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Most pharmacogenomics knowledge is contained in the text of published studies, and is thus not avail-
able for automated computation. Natural Language Processing (NLP) techniques for extracting relation-
ships in specific domains often rely on hand-built rules and domain-specific ontologies to achieve
good performance. In a new and evolving field such as pharmacogenomics (PGx), rules and ontologies
may not be available. Recent progress in syntactic NLP parsing in the context of a large corpus of phar-
macogenomics text provides new opportunities for automated relationship extraction. We describe an
ontology of PGx relationships built starting from a lexicon of key pharmacogenomic entities and a syn-
tactic parse of more than 87 million sentences from 17 million MEDLINE abstracts. We used the syntactic
structure of PGx statements to systematically extract commonly occurring relationships and to map them
to a common schema. Our extracted relationships have a 70–87.7% precision and involve not only key
PGx entities such as genes, drugs, and phenotypes (e.g., VKORC1, warfarin, clotting disorder), but also crit-
ical entities that are frequently modified by these key entities (e.g., VKORC1 polymorphism, warfarin
response, clotting disorder treatment). The result of our analysis is a network of 40,000 relationships
between more than 200 entity types with clear semantics. This network is used to guide the curation
of PGx knowledge and provide a computable resource for knowledge discovery.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Most biological knowledge exists in published scientific text. In
order to support the creation of databases and to enable the dis-
covery of new relationships, there is great interest in extracting
relationships automatically. Several successful efforts use manu-
ally created rules to define patterns of relationships between enti-
ties. These approaches are efficient when used in domains that are
of limited scope, such as protein–protein interactions or protein
transport. However, the complexity and diversity of the semantics
used to describe relationships in broad or evolving domains, such
as pharmacogenomics (PGx), are harder to capture. Thus, no gen-
eral set of rules exists for extracting the relationships relevant to
such fields, and creating/maintaining them manually would be te-
dious and time consuming.

Syntactic sentence parsers can identify the subject, object and
type of relationships using grammatical rules. General statistical
parsing techniques have recently emerged, and there are several
general-purpose parsers that yield reasonable results when applied
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to scientific text. These parsers depend on the need for good do-
main-specific lexicons of key entities, since named-entity recogni-
tion for particular fields in science can be difficult. We consider
named-entity recognition as the process of identifying members
of the lexicon within the text, amidst other words. With such lex-
icons, there is an opportunity to use syntactic sentence parsers to
identify rich rule sets automatically. These rule sets take advantage
of sentence structure and grammar to extract more precise infor-
mation. In addition, these rule sets can be organized in an ontology
that allows normalization of relationships and inference over
them.

Pharmacogenomics (PGx) is the study of how individual geno-
mic variations influence drug–response phenotypes. PGx knowl-
edge exists for the most part in the scientific literature in
sentences that mention relationships. We can represent a large
fraction of this knowledge as binary relationships R (a, b), where
a, and b are subjects and objects related by a relationship of type
R. Sometimes, a and b are instances of a gene (e.g., VKORC1 gene),
drug (e.g., warfarin), or phenotype (e.g., clotting disorder). As we
shall demonstrate later, very often a and b are entities that are
modified by genes (e.g., VKORC1 polymorphism), drugs (e.g., warfa-
rin dose) or phenotypes (e.g., clotting disorder treatment). R is a
type of relation described by words such as ‘‘inhibits”, ‘‘transports”,
or ‘‘treats” and their synonyms. Thus, although the three key
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entities in PGx (genes, drugs, and phenotypes) can be target nouns
for relation extraction, they are more often indicators of latent PGx
knowledge, as they modify other concepts to create a second set of
entities required to precisely describe PGx relationships. We call
these modified entities in contrast with the key entities that modify
and expand them. These modified entities can be any biomedical
entity, such as a gene variation, drug effect, or disease treatment.
For example, the gene entity VKORC1 (a key entity) is used as a
modifier of the concept polymorphism in ‘‘VKORC1 polymorphisms
affect warfarin response,” indicating that VKORC1 polymorphism is
a critical (composite) PGx entity. This sentence also indicates that
a modified entity, warfarin response, will be important as well.

