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Epidemiological data on species A rotavirus (RVA) infections have demonstrated the genetic diversity of
strains circulating worldwide. Many G and P genotype combinations have been described over the years,
varying regionally and temporally, especially in developing countries. However, the most common G and
P genotype combinations identified in RVA human strains worldwide are G1P[8], G2P[4], G3P[8], G4P[8]
and G9P[8]. RVA genotype G1P[8] strains are responsible for more than 50% of child infections worldwide
and component of the two vaccines (Rotarix� [RV1] and RotaTeq� [RV5]) licensed globally. For a better
understanding of the evolutionary mechanisms of this genotype in Brazil, phylogenetic analyses based
on the 11 RVA genome segments (genomic constellation) from 90 G1P[8] RVA strains collected in two
eras – (i) pre-vaccination with RV1 (1996–February 2006); (ii) post-vaccination (March 2006–2013) –
in different Brazilian states were performed. The results showed the Wa-like genomic constellation of
the Brazilian G1P[8] strains with a I1-R1-C1-M1-A1-N1-T1-E1-H1 specificity, except for two strains
(rj14055-07 and ba19030-10) that belong to a I1-R1-C1-M1-A1-N1-T3-E1-H1 genomic constellation, evi-
dencing the occurrence of reassortment (Wa-like � AU-1-like) of the NSP3 gene. Reassortment events
were also demonstrated between Brazilian G1P[8] strains and the RV1 vaccine strain in some genes in
vaccinated and unvaccinated children. VP7 and VP8* antigenic site analysis showed that the amino acid
substitutions observed in samples collected after the introduction of RV1 in Brazil were already detected
in samples collected in the 1980s and 1990s, suggesting that mass Brazilian RV1 vaccination had no
impact on the diversity observed inside antigenic sites for these two proteins.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction RVA is a member of the Reoviridae family, and the genome con-
Diarrheal disease (DD) represents the second leading cause of
death in children 6five years old in the developing world
(Wazny et al., 2013). Species A rotaviruses (RVA) are the main
etiologic agent of DD in children in this age group worldwide
(Kotloff et al., 2013), and were responsible for �196,000 cases of
severe diarrhea and deaths in developing countries in 2011
(Walker et al., 2013).
sists of 11 double-stranded RNA gene segments encoding six struc-
tural (VP1–4, VP6–VP7) and six nonstructural proteins (NSP1–6). A
dual classification system was established for RVA based on the
two genes that encode the outer capsid proteins, VP4 (P-genotype)
and VP7 (G-genotype) (Estes and Greenberg, 2013). More recently,
a new classification system has been proposed including all 11
genes and, to date, 27 G, 37 P, 16 I, 9 R, 9 C, 8 M, 16 A, 9 N, 12 T,
14 E and 11 H genotypes have been identified (Matthijnssens
et al., 2008; Trojnar et al., 2013). Based on this classification, most
of the human RVA detected worldwide possess one of the
following genotype constellations: Wa-like (I1-R1-C1-M1-A1-N1-
T1-E1-H1), the DS-1-like genotype constellation (I2-R2-C2-
M2-A2-N2-T2-E2-H2) or the AU-1-like genotype constellation
(I3-R3-C3-M3-A3-N3-T3-E3-H3), also called genotype 1, 2 and 3,
respectively (Heiman et al., 2008; Matthijnssens et al., 2008;
McDonald et al., 2009; Matthijnssens and Van Ranst, 2012).
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Epidemiological studies of RVA infections have demonstrated
the genetic diversity of strains circulating in different continents.
In humans, at least six RVA G genotypes (G1–G4, G9 and more
recently G12) and three P genotypes (P[8], P[4] and more recently
P[6]) circulate worldwide generating a major impact on public
health (Leite et al., 2008; Iturriza-Gómara et al., 2009; Bányai
et al., 2012). RVA are ubiquitous, interspecies-transmitted, and
accumulation of point mutations, recombination and reassortment
are responsible for the huge genetic heterogeneity of these viruses.
Consequently, these characteristics associated with the spreading
of different RVA genotypes and genetic variants in distinct geo-
graphical regions, as well as over the seasons, may be associated
with the emergence of severe DD, both spatially restricted and
globally disseminated (Carvalho-Costa et al., 2011; WHO, 2013).

