GTP-binding

proteins (G-proteins) (Gudi et al., 1996, 1998), changes in

cell membrane fluidity (Haidekker et al., 2000; Butler et al.,

2001) and intracellular pH (Ziegelstein et al., 1992), and

mobilization of intracellular calcium (Dull and Davies, 1991;

Ando et al., 1988; Shen et al., 1992; Geiger et al., 1992).

These rapid responses are followed by stimulation of

mitogen-activated protein kinase signaling (Traub and Berk,

1998), activation of a host of gene and protein regulatory

responses (Malek and Izumo, 1994; Resnick and Gimbrone,

1995; Garcia-Cardena et al., 2001), and induction of exten-

sive cytoskeletal remodeling that ultimately leads to cellular

elongation in the direction of the applied shear stress (Dewey

et al., 1981; Nerem et al., 1981; Eskin et al., 1984).

Beyond being merely responsive to shear stress, ECs re-

spond differently to different types of shear stress. For ins-

tance, while steady shear stress induces intracellular calcium

oscillations and morphological changes in ECs, purely

oscillatory flow (zero net flow rate) does not elicit either of

these responses (Helmlinger et al., 1991, 1995). A number

of shear stress-responsive genes also exhibit differential

responsiveness to different types of shear stress (Chappell

et al., 1998; Lum et al., 2000; Garcia-Cardena et al., 2001).

The notion of differential responsiveness is especially sig-

nificant in light of the observation that early atherosclerotic

lesions localize preferentially in arterial regions exposed to

low and/or oscillatory shear stress while regions subjected to

high and unidirectional shear stress remain largely spared

(Nerem, 1992; Ku et al., 1985; Asakura and Karino, 1990).

The mechanisms by which ECs respond to shear stress and

by which they discriminate among different types of shear

stress remain to be elucidated. A working model for EC flow

responsiveness has been proposed and is schematically

depicted in our Fig. 1 (see also Davies and Tripathi, 1993;

Davies, 1995). This model, which is inspired by the tensegrity

hypothesis of cellular mechano-responsiveness (Ingber,

1993; Ingber et al., 1994), postulates that the fluid mechanical

stimulus is sensed by structures at the EC surface that act as

flow sensors. Flow sensors may be discrete transmembrane

molecules, clusters of such molecules, subdomains of the cell

membrane, or even the entire membrane. Once sensed, the
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flow signal is transmitted via cytoskeleton to various

intracellular sites including the nucleus, cell-cell adhesion

proteins, and focal adhesion sites where it is transduced to

a biochemical response. This proposed mechanotransduction

scheme should be viewed as complementary to the more well

characterized receptor-mediated signaling pathways that

exist in vascular ECs.

We recently developed a model of the deformation of an

EC-surface flow sensor in response to different types of shear

stress (Barakat, 2001). The flow sensor was modeled as

a viscoelastic material with standard linear solid behavior.

The results demonstrated that the peak sensor deformation

was considerably larger for steady and nonreversing pulsatile

flow than for purely oscillatory flow. It was hypothesized

that this may constitute a mechanism by which ECs dif-

ferentially respond to different types of flow. Because

the mechanotransduction model shown in Fig. 1 postulates

that flow sensors on the EC surface are directly coupled to

cytoskeletal elements that are in turn coupled to various

intracellular structures, it is essential to extend the results of

our previous model to include these couplings. The present

article extends the one-body analysis to networks of

viscoelastic bodies that represent coupled systems of cell-

surface sensors and various intracellular structures. The

deformations of the various network components in response

to different types of flow and the sensitivities of these

deformations to various model parameters are presented.

MATHEMATICAL DEVELOPMENT

Formulation of governing equations

Our goal is to develop a mathematical framework to describe

the deformations of EC-surface flow sensors and coupled

intracellular structures in response to either steady or purely

oscillatory flow. Similar to our previous analysis (Barakat,

2001), each structure is modeled as a viscoelastic body with

standard linear solid behavior (Kelvin body) and character-

ized by its own set of viscoelastic parameters. As described

elsewhere (Fung, 1981; Barakat, 2001), a Kelvin body con-

sists of a linear spring with spring constant k1 (spring 1) in

parallel with a Maxwell body, which consists of a linear

spring with spring constant k2 (spring 2) in series with

a dashpot with coefficient of viscosity m. Kelvin bodies are

general linear viscoelastic models, and they have been

frequently used to represent the mechanical behavior of

various tissues. Of specific interest to the present formula-

tion, recent experimental studies have expressed the vis-

coelastic properties of cell nuclei (Guilak et al., 2000),

cytoskeletal elements (Sato et al., 1996), and transmembrane

proteins (Bausch et al., 1998), in terms of the parameters of

a Kelvin body.

We begin by deriving the formulation describing the

deformations of n-Kelvin bodies connected either in series or
in parallel and discuss solutions to the governing equations

under both steady and oscillatory forcing functions. We

subsequently describe simple networks that consist of com-

binations of Kelvin bodies connected in series and parallel

and that are used to model mechanical signal transmission

in ECs. Finally, we discuss the implications of the results to

overall EC responsiveness to different types of shear stress.

Kelvin bodies in series

Fig. 2 A depicts a system of n-Kelvin bodies connected in

series. For a forcing function F(t) applied to this series of

n-bodies, the force experienced by each body in the series

will be F(t); thus,

F1ðtÞ ¼ F2ðtÞ ¼ � � � ¼ FnðtÞ ¼ FðtÞ: (1)

The deformation of the entire series is given simply as the

sum of the individual deformations:

uðtÞ ¼ +
n

i¼1

uiðtÞ: (2)

As shown elsewhere (Fung, 1981; Barakat, 2001), the

deformation ui(t) of the ith Kelvin body given a forcing

function F(t) across this body is governed by the following

first-order linear differential equation:

F1
mi

k2i
_FF ¼ k1iui 1mi 11

k1i
k2i

� �
_uui; (3)

where _FF and _uui are the time derivatives of F and ui,
respectively. We consider that the force F(t) due to fluid flow
is applied suddenly at t ¼ 0 as a step function and that this

force is sustained for the entire time period considered.