In this paper we present a method for using a syntactical parser
to identify recurrent binary relationships that express PGx knowl-
edge. Many of these relationships use genes, drugs and phenotypes
as modifiers of other entities. We organized these relationships
and the associated entities in an ontology that maps diverse sen-
tence structures and vocabularies to a common semantics. We pro-
cessed 87 million sentences using this ontology to capture and
normalize more than 40,000 specific PGx relationships. These rela-
tionships are summarized in the form of a semantic network (i.e., a
network where entities (nodes) and relationships (edges) are asso-
ciated with the semantics defined in our ontology). We anticipate
that they will be useful to assist database curation and as a foun-
dation for knowledge discovery and data mining.
1 http://www.pharmgkb.org/resources/downloads_and_web_services.jsp.
2 OWL (Web Ontology Language): http://www.w3.org/TR/owl-features/.
2. Related work

Our work is partially motivated by our efforts building the Phar-
macogenomic Knowledge Base, PharmGKB (http://www.phar-
mgkb.org/) [1]. PharmGKB aims to catalog all knowledge of how
human genetic variation impacts drug–response phenotypes, and
is a manually curated database that summarizes published gene–
drug–phenotype relationships. The rapidly increasing size of the
pharmacogenomic literature threatens to overwhelm the Phar-
mGKB curators. Automatic approaches using NLP techniques are
therefore promising. Methods based on co-occurrence assume that
entities occurring together in a sentence are related, but the
semantics of the relationships are not typically captured. Never-
theless, these approaches efficiently identify potential relation-
ships that can subsequently be evaluated manually. For example,
the Pharmspresso system uses co-occurrence to group frequently
co-mentioned genes, genomic variations, drugs, and diseases [2].
These groups are then used to assist manual curation. Li et al. used
the co-occurrence of drug and disease names in MEDLINE abstracts
to derive drug–disease relations and to build a disease-specific
drug–protein network [3]. Blaschke et al. and Rosario et al. ex-
panded this co-occurrence approach to extract more complete
relations by searching for ‘‘tri-co-occurrence” [4,5]. Tri-co-occur-
rence refers to the co-occurrence of two named entities and one
type of relationship in a unique piece of text. Statistical analysis
of co-occurrence can help derive semantic similarities between
entities [6].

In contrast to co-occurrence, syntactic parsing can explicitly
identify relationships between two entities in text [7]. Hand-coded
parsing rules can extract protein–protein interactions and protein
transport relationships [8,9]. Fundel et al. defined three general
patterns of relations (specifying the semantic type of subjects
and objects, and using a lexicon of association words) to identify
protein–protein interactions [10]. For example their pattern ‘‘effec-
tor – relation – effectee” enables the capture of relationships of the
form ‘‘protein A activates protein B”. The OpenDMAP system also
uses patterns to identify protein interaction and transport [11]. Ah-
lers et al. used vocabularies and semantic types of the UMLS (Uni-
fied Medical Language System) to specify patterns to extract gene–
disease and drug–disease relationships [12]. Several groups have
used extracted relationships to create networks, including molecu-
lar interaction networks [13], gene–disease networks [14], regula-
tory gene expression networks [15], and gene–drug–disease
networks [16]. In order to be efficient, these syntactic approaches
often rely on large sets of patterns and stable ontologies to guaran-
tee performance on diverse sentence structures. Unfortunately, a
systematic catalog of patterns for pharmacogenomics is not avail-
able [17,18].

The Semantic Web community has developed methods for
learning ontologies from text using unsupervised approaches
[19,20]. Most of these efforts focus on learning hierarchies of con-
cepts. Ciaramita et al. studied unsupervised learning of relation-
ships between concepts [21]. Their method produces a network
of concepts where edges are associated with precise semantics
(e.g., Virus encodes Protein). Other efforts have focused on enrich-
ing existing ontologies for NLP using Web content [22]. Cilibrasi
and Vitányi proposed a method to automatically learn the seman-
tics of processed words, hypothesizing that semantically related
words co-occur more frequently in Web pages than do unrelated
words [23]. Gupta and Oates used Web content to identify concept
mappings for previously unrecognized words discovered while
processing text [24].

We describe here our method of relationship extraction that
uses (1) syntactic rules to extract relationships and (2) a learned
ontology to normalize those relationships.
3. Methods

Fig. 1 gives an overview of the four steps of our method, de-
scribed in the following sub-sections. The first input is a corpus
of article abstracts split into individual sentences. We benefit from
previous work that made such a corpus available and also provides
a convenient way to retrieve the sentences [25]. We use lexicons of
PGx key entities (drugs, genes, and phenotypes) from PharmGKB1

to retrieve sentences mentioning pairs of key entities. We parse re-
trieved sentences with the Stanford Parser and represent the sen-
tence using a convenient data structure called a ‘‘Dependency
Graph” [26]. Each retrieved sentence is analyzed to extract the raw
relationships between key entities themselves or other entities that
they modify. After applying this procedure to many pairs of key enti-
ties, we gather the raw relationships and entities and manually map
them to a much smaller set of ‘‘normalized” relationships and enti-
ties based on synonymy, arranged hierarchically in an OWL ontol-
ogy.2 We assume that this ontology is representative of PGx
relationships mentioned in our corpus. This ontology can then be ap-
plied to all raw relationship instances in the corpus to create a very
large set of normalized relationships representing the semantic con-
tent of the corpus.
3.1. Sentence parsing of MEDLINE into Dependency Graphs