In Brazil, G1P[8] has been one of the most common RVA circu-
lating genotypes during the last two decades (Santos and Hoshino,
2005; Leite et al., 2008; Carvalho-Costa et al., 2009, 2011; Rose
et al., 2013). Vaccination is one of the most effective tools in reduc-
ing the consequences of RVA infections. Two vaccines, Rotarix�

(RV1, GlaxoSmithKline, Brentford, Middlesex, UK) and RotaTeq�

(RV5, Merck & Co., Whitehouse Station, New Jersey, USA), are
licensed in several countries. Both vaccines have demonstrated
broad protection against each of the most common RVA genotypes
(Patton, 2012). Studies conducted in countries where RVA vaccine
is provided in their national immunization programs (NIP) show
the reduction of DD caused by RVA in vaccinated children
(O’Ryan et al., 2011; Patel et al., 2013; Cotes-Cantillo et al.,
2014). In Brazil, different studies have demonstrated the effective-
ness of the RV1 vaccine in preventing hospital admission for diar-
rhea caused by RVA and satisfactory results against both G1P[8]
and G2P[4] genotypes. These results reinforce the importance of
RVA vaccination in the Brazilian NIP and the monitoring of the
early emergence of unusual and novel RVA genotypes (do Carmo
et al., 2011; Assis et al., 2013; de Oliveira et al., 2013; Ichihara
et al., 2014; Linhares and Justino, 2014).

In a 20-year study period, Hemming and Vesikari (2013) dem-
onstrated that mass vaccination with RV5 in Finland did not influ-
ence the genetic diversity of VP7 and VP8* proteins from G1P[8]
strains. In the current study, in order to investigate whether the
RV1 vaccine imposed a selective pressure on the circulation of
G1P[8] in Brazil, we performed a phylogenetic analysis of the 11
genes from G1P[8] strains collected from vaccinated and unvacci-
nated children detected in different Brazilian regions in two differ-
ent eras – pre-(1986–March 2006) and post-(March 2006–2013)
RV1 introduction – in the Brazilian NIP.
2. Materials and methods

2.1. Fecal samples

RVA surveillance, which is based on a hierarchical network in
which samples are provided by spontaneous demand in hospitals
and health centers, monitored by the Brazilian Unified Health Sys-
tem (SUS), was performed between 1986 and 2013. The fecal sam-
ples were collected and sent to the central laboratory of each state
and then forwarded to the Regional Rotavirus Reference Labora-
tory–Laboratory of Comparative and Environmental Virology
(RRRL–LVCA). Forms with epidemiological, clinical and RVA vacci-
nation status (after March 2006) accompanied each fecal sample. A
total of 90 G1P[8] RVA strains was analyzed in this study and were
included using the criteria as follows: at least one G1P[8] strain
representative from 12 Brazilian states (11 states + Federal Dis-
trict) part of the reference area of our laboratory was selected,
however when there was more than one G1P[8] strain in a specific
state and year, only one sample was selected randomly. If
eventually one outbreak was observed, more than one strain for
the same state was selected. When a strain could not be completely
sequenced (gene constellation), it was randomly replaced by
another strain from the same state and same year. This selection
strategy generated a sample size of 63 strains, which corresponds
to 12% of the initial universe of the 515 G1P[8] strains. Twenty-
seven strains previously studied by Rose et al. (2013) were also
included in the full genome analysis. As described previously, those
27 strains represent G1P[8] strains characterized in distinct
Brazilian states from 2008 to 2010, a period of low G1P[8] RVA
genotype circulation (Supplementary material 1). Data concerning
the RV1 coverage in the five Brazilian regions in the period
between March 2006 and December 2013 are available in Supple-
mentary material 2.