Because we wish to investigate the effects of both steady and

oscillatory flow, two types of forcing functions are consid-

ered. For steady flow, the forcing function takes the form:

FðtÞ ¼ F0; (4)

FIGURE 1 Schematic diagram of the working model for endothelial shear

stress sensing and transmission. Cell-surface flow sensors (which may be

discrete structures, cell membrane microdomains, or the entire cell

membrane) detect a flow stimulus and transmit it directly via cytoskeleton

to various intracellular transduction sites including the nucleus, cell-cell

adhesion proteins, and focal adhesion sites on the abluminal cell surface.
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whereas for oscillatory flow, the equivalent expression is:

FðtÞ ¼ F0 cosvt; (5)

where v is the angular frequency of oscillation. For both

types of forcing functions, the applied force at t¼ 0 is F(0)¼
F0. For a suddenly applied force F0, the appropriate initial

condition for the ith body in the series is (Barakat, 2001):

uið0Þ ¼ Fð0Þ
k1i 1 k2i

: (6)

For a given forcing function (either Eq. 4 or 5), Eq. 3 can

be solved subject to the initial condition in Eq. 6 to yield

the deformation ui(t) for each body in the series. The

deformations of the individual bodies are independent of one

another and can therefore be solved for separately. Analytic

solutions to the deformation of a single Kelvin body for both

steady and oscillatory flow are given elsewhere (Barakat,

2001). For the sake of consistency with the formulation of

the Kelvin bodies connected in parallel, we have opted to

write down the problem in matrix notation as:

d~uu

dt
¼ D~uu1~cc; (7)

with the initial condition

~uuð0Þ ¼~uu0; (8)

where we define

~uu[

u1

�
�
�
un

2
66664

3
77775;

D[

�k11k21
m1ðk11 1 k21Þ 0 � � � � � � 0

� �
0 �k1ik2i

miðk1i 1 k2iÞ �
� �

0 � � � � � � 0 �k1nk2n
mnðk1n 1 k2nÞ

2
66664

3
77775;

~cc[

1

ðk11 1 k21Þ
k21
m1
F1 _FF

� �
�
�
�

1

ðk1n 1 k2nÞ
k2n
mn
F1 _FF

� �

2
666664

3
777775
; and ~uu0 [

Fð0Þ
k11 1 k21�

�
�

Fð0Þ
k1n 1 k2n

2
66664

3
77775:

Kelvin bodies in parallel

We can now develop the formulation for n-Kelvin bodies

coupled in parallel (Fig. 2 B). There are two fundamental

differences between the parallel and series formulations.

First, in the parallel case all n-bodies are constrained to

deform equally so that

u1ðtÞ ¼ u2ðtÞ ¼ � � � ¼ unðtÞ: (9)

Secondly, the total force acting on the n-body system is

the sum of the forces acting on the individual bodies so that

FðtÞ ¼ +
n

i¼1

FiðtÞ: (10)

How the total applied force F(t) divides among the

individual bodies depends on the particular parameter values

of each of the Kelvin bodies and is generally not known

a priori. We denote the force splitting coefficient (i.e., the

fraction of the total force) for the ith body by ai(t), so that the
force Fi(t) exerted on this body is given by

FiðtÞ ¼ aiðtÞFðtÞ; (11)

and the individual force splitting coefficients add up to unity.

This can equivalently be expressed as

1� +
n�1

i¼1

aiðtÞ
� �

¼ an ¼ FnðtÞ
FðtÞ : (12)

For i¼ 1; 2; . . . ; n� 1; the governing constitutive relation
between the applied force and the resulting deformation

resembles that given in Eq. 3 and has the form

FIGURE 2 Schematic diagram of n-Kelvin bodies coupled (A) in series

and (B) in parallel. Each body consists of a linear spring with spring constant

k1 in parallel with a Maxwell body, which consists of a linear spring with

spring constant k2 in series with a dashpot with coefficient of viscosity m.
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aiF1
mi

k2i

d

dt
ðaiFÞ ¼ k1iu1mi 11

k1i
k2i

� �
_uu: (13)

The initial condition equivalent to that in Eq. 6 is

uð0Þ ¼ aið0ÞFð0Þ
k1i 1 k2i

: (14)

For the nth body, the equivalent expressions are

1� +
n�1

i¼1

ai

� �
F1

mn

k2n

d

dt
1� +

n�1

i¼1

ai

� �
F

� �

¼ k1nu1mn 11
k1n
k2n

� �
_uu; (15)

and

uð0Þ ¼
1� +

n�1

i¼1

aið0Þ
� �

Fð0Þ
k1n 1 k2n

: (16)

Eqs. 13 and 15 can be rearranged as follows. For

i ¼ 1; 2; . . . ; n� 1;

mi 11
k1i
k2i

� �
_uu� mi

k2i

d

dt
ðaiFÞ ¼ �k1iu1 aiF;

(17)

and for

i ¼ n; mn 11
k1n
k2n

� �
_uu1

mn

k2n
+
n�1

i¼1

d

dt
ðaiFÞ

¼ �k1nu� +
n�1

i¼1

aiF1F1
mn

k2n
_FF:

(18)

Note that u(0), the initial deformation, is the same for all of

the bodies; therefore, we get n-equations in the n-unknowns
u(0) and ai(0) for i ¼ 1; . . . ; n� 1: Once these unknowns

are obtained, the force splitting coefficient of the nth body,

an(0), is determined directly from the constraint given in Eq.

12. Eqs. 14 and 16 can now be combined and rearranged

to yield

uð0Þ ¼ Fð0Þ
+
n

i¼1

ðk1i 1 k2iÞ
: (19)

Thus, Eq. 14 yields

aið0Þ ¼ Fð0Þðk1i 1 k2iÞ
+
n

i¼1

ðk1i 1 k2iÞ
: (20)

Now, the constitutive relations given by Eqs. 17 and 18 in

combination with the initial conditions given by Eqs. 19 and

20 can be cast in matrix form as

d~uu

dt
¼ A�1D~uu1A�1~cc; (21)

and

~uuð0Þ ¼~uu0; (22)

where

~uu[

uðtÞ
a1ðtÞFðtÞ

�
�
�

an�1ðtÞFðtÞ

2
6666664

3
7777775
;