The goal of the first step is to provide, in a format easy to pro-
cess, the syntactical structure of sentences that potentially men-
tion a PGx relationship. We focus on sentences that mention at
least two PGx key entities. We used an index of individual sentence
of MEDLINE abstracts published before 2009 (17,396,436 abstracts
and 87,806,828 sentences) processed by Xu et al. [25]. This index
has been built on the full text of sentences with the Lucene library
and can consequently be queried with any term [27]. It returns
sentences that have been indexed with the query terms and also
returns ‘‘parse trees” that correspond to retrieved sentences. A
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Fig. 1. Overview of our method to extractpharmacogenomics (PGx) relationships from text. The method has four steps. 1. We parse the text (MEDLINE abstracts in this work)
with the Stanford Parser to yield the Dependency Graph data structure that provides the syntactical structure of each sentence. 2. We identify PGx entities and their raw
relationships –‘‘raw” because their subject, object, and type use natural language terms. 3. We processed these raw relationships to build (first run only) or refine (next runs) an
ontology of PGx relationships. 4. For each of the raw relationships, we map them to the ontology and express them in normalized form. Normalized relationships create a
network in which nodes are PGx entities and edges are relationships, both of which are associated with a precise semantics.

Fig. 2. Sample parse tree of the sentence ‘‘Several single nucleotide polymorphisms (SNPs) in VKORC1 are associated with warfarin dose across the normal dose range” (PubMed ID
17161452). This parse tree is obtained when querying an index (built in previous work) with query (1) that looks for two pharmacogenomics key entities: VKORC1 (a gene)
and warfarin (a drug).

3 http://www.pharmgkb.org/search/annotatedGene.
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parse tree is a rooted tree that represents the syntactical structure
of a sentence, as illustrated in Fig. 2. Parse trees were previously
generated by applying the Stanford Parser on every sentence.

The Stanford Parser is a statistical natural language parser [26].
It uses a set of training sentences in which the grammatical func-
tion of words were manually annotated by experts to record the
most likely syntactical structure of a sentence. Parse trees of sen-
tences that mention at least two PGx key entities are subsequently
transformed into Dependency Graphs (DGs) with the same Stanford
Parser [27]. This DG format, described in Section 3.1.3, provides the
syntactical structure of sentences that we analyze to extract
relationships.

3.1.1. Querying the sentence index using seeds
From the corpus, we consider only sentences with pairs of PGx

key entities, (i.e., one gene and one drug, or one gene and one phe-
notype). For this initial work we did not focus on drug–phenotype
pairs because they are numerous and the majority of these pairs
are not of PGx interest. For example, to retrieve sentences that
potentially mention a relationship between the gene VKORC1 and
the drug warfarin, the index was queried with two sets of syn-
onyms as follows:

ðVKORC1 OR VKOR OR VKCFD2Þ AND ðwarfarin OR coumadinÞ:
ð1Þ
Results of these queries were sentences (and corresponding
parse trees) mentioning at least two terms, one that refers to the
first entity and one that refers to the second entity. Sets of syn-
onyms used to build such queries are from the PharmGKB lexicons.
For this initial work, we used 41 important genes highlighted by
PharmGKB,3 as well as 3007 drugs and 4202 phenotypes. Drug
and phenotype names listed in lexicons are not restricted to PGx.
Phenotype names include disease and adverse reaction names. Que-
rying the index with pairs of entities named in such lexicons can be
considered as a task of named-entity recognition. In one retrieved
sentence (and in its corresponding parse tree), we distinguish the
two particular terms, called seeds, that correspond to the two recog-
nized entities. These are called seeds because they form the basis for
relationship extraction. Seeds of the parse tree shown in Fig. 2 are
VKORC1 and warfarin.
3.1.2. Reducing the set and the size of parse trees
In order to reduce computational complexity, we reduce the

number of parse trees or parse tree fragments considered. We
compare the relative positions of the two seeds in the sentences

http://www.pharmgkb.org/search/annotatedGene


Fig. 3. The Stanford Parser creates a Dependency Graph (DG) data structure from the parse tree, such as this one corresponding to the parse tree in Fig. 2. Its two seeds are
VKORC1 and warfarin, and its root is associated. Solid lines represent the path that connects both seeds to each other via the root. This path is used in the next step to extract
the following raw relationship: associated (VKORC1_polymorphisms, warfarin_dose).
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clauses.4 If the two seeds are not located in the same clause of the
sentence, the parse tree is removed from consideration (the seeds
are unlikely to have an extractable relationship across clauses). If
the parse tree contains more than one clause, and a clause does
not contain both seeds, then the clause is pruned (we keep only
clauses containing more than two seeds). For example, the parse tree
in Fig. 2 contains only one clause with both seeds and was neither
removed from consideration nor pruned.