This study is part of a project that covers the diagnosis, surveil-
lance and molecular epidemiology of viruses that cause DD
approved by the Ethics Committee of Fiocruz (CEP: 311/06).

2.2. Species A rotavirus detection and G/P genotyping

RVA detection in fecal samples was carried out by enzyme
immunoassay (EIA, Premier Rotaclone�, Meridian Bioscience, Inc.;
Ridascreen�, R-Biopharm) following the manufacturer’s recom-
mendation and polyacrylamide gel electrophoresis (PAGE)
(Pereira et al., 1983). Nucleic acids were extracted from 10% fecal
suspensions by the glass powder method described by Boom
et al. (1990), including modifications (Leite et al., 1996). The
extracted RNA was reverse transcribed and RVA G and P genotyp-
ing was performed by the semi-nested multiplex PCR method as
described previously (WHO/IVB/08.17, 2008). Fifty-seven repre-
sentative G1P[8] strains from the pre-vaccination period (1986–
2006) and 33 G1P[8] strains from the post-vaccination period
(2007–2013) were investigated by sequence analysis of the 11
genes. Of the 33 strains detected after the year 2006, 20 belong
to children vaccinated with one or two doses of RV1 (Supplemen-
tary material 1).

2.3. Eleven genes amplification and sequencing

The amplification of the 11 genome segments from selected
strains were performed using a OneStep RT-PCR Kit (QIAGEN�) fol-
lowing the manufacturer’s instructions and the following amplifi-
cation conditions: (i) for VP1–2: 50 �C/30 min (min) – 95 �C/
15 min – 35 cycles of 94 �C/30 seconds (s)/45 �C/30 s/72 �C/6 min,
72 �C/10 min; (ii) VP3–4: annealing temperature changed to
47 �C; (iii) for VP6, VP7, NSP1–4: 50 �C/30 minutes (min) – 95 �C/
15 min – 35 cycles of 94 �C/30 seconds (s)/50 �C/30 s/72 �C/3 min,
72 �C/10 min) for NSP5: annealing temperature changed to 45 �C.
Primers used to amplify the 11 gene segments are listed in Supple-
mentary material 3. Sequencing was performed with an ABI Prism
Big Dye Terminator Cycle Sequencing Ready Reaction Kit™ on an
ABI Prism 3730 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) at the Instituto de Tecnologia em Imunobiológicos (Bio-
Manguinhos / FIOCRUZ). Sequences obtained in the current study
were deposited in the GenBank database under the following
accession numbers: NSP1 (KM026541–KM026604), NSP2
(KM026605–KM026668), NSP3 (KM026669–KM026732), NSP4
(KM026733–KM026796), NSP5 (KM026797–KM026860), VP1
(KM026861–KM026924), VP2 (KM026925–KM026988), VP3
(KM026989–KM027052), VP4 (KM027053–KM027116), VP6
(KM027117–KM027180) and VP7 (KM027181–KM027244).

2.4. Phylogenetic analysis

Nucleotide blast analyses were performed with obtained
sequences and multiple sequence alignments were carried out
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using the ClustalW program (Thompson et al., 1994). Phylogenetic
analyses were performed under the GTR + I model of nucleotide
substitution, selected using the jModeltest program (Posada,
2008). Maximum likelihood (ML) phylogenetic trees were inferred
for each one of the 11 G1P[8] gene sequences using the PhyML pro-
gram (Guindon and Gascuel, 2003), in MEGA5.0 (Tamura et al.,
2011). The statistical significance of the branch was assessed by
bootstrap resampling analysis (1000 replicates). Deduced amino
acid sequences of the 11 proteins of Brazilian G1P[8] RVA strains
were compared to the RV1 strain (JX943604–JX943614) using the
Bioedit v.7.2.3 software (Hall, 1999).
3. Results

RVA surveillance research was conducted for 27-year period
(1986–2013) with strains obtained from children with DD (hospi-
talized or not) in different Brazilian regions. The G1P[8] genotype
prevalence compared to other G and P genotypes ranged from 1%
to 100% among Brazilian children infected with RVA in almost
three decades of analysis (Fig. 1). The G1P[8] genotype presented
yearly fluctuations with peaks delimited in different seasons:
1994–1995, 1997–1998, 2000–2004 and 2008–2009 (Fig. 1).