A[

m1 11 k11
k21

� �
�m1

k21
0 � � � � � � � � � 0

m2 11 k12
k22

� �
0 �m2

k22
0 � � � � � � 0

� � �
� 0 �mi

k2i
0

� � � �
mðn�1Þ 11

k1ðn�1Þ
k2ðn�1Þ

� �
0 � � � � � � � � � 0

�mðn�1Þ
k2ðn�1Þ

mn 11 k1n
k2n

� �
mn

k2n
� � � � � � � � � � � � mn

k2n

2
666666666664

3
777777777775

;

D[

�k11 1 0 � � � � � � � � � 0

�k12 0 1 0 � � � � � � 0

�
� 0 1 0

� � � �
�k1ðn�1Þ 0 � � � � � � � � � � � � 1

�k1n �1 � � � � � � � � � � � � �1

2
666666666664

3
777777777775

; and

~cc[

0

�
�
�
0

F1 mn

k2n
_FF

2
6666666664

3
7777777775
:

Eqs. 21 and 22 are the governing differential equation and

initial condition, respectively, that must be solved for the

unknown vector~uuðtÞ, an n 3 1 vector whose entries are the

deformation u(t) (which is the same for all n-bodies) and
ai(t)F(t). Note that we are solving for ai(t)F(t) and not

explicitly for the force splitting coefficients ai(t). There are

two practical reasons for this. When solving for ai(t) directly,
particular choices of the flow, for example the oscillatory

flow of Eq. 5, result in the problem becoming singular

periodically. Also, if A and D are defined differently to solve

for ai(t) explicitly, they will be functions of time, and this

considerably slows down the computations. To avoid these

problems, we compute u(t) and ai(t)F(t). Because F(t) is

a known function, it is always possible to find ai(t) if needed.

Model EC networks

Now that we have obtained the formulation for n-Kelvin
bodies coupled in either series or parallel, we can consider

combinations of these two types of couplings to construct
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simple networks that model the EC mechanotransmission

scheme depicted in Fig. 1. Our analysis will permit determi-

nation of the deformation of each component of the network

as a function of time as well as the division of the force

imparted by either steady or oscillatory flow among the

network components.

The model in Fig. 1 suggests that EC cytoskeleton plays

a central role in transmitting the flow signal from the cell

surface to various intracellular sites. Cellular cytoskeleton

has three primary components: actin filaments, microtubules,

and intermediate filaments. Actin filaments provide impor-

tant structural support and often associate into contractile

bundles called stress fibers. Qualitatively, actin filaments are

more rigid than the other cytoskeletal elements and thus

rupture at relatively low strain (Janmey et al., 1991); how-

ever, actin is rapidly recycled and new filaments reformed.

Microtubules, on the other hand, exhibit considerably greater

flexibility and are therefore capable of withstanding high

strains (Janmey et al., 1991). Intermediate filaments are not

very rigid at low strain but harden considerably at high

strain—ideal behavior for their primary role of providing

mechanical support for the nucleus (Janmey et al., 1991).

Fig. 3 illustrates two simple model networks that will be

used to demonstrate the results of our analysis. The first (Fig.

3 A) consists of a flow sensor on the EC surface (Kelvin body

1) that is coupled to the EC nucleus (body 4) via two identical

actin stress fibers (bodies 2 and 3). Indeed, stress fiber coupl-

ing to structures in the cell membrane such as cell-surface

integrins has been demonstrated experimentally (Critchley,

2000; Zamir and Geiger, 2001), and their coupling to the

nuclear membrane has been speculated to occur (Davies

and Tripathi, 1993). It should be noted that although the flow

sensor is depicted in Fig. 3 A as a discrete structure on the

cell surface, it can equally correspond to clusters of such

structures, microdomains in the cell membrane, or even the

entire membrane. Fig. 3 A also illustrates the network

breakdown for the simple four-body model cell. The two

stress fibers are connected in parallel to one another, and they

are in series with the flow sensor on one side and the nucleus

on the other.

The second simulated network (Fig. 3 B) is slightly more

complex, and it is inspired by experimental evidence that dif-

ferent components of cytoskeleton are coupled to one ano-

ther, often via various linker proteins. This network consists

of a flow sensor (Kelvin body 1) connected in series to two

actin stress fibers (bodies 2 and 3) that are connected in

parallel. Each of the stress fibers is subsequently coupled to

a microtubule (bodies 4 and 5), and the two microtubules

are connected to the cell nucleus (body 6). The corresponding

Kelvin body network representation is also shown in Fig. 3 B.

Model parameter values

For each type of viscoelastic body modeled, the values of the

two spring constants k1 and k2 as well as the dashpot coeffi-

cient of viscosity m must be specified. The baseline values

used in the simulations are shown in Table 1. The values for

actin filaments are based on micropipette aspiration studies

on ECs (Sato et al., 1996). The values for the nucleus are

based on recent micropipette aspiration measurements that

have demonstrated that the nucleus is three-to-four times

stiffer and approximately twice as viscous as the cytoplasm

FIGURE 3 Model networks for endothelial shear stress transmission. (A)

Schematic and Kelvin body representation of a four-body network

consisting of a flow sensor (body 1) connected to two actin stress fibers

(bodies 2 and 3) that are in turn connected to the cell nucleus (body 4). (B)

Schematic and Kelvin body representation of a six-body network consisting

of a flow sensor (body 1) connected to two actin stress fibers (bodies 2 and 3)

that are connected to the nucleus (body 6) via two microtubules (bodies

4 and 5).
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(Guilak et al., 2000). As shown in the Appendix, the

parameter values for microtubules were extracted from

reports on the relative values of the mechanical properties

of microtubules to those of actin filaments. Finally, the

parameter values for the Kelvin body representing the flow

sensor were based on recent magnetic bead microrheometry

data on the mechanical properties of cell-surface integrins

(Bausch et al., 1998). As shown in the Appendix, these results

had to be recast in a format appropriate for the present

analysis. The choice of integrins as the flow sensor in the

current analysis is made to simply illustrate the behavior and

is not intended to suggest that other cell-surface structures or

membrane domains are not involved in flow sensing.

Furthermore, it is recognized that the magnetic bead micro-

rheometry measurements do not represent the mechanical

properties of integrins alone but will also have a contribution

due to cytoskeletal elements to which the integrins are

coupled. Within this context, the flow sensor is considered

as the transmembrane integrin along with the local cytoskel-

etal structures that contribute to the measured mechanical

behavior.