3.1.3. Transformation of parse trees into Dependency Graph
The Stanford Parser summarizes the syntactical structure of a

parse tree in an easy to process format, called a Dependency Graph
(DG) [28]. DGs are rooted, oriented, and labeled graphs, where
nodes are words and edges are dependency relations between
words (e.g., noun modifier, nominal subject). Fig. 3 shows the DG
built from the parse tree shown in Fig. 2. DGs are easier to read
and process than parse trees or other representations. Relation-
ships between sentence words are binary, and they occur directly
between ‘‘content” words (e.g., ‘‘associated” is connected directly
to ‘‘dose”), rather than being mediated indirectly via less important
function words (e.g., ‘‘associated” is related to ‘‘dose” via a common
link to ‘‘with”). Each DG includes a root (or head) that enables easy
recognition of the subject and the object of a sentence. Thus, DGs
highlight semantic content and are relatively easy to understand.

3.2. Relation extraction

The second step of our method uses syntactic structure pro-
vided by DGs to identify raw relationships of the form R (a, b)
where:

– a and b are two paths (i.e., sequences of nodes) in a DG, each of
which is either a single key entity (an instance of gene, drug or
phenotype) or of a modified entity – an entity that is not a gene,
drug or phenotype but is modified by one (e.g., an instance of
gene variation, drug dose or phenotype treatment);

– R is a node in the DG that connects a and b, and indicates the
nature of their relationship.

In example shown in Fig. 3, a is ‘‘VKORC1 polymorphisms”, b is
‘‘warfarin dose” and R is ‘‘associated”. We defined an algorithm
that extracts relationships from the DG that correspond to the
two following patterns:
4 A clause is a group of terms of a sentence. Some sentences contain several
independent clauses. For example the sentence ‘‘I am a doctor, and my wife is a lawyer”
has two independent ones.
verbðseedA expanded; seedB expandedÞ ð2Þ
nominalized verbðseedA expanded; seedB expandedÞ ð3Þ

An expanded seed is a seed that matches the input key entity or
that represents a modified entity in which the key entity modifies
another entity. The relations are captured by verbs or nominalized
versions of verbs (such as ‘‘association” that is the nominalized
version of ‘‘associate”). This algorithm has three steps: seed recog-
nition, seed expansion, and coupling of expanded seeds, described
as follows.
3.2.1. Seed recognition
Seeds are identified using the input lexicons. We use the Phar-

mGKB lexicons for genes, drugs and phenotypes, which include a
basic list of synonyms. Seeds may be a single word or a compound
noun. This ‘‘seed recognition” step localizes the two seeds in the
DG. When a seed is composed of one word, (e.g., thrombosis), the
system uses string matching and techniques to handle plural and
of capitalized forms. If a seed is composed of more than one word
(e.g., venous thromboembolism), a DG for the seed itself (noted as
DGseed) is created and the parsed sentence DG is examined to iden-
tify the subset of nodes matching the DGseed.
3.2.2. Seed expansion
The DG has information that allows us to expand the seed to

determine if it is being used as a key entity or a modified entity.
We expand a seed by traversing edges of the DG. The method of
traversal is defined by the types of dependencies that connect
the seed to other concepts. Depending on these dependencies (Ta-
ble 1 summarizes the decision logic), the algorithm will:

(i) expand the seed (continuing traversing the DG and con-
structing the seed);

(ii) end the expansion by detecting a relationship type repre-
sented by a verb (e.g., activate, bind, and regulate) or a nom-
inalized form of a verb (e.g., activation, binding, and
regulation). The type of the dependency determines whether
the seed is the subject or object in the relationship;

(iii) interrupt the expansion if neither (i) nor (ii) applies.

3.2.3. Seed coupling
When two expanded seeds (one subject expanded seed and one

object expanded seed) each end by reaching the same verb or nom-
inalized verb, they are associated to create a raw relationship, as
subject or object depending on the dependency type. Fig. 4 illus-
trates the expansion and subsequent coupling of seeds recognized
in the DG shown in Fig. 3.