Phylogenetic trees of the 11 G1P[8] RVA genes were generated
(Fig. 2). All 90 Brazilian strains analyzed belong to the Wa-like
genotype. Eighty-eight strains showed a I1–R1–C1–M1–A1–N1–
T1–E1–H1 genome constellation, while one strain detected in Rio
de Janeiro in 2007, rj14055–07 (KM026726), showed a I1–R1–
C1–M1–A1–N1–T3–E1–H1 specificity and one strain detected in
Maranhão in 2010, ma19030-10 (JX683639), published previously
by Rose et al. (2013), showed a Ix–R1–Cx–M1–A1–N1–T3–E1–H1
genome constellation (Supplementary material 1).
3.1. Sequence analysis of genes encoding structural proteins (VP)

The VP1–3 and VP6 gene analysis of the Brazilian strains
showed that sequences grouped with several prototype strains col-
lected in different countries, although some clusters show
sequences exclusively collected in the same Brazilian state, as
detected for strains in the state of Sergipe in 2009 (Fig. 2a–c and
e). Identity values between G1P[8] Brazilian strains and RV1 vac-
cine ranged from 88.1% to 100% for nucleotide (nt) and 94.6% to
100% for amino acid (aa) (Supplementary material 4).
Fig. 1. Percentage of G1P[8] genotype detection on the total number of species A rotav
Phylogenetic analysis based on the VP8* (aa 1–247) portion of
the VP4 encoding gene showed that Brazilian strains (Fig. 2d) clus-
tered into three evolutionary lineages: (i) P[8]-1 lineage clustering
the RV1 and RV1-like strains (se15901-08, ma19006-10 and
ba19391-10); (ii) P[8]-2 lineage with strains detected in the
1980s and at the beginning of the 1990s; and (iii) P[8]-3 lineage
with most Brazilian G1P[8] strains, into different P[8]-3 sublineag-
es. The alignment of the deduced amino acid sequences showed
that the potential trypsin cleavage sites at arginine 240 and 246
were both conserved in all 90 G1P[8] Brazilian strains and RV1.
No change was observed on epitopes 8-2 and 8-4. The proline 68,
71, 224 and 225 residues, the cysteine residue at position 215
highly conserved among the VP8* RVA gene portion, were also
maintained in all Brazilian strains and RV1 (Supplementary mate-
rial 5).

Four G1 VP7 lineages (G1-I, G1-II, G1-III and G1-V) were
detected in the Brazilian strains independent of the years. Identity
values between G1P[8] Brazilian strains and RV1 vaccine ranged
from 92.5% to 100% for nt and 93.8% to 100% for aa sequences (Sup-
plementary material 4). G1P[8] strains detected previously in the
1990s and still circulating in Brazil were grouped into the G1-I
and G1-II strains, and strains collected in different Brazilian regions
in the 1980s and at the beginning of the 1990s were grouped into
the G1-III and G1-V lineages (Fig. 2f).

When comparing the sequence regions defined as antigenic epi-
topes (7-1 and 7-2) for the VP7 protein, at least two epitopes (aa
94, 123, 148, 217) were not conserved in the Brazilian strains in
comparison with the RV1 VP7 gene (Supplementary material 5).

The strain se15901-08, detected in the state of Sergipe in 2008,
showed 100% nt identity with the RV1 strain for all structural
genes. This strain was collected from a child who had been vacci-
nated with the first dose of RV1 seven days before the beginning
of symptoms, evidencing a case of vaccine shedding.
3.2. Sequence analysis of genes encoding nonstructural proteins (NSP)

Similar to the core encoding VP1–3 and VP6 genes, NSP1–5
genes analysis of the Brazilian strains showed that sequences
grouped with prototypes collected worldwide, although some clus-
ters showed exclusively sequences collected in the same Brazilian
state, as detected for strains in the state of Sergipe in 2009 (Fig. 2g–
k). Identity values between G1P[8] Brazilian strains and RV1 vac-
cine ranged from 88.4% to 100% for nt and 90.7% to 100% for aa
irus (RVA) strains over the pre and post Rotarix� (RV1) vaccination eras in Brazil.