It should also be noted that an inherent assumption in the

present analysis is that the flow sensor is a sufficiently large

structure such that the energy imparted to the sensor by the

shear stress significantly exceeds the energy associated with

the thermal fluctuations of the sensor. This issue was dis-

cussed in detail in our previous work (Barakat, 2001) where it

was argued that the characteristic dimension of the flow

sensor needs to be of order 100 nm for the energy imparted to

it by the flow to be an order of magnitude larger than its

thermal energy (i.e., ;10 kT). Structures of this size have

indeed been reported to exist within the glycocalyx of ECs

(Adamson and Clough, 1992; Feng and Weinbaum, 2000).

In addition to the viscoelastic constants in Table 1, the

value of the applied force at t ¼ 0 due to the shear stress is

arbitrarily selected as F0¼ 1 (in arbitrary units). The baseline

value of the angular frequency in the oscillatory flow

simulations is taken as v ¼ 2p rad/s which corresponds to

a physiological cardiac frequency f ¼ 1 Hz (v ¼ 2pf).

Numerical simulation procedures

The model governing equations were solved numerically

using MATLAB. The solution algorithm employed a fourth-

order four-stage Runge-Kutta method. The computations

were performed on a 600 MHz Pentium-III personal

computer with 768 Mbytes of RAM.

RESULTS

Two Kelvin bodies in parallel

Before considering the model EC networks shown in Fig. 3,

we will analyze the behavior of a simple configuration

consisting of two Kelvin bodies coupled in parallel. This

configuration will provide useful insight for the subse-

quent analyses. Two issues are of specific interest: the force

splitting coefficients as the viscoelastic properties of one

body change relative to those of the other and differences in

overall responses between steady and oscillatory flow

stimulation.

We initially consider the two Kelvin bodies to be identical,

with each characterized by the baseline parameter values for

actin filaments given in Table 1. Fig. 4 A depicts the

deformation of each of the two Kelvin bodies as a function of

time for both steady and oscillatory flow. Because they are

connected in parallel, the deformation is identical in both

bodies (Eq. 9). As expected and as described in our previous

modeling (Barakat, 2001), the deformation exhibits a step

jump upon application of the mechanical force at t ¼ 0 for

both steady and oscillatory flow. This deformation is driven

by the elastic portion of the viscoelastic behavior (the springs

in each Kelvin body), and its magnitude is determined by

the initial conditions given in Eq. 19. The immediate de-

formation response is subsequently followed by gradual

creeping toward the long-term asymptotic behavior (which is

constant for steady flow and is time periodic for oscillatory

flow) as the viscous portion of the response unfolds. As

previously shown (Barakat, 2001), the asymptotic response

for oscillatory flow is attained virtually instantaneously,

while that for steady flow requires considerably longer time

(750 s for the deformation to attain 99% of the asymptotic

value). Fig. 4 B depicts the evolution of the force in body 1

(F1(t) ¼ a1(t)F(t); the force in body 2 will simply be F2(t) ¼
F(t) � F1(t)). Not surprisingly, the force divides equally

between the two identical bodies under both steady and oscil-

latory flow conditions. For oscillatory flow, the oscillations

in F1 reflect the periodic oscillation of the imposed force,

but the force always divides equally between the two

bodies.

If the extent of deformation of EC-surface and intra-

cellular structures correlates with the extent of flow-induced

cellular signaling, then it is logical that a minimum threshold

value of deformation would have to be exceeded to trigger

the biological response. Therefore, the magnitude of the peak

deformation in response to the two different types of applied

flow is of interest. Fig. 4 C illustrates the dependence of this

peak deformation on the value of the applied shear force at

t ¼ 0 (F0) for both steady and oscillatory flow for the two-

body system. Similar to our previous one-body results

TABLE 1 Baseline viscoelastic parameter values used

in the simulations

k1 (Pa) k2 (Pa) m (Pa-s) Source

Actin filaments 50 100 5000 Sato et al. (1996)

Microtubules 5 10 50,000 Janmey et al. (1991);

Davidson et al. (1999)

Integrins 100 200 7.5 Bausch et al. (1999)

Nucleus 200 400 10,000 Guilak et al. (2000)
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(Barakat, 2001), the peak deformation increases linearly with

F0 (i.e., with the applied shear stress). Furthermore, for

a given value of F0, the peak deformation is significantly

larger for steady flow than for oscillatory flow.

In a system as complex as a cell, many of the parallel

connections are among structures that have drastically

different viscoelastic properties. Therefore, we next consider

the behavior of the two-body system under both steady and

oscillatory flow as the parameter values of Kelvin body 2 are

individually varied over a wide range. The parameter values

of Kelvin body 1 are held constant at their baseline values

(actin values in Table 1). Fig. 5 A depicts the magnitude of

the peak deformation of the two-body system as a function of

the spring constant k12 for both steady and oscillatory flow.

When body 2 is very compliant (k12 small), the peak de-

formations are largely independent of k12 as the stiffness

of the two-body system is entirely dominated by body 1. At

intermediate values of k12, the deformations for both steady

and oscillatory flow decrease as k12 increases and tend to

zero as body 2 becomes very stiff (k12 large). Whereas the

peak deformation induced by steady flow is considerably

larger than that due to oscillatory flow for relatively com-

pliant structures (small k12), this difference becomes progres-

sively smaller at intermediate k12 values and disappears for

very stiff structures (large k12). Fig. 5 B illustrates the peak

asymptotic value of F1 as a function of k12. Peak F1 exceeds

0.5 for k12 smaller than the baseline value (k12\ 50 Pa), is

exactly 0.5 at the baseline value, and falls below 0.5 for k12[
50. This reflects the fact that a larger fraction of the total

applied force gets directed toward the stiffer body, a required

condition since the two bodies deform equally.

Unlike their dependence on k12, the peak deformation and

peak asymptotic F1 for steady flow are independent of the

spring constant k22 (Fig. 6). This is because the impact of the

added spring stiffness is compensated for by the dashpot. For

oscillatory flow, however, the changes in the forcing

function occur over a timescale that is too rapid to allow

dashpot compensation; thus, the peak deformation and peak

asymptotic F1, similar to the variations with k12, pro-

gressively decrease as k22 increases (Fig. 6). The dependence
of peak deformation and peak asymptotic F1 on the dashpot

coefficient of viscosity of body 2 (m2) (Fig. 7) largely mirrors

that of k22 and can be explained in the same fashion. One

difference, however, is that the values do not tend to zero at

large m2. This is because the spring in series with the dashpot

always provides a certain level of compliance. The peak

deformation is considerably larger for steady flow than for

oscillatory flow over the entire range of k22 and m2.