Table 1
Summary of algorithm traversing the dependency graph from entities through root to other entities. The subject and object may be modified entities, and the dependency graph
provides data types that help decide how to construct the subject, object, and relationship for each graph. In particular, depending on the type associated with each edge in the
graph during traversal of a DG, the seed expansion either (i) continues, (ii) ends and thereby establishes a subject or an object, or (iii) interrupts. To identify a relationship, the
expansion of the two seeds has to end (one as a subject and one as an object) on a common ‘‘root” word.

Algorithm actions
(i) Expand seed (ii) End expansion (iii) Interrupt

Expanded seed is subject Expanded seed is object

Dependency types nn (noun modifier) nsubj (nominal subject) dobj (direct object) All others
iobj (indirect object)

prep_{for,in,into,of,on,to}
(preposition)

nsubjpass (passive nominal subject) xcomp (open clausal component)

prep_{at,as,by,for,in,into,on,than,with,within} (preposition)
xsubj (controlling subject)

Fig. 4. Four steps of recognizing and expanding the two seeds in the example sentence shown in Figs. 2 and 3. Starting with the seed entities, VKORC1 and warfarin, we use
the rules provided in Table 1 to traverse the Dependency Graph in Fig. 3 to recognize the subject (VKORC1_polymorphisms), object (warfarin_dose) and relationship
(associated) in the Dependency Graph.

Fig. 5. A raw relationship derived from the dependency graph has three compo-
nents: relationship type, subject, and object. Both subject and object can be either a
single PGx key entity (e.g., warfarin) or a modified entity using the key entity as a
modifier (e.g., VKORC1_expression).
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3.2.4. Evaluation of raw relationship precision
We manually evaluated the precision of extracting raw relation-

ships. We randomly selected a subset of 220 raw relationships and
classified them into three categories: complete and true, incomplete
and true, and false. Incomplete and true relationships are relation-
ships that are consistent with mentioned relationships but are
missing partial information. It is then required that the lack of
information does not change the interpretation of the relationship.
For example, if derived from the sentence ‘‘polymorphisms in
VKORC1 are associated with warfarin dose”:

� associated (VKORC1_polymorphisms, warfarin_dose) would be
complete and true;
� associated (VKORC1_polymorphisms, warfarin) would be incom-

plete and true;
� polymorphisms (VKORC1, warfarin_dose) would be false.

3.3. Ontology construction

Raw relationships represent multiple equivalent ways to express
a relationship. In order to simplify the analysis of the semantics, we
must map many raw relationships onto a smaller, normalized set of
relationships. We manually examined the raw relationships ob-
served in the text, and grouped them into a hierarchical domain
ontology of PGx relationships. We first identified the most frequent
relationship types; and then merged similar ones and organized
them hierarchically. We also tracked modified entities and merged
these. We computed the number of raw entity and relationship
types, and the number of normalized types resulting from grouping
them. We describe the steps of ontology construction here. This con-
struction is carried out only once, at the first iteration of the ap-
proach, but the ontology can be refined during subsequent
iterations.

3.3.1. Identification of relationship types
We created four lists from the raw relationships extracted from

the DGs. The lists represent (1) the most frequent types of relation-
ships, and the most frequent modified entities modified by (2)
genes, (3) drugs, and (4) phenotypes as defined in our lexicons
for these entities (see Fig. 5). Each list is processed to remove word
heterogeneity caused by captions, plurals, and conjugations. We
then combined equivalent words, and computed their frequency
of occurrence to produce a list sorted by frequency of use. Modified
entities are the subjects or objects of relationships (i.e., a or b)
grammatically modified by either a gene, a drug, or a phenotype.
3.3.2. Organization of relationship types and entities in hierarchies
We manually examined and grouped elements of each list into

sets of synonyms and then organized them in role and concept hier-
archies. See Fig. 6 for example of roles and concepts. Relationship
synonyms (e.g., decrease, reduce) represent roles in the ontology.
A role is a binary relation associated with a domain and a range.
It is named with one of the synonyms (e.g., decrease) and associ-
ated with labels that correspond to the other synonyms. The roles
are organized in a hierarchy so that any instance of a role (e.g., in-
hibit) is also an instance of its parent (less precise) role (e.g., affect).