Fig. 2. Phylogenetic analysis of nucleotide sequence of the structural proteins (a)
VP1 (aa 1–215), (b) VP2 (aa 1–215), (c) VP3 (aa 1–225), (d) VP8* (aa 1–287), (e) VP6
(complete cds), (f) VP7 (aa 1–324), and the non structural proteins (g) NSP1
(complete cds), (h) NSP2 (complete cds), (i) NSP3 (complete cds), (j) NSP4 (complete
cds) and (k) NSP5 (complete cds) of Brazilian species A rotavirus (RVA) G1P[8]
strains. The strains of the present study are indicated with }. The Rotarix� vaccine
(RV1) strain is indicated with d. Bootstrap values (1000 replicates) above 70% are
shown at branch nodes.

Fig. 2 (continued)
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sequences in NSP1, NSP2, NSP4 and NSP5, respectively. Three
strains showed 100% aa identity with RV1 in at least one of the
NSP1, NSP2, NSP4 or NSP5 genes (Supplementary material 4).
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The NSP3 analysis showed that two strains collected in different
years and in two Brazilian regions (rj14055-07 [Southern] and
ba19030-10 [Northeastern]) belong to the T3 genotype. Both
strains showed maximum nt identity with the prototype G3P[9]
RVA (DQ490535) strain detected in Japan in 1982, AU-1 (Data
not shown).

As observed for the structural genes, strain se15901-08 showed
100% nt identity with the RV1 strain for nonstructural genes. This
strain was collected from a child who had been vaccinated with the
first dose of RV1 seven days before the beginning of symptoms,
evidencing a case of vaccine shedding.
4. Discussion

In Brazil, Wa-like and DS-1-like genotype combinations have
been reported in cases of children infected with RVA since the dec-
ade of the 1980s. Different studies describe Brazilian prevalent
combinations as: G1P[8], G2P[4], G3P[8], G4P[8] and G9P[8]; how-
ever, G1P[6], G3P[6], G5P[8], G8P[8], G8P[4], G12P[8] and G12P[9]
genotype combinations were detected in the country in recent dec-
ades (Mascarenhas et al., 2002; Leite et al., 2008; Tort et al., 2010;
Carvalho-Costa et al., 2011; Gómez et al., 2011; Gómez et al., 2013;
Gómez et al., 2014; Da Silva et al., 2011, 2013; Luchs and
Timenetsky Mdo, 2014). The Wa-like genotype, particularly
G1P[8] strains, is responsible for more than 50% of children infec-
tions worldwide and has contributed significantly to RVA DD in
different age groups (Kang et al., 2009; Benati et al., 2010; Tate
et al., 2010). As reported by Rose et al. (2013), G1P[8] is still
detected in Brazil, even after the introduction of RV1 mass vaccina-
tion in 2006, evidencing the importance of G1P[8] full genome
analysis in strains collected in different Brazilian regions for its
evolutionary profile and also for the evaluation of the vaccination
program. This information is also relevant in a country that has
introduced an RV1 vaccine in its NIP. During the 27-year surveil-
lance for Brazilian G1P[8], the prevalence of this genotype seems
to vary annually, with changes in the relative frequencies over
the years. Our findings show that Brazilian G1P[8] fluctuation
shows peaks in the seasons of 1994–1995, 1997–1998, 2000–
2004 and 2008–2009. Similar to our study, Giammanco et al.
(2014) observed that G1P[8] presented a similar fluctuation profile
over time in Parlermo, Italy, between 1985 and 2011. It is interest-
ing to mention that despite the similar genotype prevalence in the
population, Brazilian children have been vaccinated with a G1P[8]
specificity vaccine (RV1) since March 2006, whereas Italy has not
yet introduced an RVA vaccine in its NIP.