Figs. 5–7 only considered the dependence of the asymp-

totic values of the force divisions between the two Kelvin

bodies on the viscoelastic properties. It is desirable to probe

FIGURE 4 (A) Time evolution of the deformation of two identical Kelvin

bodies connected in parallel in response to steady and oscillatory flow.

Because the evolution to the asymptotic response for the two types of flow

occurs over different timescales, oscillatory flow evolution is shown in the

inset. For both types of flow, a shear force F0 is applied at t ¼ 0. Because

they are connected in parallel, the two bodies deform equally. The

deformation exhibits an instantaneous jump (at t ¼ 0) due to the elastic

springs with subsequent creeping as the dashpot deforms. (B) Time

evolution of the force in body 1 in response to steady and oscillatory (inset)
flow. (C) Peak deformation of the bodies as a function of the applied shear

force in response to steady and oscillatory flow.
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the evolution of the force division in time to understand how

the applied force transiently redistributes between the two

bodies. Fig. 8 depicts the evolution of F1(t) (i.e., a1(t)F(t))
for steady flow for selected values of k12, k22, and m2. At the

baseline values of the parameters (those of actin in Table 1),

F1 has the constant value of 0.5 as the two bodies are iden-

tical. At other values of k12, F1 monotonically approaches its

asymptotic value given in Fig. 5 B over a period of several

hundred seconds (Fig. 8 A). Figs. 6 B and 7 B had demons-

trated that the asymptotic value of F1 for steady flow is

independent of k22 and m2; however, because the compen-

sation by the dashpot requires time, the transient approach to

the asymptotic value does depend on these parameters, and

this dependence is not monotonic. For small k22, F1 is

initially large, then decreases below the asymptotic value

before increasing until it attains the asymptotic value (Fig. 8

B). For large k22, the opposite occurs—F1 is initially small,

and increases above the asymptotic value before gradually

decreasing to the asymptotic value (Fig. 8 B). For small m2,

F1 initially increases and then decreases toward the asymp-

totic value, whereas for large m2, F1 initially decreases to

levels considerably below the asymptotic value before in-

creasing to the asymptotic value (Fig. 8 C). These results

broadly imply that the force division between the two bodies

exhibits prominent transient behavior before attaining its

asymptotic value.

FIGURE 5 Effect of the spring constant k12 (spring constant of spring 1 in

Kelvin body 2) on (A) peak deformation and (B) peak asymptotic force in

body 1 in a system of two Kelvin bodies connected in parallel under both

steady and oscillatory flow conditions. The remaining constants in the two-

body system (k11, k21, m1, k22, andm2) are assumed constant and are assigned

the baseline values of actin (Table 1).

FIGURE 6 Effect of the spring constant k22 (spring constant of spring 2 in

Kelvin body 2) on (A) peak deformation and (B) peak asymptotic force in

body 1 in a system of two Kelvin bodies connected in parallel under both

steady and oscillatory flow conditions. The remaining constants in the two-

body system (k11, k21, m1, k12, andm2) are assumed constant and are assigned

the baseline values of actin (Table 1).
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All the oscillatory flow simulations thus far have been

performed with a pulsatile frequency f ¼ 1 Hz (v ¼ 2pf ¼
2p rad/s), physiological under resting conditions. Under

vigorous exercise conditions, this frequency may be con-

siderably higher. Furthermore, certain pathologies have a

considerable impact on cardiac frequency. It is expected

that as the pulsatile frequency tends to zero, the oscillatory

flow behavior would approach that of steady flow. On the

other hand, at very high pulsatile frequencies, the inertia of

the dashpot of each Kelvin body will prevent it from

sensing and responding to the oscillation so that the be-

havior is dictated entirely by the elastic springs. Because

the springs respond instantaneously, the response at very

FIGURE 7 Effect of the dashpot coefficient of viscosity m2 of Kelvin

body 2 on (A) peak deformation and (B) peak asymptotic force in body 1 in

a system of two Kelvin bodies connected in parallel under both steady and

oscillatory flow conditions. The remaining constants in the two-body system

(k11, k21, m1, k12, and k22) are assumed constant and are assigned the baseline

values of actin (Table 1).

FIGURE 8 Time evolution of the force in body 1 in a system of two

Kelvin bodies connected in parallel and subjected to steady flow. The

evolution is shown for selected values of (A) k12, (B) k22, and (C) m2. Only

the parameter shown is varied. All other parameters are maintained constant

at the baseline values of actin (Table 1).
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high frequencies would be expected to be independent of

frequency. In between these two limits, the deformation

would be expected to decrease with frequency as the dashpot

has progressively less time to deform. This behavior is

confirmed in Fig. 9 A which depicts the peak deformation of

the two-body system in oscillatory flow (normalized by the

peak deformation under steady flow conditions) as a function

of the pulsatile frequency for different values of the co-

efficient viscosity of body 2 (m2). For all values of m2, the

normalized peak deformation tends to unity at very small

frequencies. As the oscillatory frequency increases, the

behavior depends on the value of m2. For most values of m2

considered, the behavior is sigmoidal with a critical fre-

quency of ;0.01–0.1 Hz (depending on m2) above which

the peak deformation becomes frequency-independent. In-

terestingly, for very small m2, the behavior becomes bi-

sigmoidal. This reflects the fact that a less viscous dashpot

can respond to considerably higher oscillation frequencies.

Fig. 9 B illustrates the magnitude of the peak asymptotic

F1 for oscillatory flow as a function of the applied oscillatory

frequency for different values of m2. Not surprisingly, the

results demonstrate frequency sensitivity only over a partic-

ular frequency range. For m2 \ m1 (m1 is held constant at

5000 Pa-s), more of the applied force needs to go into body 1

to elicit a deformation equal to that of body 2; therefore, F1

exceeds 0.5. The opposite occurs for m2[m1. At sufficiently

large frequencies, the dashpots become nonresponsive, and

the force division becomes entirely dictated by the springs.