Terms that are modified by the same kind of entity (e.g., gene)
are grouped into sets of synonyms (e.g., polymorphism, mutation,
and variant) and lead to the creation of concepts in the ontology.
A concept is named with one of the synonyms as a reference to la-
bel the group as a whole (e.g., the variant label leads to the concept



Fig. 6. Three raw relationships normalized to two normalized expressions, using the PHARE (PHArmacogenomics RElationship) ontology of entities and relationships. The
content of this ontology is described in Section 4. In this example, the first two raw relationships express the same relationship, according to the mappings in our ontology
(e.g., drug dose and drug requirement are declared synonyms in the ontology). The third raw relationship maps to a more specific relationship (increases), which is a child of
the more general (associated) relationship.
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name Variant) and is associated with all the other synonym labels.
Distinct concepts are organized in a concept hierarchy such that
any instance of a concept (e.g., Variant) is also an instance of its
parent concepts (e.g., GenomicVariation). Importantly, when a
new concept is created, it is associated with a description that
specifies whether it is modified by genes or drugs or phenotypes.
For example, the mention of a genomic variation in text can be
modified by a gene name, thus the Variant concept (with alternate
labels ‘‘polymorphism” and ‘‘mutation”) is associated with a
description stating that instances of Variant can be modified by
instances of Gene. Such a description enables ‘‘VKORC1 polymor-
phism” in text to be mapped to the concept Variant, since modified
by a gene name (VKORC1) whereas the phrase ‘‘important
polymorphism” is not mapped, since ‘‘important” is not an instance
of the Gene concept. The ontology was represented in description
logic and encoded in OWL using Protégé [29,30]. The ontology
was built once, examined and validated by three domain experts
(curators at PharmGKB). Because we considered only the first
200 elements of each of the four lists, the ontology construction
and examination took approximately 4 h (around 1 h per list).

3.4. Relationship normalization

Once the ontology is built, we can use it to map most raw rela-
tionships to a common semantics. The mapping process has two
steps: (1) entity names are normalized, and then (2) relationships
are normalized. Normalization is a many-to-one mapping that
maps multiple diverse textual statements to a common normalized
form. Fig. 6 illustrates the normalization process.

3.4.1. Normalization of entity names
To name modified entities uniformly, we implemented an algo-

rithm that takes a modified entity name of any length and returns
its normalized form according to the ontology. In the first step of
the algorithm, we decompose the modified entity into its original
seed and the other words in the string. The algorithm iterates over
these words to construct the normalized name of the entity. The
first word is the seed. Using the PharmGKB lexicons, seeds are a
gene, drug, or phenotype (e.g., VKORC1, warfarin, or bleeding)
and thus we can associate them with a concept Cseed. With Cseed

determined, we process the next word. We search for a match be-
tween the next word and labels of concepts that are modified by
Cseed, according to the ontology. If a concept matches, the pro-
cessed word is associated with this new concept. In the case where
no match is found, a match is searched between the processed
word and labels of concepts that are modified by more general
concepts (i.e., those modified by parents of Cseed). In the case where
no further match is found, no concept in the ontology corresponds
and then a new concept is created with the processed word as a la-
bel and with a description specifying that it is modified by Cseed

(i.e., $ modified.Cseed). This operation is iterated for each successive
word of the modified entity, each time assigning the right concept
to the new processed word. When the last word is reached, the
normalized version of the entity name is proposed as the concate-
nation of the seed plus the names of successive assigned concepts.
For example, with the modified entity VKORC1_polymorphisms,
VKORC1 is the seed and Cseed is the concept Gene. The next word
is polymorphism, which refers to a concept modified by Gene. Poly-
morphism is a synonym of the concept Variant, which is thus asso-
ciated with the processed word. Because there are no other words
in the modified entity, the normalized name is VKORC1_variant.
When the subject or the object of a raw relationship is a single
PGx key entity (gene, drug, phenotype), PharmGKB lexicons pro-
vide the normalized name, which is the preferred name of the seed
(e.g., VKORC1 for VKOR). Fig. 7 decomposes the steps of the nor-
malization of a modified entity made of three words.
3.4.2. Normalization of relationship types
We normalize relationship types by searching for a role label

that matches the raw relationship. If a label matches, the identifier
of the corresponding role becomes the normalized type. For exam-
ple, the type ‘‘related”, mentioned in Fig. 6, matches to the role
associated_with. Normalized entities and relationships are com-
bined to form the normalized relationship. We use normalized
relationships to instantiate concepts and roles from the ontology
and thus to create a knowledge base of PGx relationships. Each
relationship in the knowledge base is made by the instantiation of:

� two concepts (e.g., Variant(vkorc1_variant) and DrugDose(war-
farin_dose)) and
� one role (e.g., associated_with (vkorc1_variant, warfarin_dose)).