In the current study, one strain (se15901-08) was collected
from a two-month-old child who was immunized seven days
before hospitalization. Analysis of the 11 RVA genome segments
showed 100% nt identity with the RV1 strain, evidencing a case
of vaccine shedding. Anderson (2008) described 35–80% of healthy
RV1 vaccinated children shedding the RVA vaccine strain seven
days after the first dose was taken and 11–29% after the second
dose. Therefore, the vaccine virus deposited by individuals into
the environment may offer direct protection to the unvaccinated
children; consequently the herding effect could increase and be
beneficial in populations with low vaccine coverage (Rivera et al.,
2011). Furthermore, studies carried out in Australia, Austria, Brazil
and El Salvador reported a reduction in RVA disease and GA cases
in both unvaccinated and vaccinated cohorts, suggesting that the
reduction of RVA transmission by the vaccinated population could
benefit the unvaccinated members of the community (Patel et al.,
2012). It is not known what determines the difference observed
in the vaccine efficacy in developed and developing countries,
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and a few possibilities were postulated: differences in age,
nutrition status, host genetics or other clinic-epidemiological
information, as recently suggested in other studies (Cherian
et al., 2012; Imbert-Marcille et al., 2014; Nordgren et al., 2014;
Rongsen-Chandola et al., 2014).

The study reports for the first time the 11 genome segment
analysis from G1P[8] clinical strains collected in a time period of
27 years in different Brazilian regions in order to investigate how
this genotype evolved in Brazil over three decades of investigation.
Our results showed no evidence of selection pressure by RV1 vac-
cination in Brazil, as strains collected before and after 2006 (year of
mass vaccination introduction in Brazil) are quite similar for all
genes. It is difficult to determine the relationship between the
sequences within each Brazilian region due to the reduced number
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of strains for each state. Nonetheless, it is clear that multiple clus-
ters of human Wa-like genotype G1P[8] RVA co-circulated and
caused DD between 1986 and 2013. Rose et al. (2013) reported a
reassortment event in the NSP3 gene in a strain collected from a
child vaccinated with one dose in the state of Maranhão in 2010
(ma19030-10) that belongs to the T3 NSP3 genotype, related to
the AU-1-like genotype constellation. In the current study, the
same event was detected, for the same gene, in an unvaccinated
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child from Rio de Janeiro in 2007 (rj14055-07). Many studies have
reported this genogrouping system to show the existence of inter-
genogroup reassortments between different animal and human
RVA genogroups. However, the existence and effectiveness of het-
erogeneous genome constellations remain unclear probably
because they are caused by mechanisms that create protein sets
that work better when kept together (Heiman et al., 2008).
The results obtained in the current study also showed that four
Brazilian strains (es15221-08, ma19006-10, ba19391-10 and
rj22288-13) were closely related to the RV1 strain, for at least
one genome segment suggested the occurrence of reassortment
between RV1 and wild-type strains. During a five-year surveillance
study carried out in Hungary, László et al. (2012) identified 55
G1P[8] strains that were closely related but not identical to the
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RV1 parental strain (strain 89-12), indicating that the vaccine
strain may be circulating in the population.

The results obtained in VP1–VP3, VP6 and NSP1–NSP5 protein
analysis showed that Brazilian G1P[8] strains are closely related
to circulating strains belonging to genotype constellation 1
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(Wa-like) collected in the same period of time worldwide, no mat-
ter the different VP7 and VP4 genotypes, corroborating previous
findings in Bangladesh (Rahman et al., 2010), China (Shintani
et al., 2012), India (Arora and Chitambar, 2011) and South Korea
(Le et al., 2010).