At very small frequencies, oscillatory flow approaches

steady flow. In both limits, the applied force divides equally

between the two bodies (i.e., F1 ¼ 0.5).

Model EC networks

We now consider the two simple EC networks depicted in

Fig. 3. Fig. 10 A illustrates the evolution of the deformations

of each component of the four-body network in Fig. 3 A in

response to steady flow. All four bodies qualitatively exhibit

the typical pattern of an instantaneous deformation followed

by gradual creeping (compare to Fig. 4 A); however, there
are differences among the different structures. Because of its

very small dashpot coefficient of viscosity, the transmem-

brane integrin (flow sensor) attains its peak deformation

much more rapidly than the other structures. The two actin

stress fibers deform slowly but ultimately attain a peak

deformation equivalent to that of the transmembrane protein.

Because they are connected in parallel, the two stress fibers

deform equally. The fact that the asymptotic stress fiber

deformation is equal to that of the flow sensor reflects the fact

that this deformation for each structure is dictated by the

spring constant k2, and the value of k2 for the flow sensor is

twice that of each of the two stress fibers (Table 1). Finally,

the nucleus attains its peak deformation with a characteristic

time constant that is considerably slower than that of the

transmembrane protein but two–three times faster than

that of the stress fibers; however, this peak deformation is

only half that of the other structures (since (k2)nucleus ¼
2(k2)integrins (Table 1)). As shown in Fig. 10 B, the flow

sensor, actin filaments, and nucleus in the six-body network

of Fig. 3 B deform identically to the case of the four-body

network. The microtubules exhibit considerably slower

deformation due to the large coefficient of viscosity; how-

ever, the amplitude of their asymptotic deformation is

large due to the small value of (k2)microtubules (Table 1).

Interestingly, the time constants observed in the simulations

are broadly consistent with the experimental observations

that when ECs are exposed to steady flow, candidate flow

sensors such as flow-sensitive ion channels and cell-surface

FIGURE 9 Dependence of (A) peak long-term deformation and (B) peak

asymptotic force division on frequency in a system of two Kelvin bodies

connected in parallel and subjected to oscillatory flow. The results are shown

for different values of body 2 dashpot coefficient of viscosity m2. The

deformations have been normalized by the steady state value for steady flow.
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integrins respond very rapidly (milliseconds to seconds), the

nuclear responses exhibit intermediate timescales (minutes

to a few hours), while the cytoskeletal remodeling is not

complete until many hours after the onset of flow (Davies,

1995).

Fig. 11 depicts the dependence of the peak asympto-

tic deformation of each structure in the six-body network of

Fig. 3 B on the driving frequency under oscillatory flow

conditions. Similar to the behavior discussed previously

(Fig. 9 A), the deformations of all bodies approach the

asymptotic steady flow values of Fig. 10 B for small

frequencies and become independent of frequency at high

frequencies. Significantly, at a physiological frequency of 1

Hz, the deformation of each of the network components is

considerably smaller in oscillatory flow than in steady flow.

DISCUSSION

Endothelial responsiveness to fluid mechanical stimulation

may involve the sensing of the stimulus at the cell surface

and its subsequent transmission by cytoskeletal elements to

various intracellular transduction sites. Although the mech-

anisms of mechanosensing and transmission remain to be

elucidated, direct deformation of cell-surface and intracellu-

lar structures may be involved (Davies and Tripathi, 1993;

Davies, 1995). In this article, we have formulated a sim-

ple model of mechanical signal transmission in ECs by

considering the transmission pathways as networks of

coupled viscoelastic bodies that deform in response to an

applied mechanical force. The viscoelastic response is

simulated as a standard linear solid (Kelvin body). Because

steady and oscillatory flow induce different biological re-

sponses in ECs (Helmlinger et al., 1991, 1995; Chappell

et al., 1998; Lum et al., 2000; Suvatne et al., 2001), we have

focused on differences in the deformations of the individual

components of these networks in response to steady and

oscillatory flow. Moreover, we have investigated the sen-

sitivity of the resulting deformations to various model

parameters including the spring constants, the dashpot

coefficient of viscosity, and the oscillatory flow frequency.

As an example of a very simple network, we initially

considered two Kelvin bodies connected in parallel. When

this network was subjected to steady flow, both bodies

underwent an instantaneous deformation due to the elastic

springs; this deformation was subsequently followed by

FIGURE 10 Time evolution of the deformation of each component of

model endothelial networks under steady flow conditions. (A) Four-body

network depicted in Fig. 3 A. (B) Six-body network depicted in Fig. 3 B.

FIGURE 11 Dependence of the peak asymptotic deformation of each

component of the six-body model endothelial network depicted in Fig. 3 B

on the frequency under oscillatory flow conditions.
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gradual creeping toward the long-term response. When the

flow was oscillatory, the deformation also oscillated with the

driving force, and the long-term time-periodic behavior was

attained very rapidly. When the two bodies had identical

viscoelastic properties, the applied force expectedly divided

equally between them. Making one of the bodies stiffer

reduced the magnitude of the flow-induced deformation of

both bodies and shifted the force division in favor of the

stiffer body. This shift was needed because a larger force

needs to be applied to a stiffer body than to a more compliant

one if the two bodies are to deform equally.

Our results have also demonstrated that the transient

approach of the force division between the two bodies

toward its asymptotic value is not necessarily monotonic.

In an EC, this suggests that depending on the time point

after initiation of flow, the force division between two in-

tracellular structures connected in parallel may be transiently

in favor of one of the structures or the other. If a minimum

threshold force needs to be exceeded to initiate signaling

associated with a particular intracellular structure, then these

results suggest that certain signaling pathways are activated

for only a limited time period after flow onset. This may

reflect a form of signal desensitization and/or adaptation.

Indeed, experiments have demonstrated that a number of

endothelial flow responses including Ca21 oscillations and

transcriptional changes of certain flow-responsive genes are

transient in nature (Shen et al., 1992; Resnick and Gimbrone,

1995).