Fig. 7. Starting with the text ‘‘differences in warfarin requirements”, we extracted the raw entity ‘‘warfarin_requirements_differences” and then apply normalization using the
PHARE ontology. The first step ensures that the standard name for warfarin is used (here, Coumadin would have been mapped to warfarin, had it been used). Warfarin is the
seed and the concept associated with it, noted Cseed, is Drug according to the ontology. The second step maps ‘‘requirements” to the standard ontological concept of dose, and
the final step maps ‘‘differences” to the ontology concept of variation. Having learned these mappings on our initial training corpus, we can apply them broadly and
prospectively to new sentences.

Table 2
The 30 most frequent relationship types and entities modified by genes, drugs or phenotypes. Numbers correspond to their frequency of occurrence
in 41,134 raw relationships extracted from 17,396,436 MEDLINE abstracts. Entities can be composed of one or several words.

Relationship types Entities modified by
Genes Drugs Phenotypes

2538 associate 1237 gene 267 metabolism 304 cell
1017 increase 1000 inhibitor 229 activity 114 line
985 inhibit 935 polymorphism 226 administration 101 patient
825 induce 775 expression 213 treatment 71 risk
763 metabolize 773 activity 207 effect 35 tissue
666 involve 689 mutation 205 inhibitor 34 specimen
643 reduce 685 genotype 146 dose 33 case
547 catalyze 393 inhibition 137 concentration 27 treatment
515 cause 329 level 104 level 26 rate
509 affect 245 gene_mutation 103 substrate 26 effect
490 decrease 232 gene_polymorphism 90 clearance 26 breast = cancer
433 show 227 allele 88 antagonist 22 incidence
428 express 162 variant 84 channel 21 factor
392 relate 156 enzyme 75 inhibition 21 resistance
392 use 138 mrna 73 responsible 20 sample
387 correlate 125 protein 72 hydroxylation 18 model
385 influence 83 channel 70 enzyme 16 exposure
355 determine 81 isoform 67 oxidation 15 type
354 contribute 78 effect 65 gene 15 development
319 factor 77 isozyme 63 formation 15 group
318 mediate 76 cell 62 blocker 14%
317 had 73 deficiency 60 metabolite 14 activity
301 found 71 overexpression 57 dependent 14 mellitus
299 measure 67 substrate 52 exposure 13 gene
287 investigate 67 induction 46 ratio 13 cause
284 result 63 gene_expression 45 consumption 13 presence
281 studied 59 c677t 44 due 13 all
280 detect 58 inhibitor_use 43 drug 13 level
274 association 57 gene_allele 40 response 12 severity
274 have 55 content 38 bioavailability 12 study
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A detailed description of the normalization algorithm is pro-
vided in Coulet et al. [31].
6

4. Results

We queried 87,806,828 parse trees to find a total of 295,569
sentences with pairs of PGx entities as seeds. We pruned these sen-
tences, as described in Section 3.1.2, to extract 41,134 raw relation-
ships, including 21,050 relationships seeded by gene–drug pairs
and 20,084 by gene–phenotype pairs. Table 2 shows the relation-
ship types and entities most frequently found in these raw rela-
tionships.5 Remarkably, we found that the 200 most frequent raw
relationship types summarize 80% of extracted relationships (see Ta-
ble 3). Our manual evaluation of 220 raw relationships indicated that
5 Complete lists are available at http://www.stanford.edu/~coulet/material/entity_-
lists/.
70% of those were complete true positives, 87.7% were complete or
incomplete true positives, and 12.3% were false positives. Distinction
between complete and incomplete true positive is described in
Section 3.2.4.

We created an ontology of the 200 most frequent relationship
types and modified entities called PHARE (PHArmacogenomics
RElationships).6 PHARE is made of 237 concepts and 76 roles. PHARE
concepts are instantiated with 26,966 distinct entities and PHARE
roles are instantiated with 46,523 explicit7 relationships between
pairs of entities. The number of role instantiations is greater than
the number of raw relationships because we count both role and in-
verse role instantiations (e.g., R (a, b) and R� (b, a)). Finally one role
instantiation can be supported by several sentences and one entity
PHARE is available at http://www.stanford.edu/~coulet/material/ontology/
phare.owl.

7 Those are considered explicit in contrast with inferred instantiations that can be
considered implicit.

http://www.stanford.edu
http://www.stanford.edu
http://www.stanford.edu
http://www.stanford.edu


Table 3
Percentages of raw relationships covered using the 100 and 200 most frequent relationship types and entities. n represents the number of distinct types or entities identified in all
relationships. Thus, for example, the top 200 entities modified by genes account for 85% of all raw gene-related entities mentioned in the corpus. Similarly, the top 200
relationship types account for 80% of all raw relationships in our corpus.