Analysis of the VP8* encoding gene revealed that G1 circulated
in association with different P[8] lineages in Brazil during the 27-
year study: P[8]-1 lineage clustering the RV1 and RV1-like strains,
P[8]-2 lineage with strains detected in the 1980s and at the begin-
ning of the 1990s and P[8]-3 lineage with most Brazilian G1P[8]
strains. P[8]-3 seems to be the only lineage currently circulating
in Brazil whereas the lineage component of the RV1 vaccine is
P[8]-1. da Silva et al. (2013) previously reported a great P[8]-3 Bra-
zilian variety associated with Wa-like genotypes and proposed a
classification into six P[8]-3 sublineages. In the present study we
detected five out of six different P[8]-3 sublineages circulating in
association with G1. The sublineage P[8]-3.2, observed as being
exclusively associated with genotype G9 in Brazil by da Silva
et al. (2013), was not detected in association with G1 in the present
study, corroborating the previous results for this P[8]-3 sublineage.
It is important to mention two sublineages associated exclusively
with strains collected in 2009 in two states of Northeast Brazil
(P[8]-3.5 grouping strains collected in Pernambuco and P[8]-3.6
with strains collected in Sergipe). In a study conducted in Finland,
Hemming and Vesikari (2013) also reported the circulation of P[8]-
3 in association with G1 over a period of more than 20 years. Sim-
ilar results were reported by Imbert-Marcille et al. (2014) showing
a wide circulation of P[8]-3 sublineages in 62 patients with diar-
rhea in France during 2010–2012. The P[8] VP8* protein fragment
of the Brazilian strains contained differences in three (8–1, 8–2, 8–
3) of the four antigenic epitopes of this fragment, corroborating
previous studies that also found substitutions in VP8* antigenic
epitopes of G1P[8] strains (Rahman et al., 2010; Rose et al., 2013;
Hemming and Vesikari, 2013).

In the present study, analysis of the VP7 gene showed the circu-
lation of four G1 lineages in Brazil during the last three decades.
Strains collected in the 1980s and early 1990s belonged to the
G1-III and G1-V lineages, despite strains collected in the late
1990s, 2000s and 2010s being grouped into G1-I and G1-II lin-
eages, corroborating studies conducted in Argentina (Barril et al.,
2013), Brazil (Maranhão et al., 2012), South Korea (Le et al.,
2010) and Vietnam (Trang et al., 2012). Comparison between the
VP7 genome segment and RV1 shows differences in the Brazilian
G1P[8] strains. Two strains collected in the state of Rio de Janeiro
from an unvaccinated child (rj14055-07) and from a child vacci-
nated with two doses (rj22888-13) were grouped into the G1-II
lineage, with the same lineage being observed in the RV1 vaccine;
however, their sequences are quite different from the RV1 strain.
Various aa substitutions were detected when comparing the Bra-
zilian strains and RV1, including changes inside antigenic sites
(7-1 and 7-2); but only substitutions analysis are not sufficient
to conclude if the vaccine will protect children of the infection.
Only neutralization assays can confirm if these substitutions are
sufficient to change the virus infectivity.
5. Conclusions

Our findings provide additional information to enable under-
standing of how the G1P[8] genotype has evolved in Brazil. This
study suggests that the RV1 Brazilian mass vaccination does not
significantly influence the G1P[8] fluctuation profile throughout
the country, since most nucleotide substitutions found in samples
collected after the RV1 introduction in Brazil for the 11 genes had
already been observed in samples collected in the previous dec-
ades. The Wa-like x Au-1-like reassortment in two strains (NSP3
gene) was also demonstrated, along with the wild-type x RV1 vac-
cine strain reassortment in some vaccinated and unvaccinated
children in different genes. This study, along with the study con-
ducted by Hemming and Vesikari (2013), shows similar results
for RV1 and RV5 vaccines, for the 11 genes and for VP7 and VP8*,
respectively, concerning the G1P[8] genetic diversity before and
after a mass RVA vaccination introduced by the NIP. Therefore,
the improvement of RVA surveillance programs that include full
genome sequencing analysis will contribute to improving the
knowledge of some points such as how the introduction of a vac-
cine may affect the circulation of human or animal RVA strains,
the real frequency of RVA intergenogroup reassortment events
under natural conditions and the RVA strains’ stability generated
by such events.
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