While steady flow induces mobilization of intracellular

Ca21 and reorganization of cytoskeleton in ECs, purely

oscillatory flow with a physiological oscillation frequency of

1 Hz does not induce either response (Helmlinger et al., 1991,

1995). Furthermore, some of the transcriptional changes

induced by steady flow do not occur in response to 1-Hz

oscillatory flow (Suvatne et al., 2001). The mechanisms by

which ECs distinguish among and respond differently to

different types of flow remain unknown. Our model results

have demonstrated that steady flow generally induces larger

deformations than 1-Hz oscillatory flow. If the intensity of

flow-induced endothelial signaling depends on the extent of

deformation of cell-surface and intracellular structures, then

our results may provide insight into mechanisms governing

experimentally observed differences between steady and

oscillatory flow responses.

The differences in deformation of cell-surface and

intracellular structures between steady and 1-Hz oscillatory

flow disappear when the frequency of oscillation becomes

sufficiently small. This behavior is not surprising since in the

limit of very low frequency, oscillatory flow tends to steady

flow. These results suggest that EC responses induced by

steady flow but not by 1-Hz oscillatory flow will develop if

the oscillatory flow experiments were performed at suffi-

ciently low frequencies. Our analysis also demonstrates

that at very high oscillation frequencies, the magnitude of

flow-induced deformation becomes independent of fre-

quency. These model predictions are directly testable experi-

mentally.

Two types of multibody networks were analyzed to model

transmission of the flow stimulus from the luminal cell

surface to the nucleus in ECs. The first was a four-body

network consisting of a cell-surface flow sensor coupled to

two actin stress fibers that are in turn coupled to the nucleus.

The second network was a six-body network consisting of

a cell-surface sensor connected to two stress fibers each of

which was directly connected to a microtubule. The two

microtubules subsequently coupled directly to the nucleus.

Simulations of these simple networks demonstrated that the

cell-surface structure attains its peak deformation much

faster than the intracellular structures. The nucleus deforms

more rapidly than the cytoskeletal elements, but because of

its high stiffness, its peak deformation is relatively small.

These relative time constants are consistent with the ex-

perimentally observed temporal chronology of EC flow

responses: candidate flow sensors such as flow-sensitive ion

channels and cell-surface integrins respond very rapidly

(milliseconds to seconds), gene and protein regulatory re-

sponses occur over intermediate timescales (minutes to a few

hours), while cytoskeletal and morphological reorganization

is not fully attained until many hours after flow initiation

(Davies, 1995). Although only very simple networks have

been presented in the illustrative examples in this article,

arbitrarily complex networks can be analyzed using the same

formulation as long as these networks can be reduced into sets

of bodies connected in combinations of series and/or parallel

configurations.

Recent studies have demonstrated a rapid increase in EC

membrane fluidity upon initiation of flow (Haidekker et al.,

2000; Butler et al., 2001); this has led to the suggestion that

the cell membrane as a whole may act as a flow sensor.

Although the current presentation has focused on discrete

cell-surface structures as candidate flow sensors, the same

analysis can be used had the cell membrane itself been

considered as the flow sensor. The only difference in that

case would be that appropriate viscoelastic properties of lipid

bilayers would need to be used in lieu of those that

characterize specific cell-surface structures.

Our results have their most direct implications to EC flow

signaling if the intensity of this signaling correlates with the

extent of mechanical deformation of various cell-surface and

intracellular structures. It is recognized that this may not be

the case for all types of EC flow responses. For instance,

previous mathematical modeling of the impact of fluid

mechanical shear stress on intracellular calcium concentra-

tion in which both the effect of flow on the delivery of

calcium agonists to the EC surface and the impact of flow-

induced cell membrane strain on the open probability of

calcium channels have been included has demonstrated that

the calcium response to flow depends on the relative

dynamics of the biochemical steps involved in calcium

mobilization and is not simply proportional to the magnitude
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of flow-induced membrane strain (Wiesner et al., 1997). It is

envisioned that there exists a range of flow conditions where

the mechanical strain kinetics constitute the dominant con-

tribution to signaling, and it is in this range that our present

results are most applicable. It should also be noted that the

mechanical form of signaling modeled here is considered

complementary to, rather than a substitute for, more well cha-

racterized receptor-mediated signal transduction pathways.

Micropipette aspiration studies on cultured ECs have

demonstrated that these cells become considerably stiffer

upon flow exposure (Sato et al., 1996). This suggests that the

viscoelastic parameters used in the modeling should most

generally be considered time-dependent. Furthermore, the

various components of the cytoskeleton are connected

together and to other cell structures via a variety of linker

proteins whose viscoelastic properties likely impact the

overall flow-induced deformations. Unfortunately, no data

currently exist on the mechanical properties of these linker

proteins, so their effect cannot be realistically incorporated.

Finally, a number of staining studies have demonstrated that

cellular cytoskeleton consists of very dense and complex

networks that likely cannot always be reduced to simple

configurations of structures connected in series and/or

parallel; therefore, it would be important to generalize the

present results to arbitrarily structured networks. Data from

various fields including network theory and pattern recog-

nition promise to be very useful in this regard.

APPENDIX

Model parameter values for cell-surface
flow sensor

As mentioned in the text, the parameter values for the flow sensor on the EC

surface were derived from recent magnetic bead microrheometry measure-

ments of the viscoelastic properties of integrins (Bausch et al., 1998). As also

noted in the text, these measurements likely contain a contribution from

local cytoskeletal elements to which the integrins are coupled. It is

impossible at this point to isolate the effects of integrins from those of local

cytoskeleton; therefore, the flow sensor is considered to consist of the

complex of integrins and the local cytoskeletal structures to which these

integrins are directly coupled. In the study by Bausch and co-workers

(Bausch et al., 1998), study, the values of the spring constants had the

dimensions of Pa-m while the dashpot coefficient of viscosity had the

dimensions of Pa-m-s. In contrast, the spring constants and the coefficient

of viscosity for actin and the nucleus given by other investigators were

respectively in Pa and Pa-s (Sato et al., 1996, and Guilak et al., 2000).

Fundamentally, the difference is due to the method by which the viscoelastic

parameters were derived. The micropipette aspiration experiments of Sato

et al. (1996) and Guilak et al. (2000) applied a given pressure difference and

measured the resulting deformation, while the magnetic bead micro-

rheometry measurements involved the application of a known twisting force

and measuring the resulting deformation. For the parameter values in our

model to be consistent, we have to recast the values obtained by Bausch et al.

(1998) in terms of the dimensions given by Sato et al. (1996) and Guilak et al.

(2000).

Sato et al. (1996) modeled the viscoelastic behavior describing their

micropipette aspiration data using a Kelvin body for which the measure-

ments were fit to the function

LðtÞ ¼ 2aDp

pk1
1� k2

k1 1 k2
e
�t=t

� �
; (A1)

where L is the measured deformation [m], Dp is the applied pressure

difference [Pa], a is the micropipette diameter [m], and t is the time constant

associated with the deformation [s]. The spring constants k1 and k2 have the

dimensions of Pa.

On the other hand, Bausch et al. (1998) modeled their magnetic bead

microrheometry results using a viscoelastic model consisting of a Kelvin

body in series with a dashpot, and they demonstrated that this circuit

captures the experimentally observed triphasic creep response consisting of

an elastic domain, a relaxation regime, and a viscous flow domain. For this

system, the equivalent expression to Eq. A1 is

LðtÞ ¼ F
1

k1
1� k2

k1 1 k2
e
�t=t

� �
1

t

md

� �
; (A2)

where F is the applied twisting force [N], k1 and k2 are the spring constants

associated with the Kelvin body [Pa-m], md is the coefficient of viscosity of

the dashpot [Pa-s-m], and t is the relaxation time [s] of the Kelvin body

given by:

t ¼ mðk1 1 k2Þ
k1k2

; (A3)

where m is the Kelvin body’s coefficient of viscosity [Pa-s-m]. The first term

in Eq. A2 corresponds to the deformation of the Kelvin body, whereas the

second term corresponds to the deformation of the dashpot.

To recast the spring constants derived by Bausch et al. (1998) in

equivalent terms to those of Sato et al. (1996), we determine the applied

force in the study of Sato et al. (1996) due to the pressure difference Dp. This

force is given by F ¼ Dppa2 ; 2500 pN. From Eq. A2, the initial

deformation at t ¼ 0 is given by

L0 ¼ F

k1
1� k2

k1 1 k2

� �
¼ F

k1 1 k2
: (A4)

For the Kelvin body portion in Eq. A2, the deformation at steady state (as t

! ‘) is given by

Ls ¼ F

k1
: (A5)

Eqs. A4 and A5, when applied to the force and deformation data of Sato et al.

(1996), can be used to obtain values for the spring constants k1 and k2 in

dimensions that match those given by Bausch et al. (1998). This calculation

yields k1 ¼ 6.25 3 10�4 Pa-m and k2 ¼ 9.38 3 10�4 Pa-m.

Similar computations need to be performed on the data of Bausch et al.

(1998) to derive properties for the flow sensor (integrins plus coupled local

cytoskeleton). Because in the steady state (as t ! ‘) the deformation given

in Eq. A2 leads to a linear variation with time, the parameter values used in

the present manuscript are derived from within the linear regime, i.e., after

the Kelvin body had attained its steady-state behavior. For an applied force

of ;2000 pN (comparable to the force applied in Sato et al., 1996), Bausch

et al. (1998) measured initial and steady state deformations per unit force of

;350 m/N and ;800 m/N, so that the initial and steady-state deformations

were respectively L0 ; 7 3 10�7 m and Ls ; 1.6 3 10�6 m. Substituting

these values into Eqs. A4 and A5 leads to k1 ; 1.253 10�3 Pa-m and k2 ;
1.613 10�3 Pa-m. These are the values of the spring constants for the flow
sensor.

Finally, we must obtain the coefficient of viscosity of the dashpot of the

Kelvin body (m) for both Sato et al. (1996) and Bausch et al. (1998). m is

related to the spring constants as shown in Eq. A3. In Sato et al. (1996), t for

cytoskeleton has a value of ;110 s so that m ¼ 4.125 3 10�2 Pa-m-s,

whereas in Bausch et al. (1998), t for integrins has a value of;0.09 s so that

m ¼ 6.33 3 10�5 Pa-m-s.
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Now that the parameter values in the two studies have been expressed in

similar dimensions, they can be directly compared. k1 and k2 for the cell-

surface integrins are approximately twice their values for actin filaments, and

the coefficient of viscosity of integrins is approximately 1.5 3 10�3 that of

actin filaments. Therefore, recasting the integrin parameters in terms of the

dimensions given by Sato et al. (1996) yields k1 ffi 2(50 Pa) ¼ 100 Pa, k2 ffi
2(100 Pa) ¼ 200 Pa, and m ffi (1.5 3 10�3)(5000 Pa-s) ¼ 7.5 Pa-s. These

are the flow sensor parameter values given in Table 1.

Model parameter values for microtubules

For a Kelvin body, the magnitude of the instantaneous deformation at t ¼
0 upon application of a force F is given by F/(k1 1 k2), whereas the long-
term deformation is given by F/k1 (Eqs. A4 and A5). Using the long-term

deformation data of Janmey et al. (1991) for both actin filaments and

microtubules and combining this information with the data of Davidson et al.

(1999), we obtain a ratio of k2 for actin to that of microtubules of;36. Given

that (k2)actin¼ 100 Pa, we obtain (k2)microtubulesffi 2.8 Pa. As shown in Table

1, we use a value of (k2)microtubules ¼ 5 Pa in the simulations. The same

experimental data can be used to determine that the ratio of (k1 1 k2) for
actin to that for microtubules is;15. Given that (k1)actin ¼ 50 Pa, (k2)actin ¼
100 Pa, and (k2)microtubules ffi 2.8 Pa, we obtain a value of (k1)microtubules ffi
7.2 Pa. We use a value of (k1)microtubules ¼ 10 Pa in the simulations (Table

1). Finally, as given in Eq. A3, mmicrotubules can be determined if the ratio of

the time constants associated with the deformation of microtubules and actin

filaments (tmicrotubules/tactin) is known. From the data of Davidson et al.

(1999), we estimate this ratio to be ;180. Given the values of k1 and k2 for

both actin and microtubules and the value of mactin ¼ 5000 Pa-s, we

determine that mmicrotubules ; 57,000 Pa-s. We use a value of mmicrotubules ¼
50,000 Pa-s in the simulations (Table 1). The parameter values derived for

microtubules are consistent with the qualitative observation that micro-

tubules are considerably less rigid than actin filaments (Janmey et al., 1991).
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