Percentage of covered raw relationships Relationship types (n = 1921) (%) Entities modified by

Genes (n = 1210) (%) Drugs (n = 1243) (%) Phenotypes (n = 445) (%)

By 100 most frequent relationship types or entities 68 77 58 71
By 200 most frequent relationship types or entities 80 85 71 84

Table 4
The 15 most instantiated normalized roles (first column) and normalized concepts modified by gene (second column), drug (third column), and phenotype (fourth column) in the
knowledge base. Numbers to the left represent the number of instances of the role or entity in 41,134 raw relationships. The number in brackets is the number of unique instances
of concepts used in these raw relationships.

Roles Concepts modified by

Drug Gene Phenotype

2981 associated_with 6075(1083) Drug 8040 (285) Gene 3854 (990) Disease
1580 demonstrates 1063 (558) DrugTreatment 2082 (210) Variant 604 (354) PhenotypeRisk
1460 increases 606 (344) DrugDose 2702 (187) Expression 211 (163)DiseaseExacerbation
1428 reduces 302 (160) DrugEffect 826 (134) GenomicVariation 171 (183) DiseaseSeverity
1420 studies 263 (195) DrugMetabolism 644 (64) Enzyme 117 (95) Symptom
986 inhibits 199 (135) DrugActivity 520 (185) GeneProductFunction 99 (77) DiseaseCause
924 influences 130 (107) DrugElimination 192 (103) GeneProductSynthesis 57 (38) DiseaseSensitivity
894 causes 137 (90) DrugTransformation 592 (103) Repression 49 (53) PhenotypeMechanism
841 includes 101 (61) Hydroxylation 317 (79) Overexpression 49 (36) Phenotype
707 metabolizes 93 (75) DrugAnalysis 285 (81) GeneProductActivity 44 (38) DiseaseEffect
698 uses 88 (81)DrugPharmacokinetics 169 (67) Protein 29 (33) DiseaseRelief
655 induces 87 (72) DrugMetabolite 128 (81) GeneAnalysis 27 (35) PhenotypeAnalysis
488 produces 80 (62) DrugInhibitor 88 (75) GenomicRegion 25 (24) DiseaseDuration
464 affects 67 (62) DrugDoseVariation 73 (44) GeneProduct 9 (10) DiseaseSurvival
449 determines 59 (59) DrugAnalog 57 (50) GeneProductActivityChange 5 (13) DiseaseAbsence
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can be involved in several role instantiations. Table 4 presents a list
of the most commonly used concepts and roles.

We used the resulting knowledge base to create PGx networks
where nodes are PGx entities and edges are normalized relation-
ships between these entities. Of course, we mapped these entities
and relationships to common semantics as defined in the knowl-
edge base, and thus they are semantic networks. Fig. 8a and b shows
such semantic networks related to the VKORC1 gene. Fig. 9 sum-
marizes the number of entities in each entity class and the number
of relationships between these and other entity types.
8 http://wordnet.princeton.edu/.
5. Discussion

The two main advantages of our method are: (1) the identifica-
tion of both PGx key entities (genes, drugs, and phenotypes), as
well as crucial and novel PGx entities modified by genes, drugs,
and phenotypes, and (2) the association of extracted relationships
with a normalized semantics, captured in a manually built ontol-
ogy. The syntactical structure of sentences allows us to use our
key entity lexicons to bootstrap the discovery and normalization
of the modified entities critical to PGx and the ontology allows
us to record these entities and recognize them under very general
textual conditions.

Our method is flexible because it uses syntactical patterns that
are much more general than specific rules (e.g., x inhibits y). It is
precise because it is based on the detection of relationships in nat-
ural language text, and does not depend upon simple co-occur-
rence of two recognized entities. A drawback of syntactical
parsing approaches compared to co-occurrence is lower recall. In
our work, low recall is attenuated by large size of the corpus, which
gives us multiple opportunities to recognize a relationship. We
may further improve precision by using full text. Our recognition
of named entities in sentences is based on string matching plus
normalization techniques. At this time, we capture, but do not
use qualifiers that modulate the relationship itself such as nega-
tion, adverbs (e.g., not, highly, and hypothetically). One improve-
ment of our approach would be to consider subcategorization
frames in particular for ditransitive or caused-motion verbs (such
as to transform for instance) that are reporting several relationships
between one subject and multiple objects (e.g., x transforms y in z).

We created and validated our ontology manually, and were for-
tunate that the language used to describe PGx relationships degen-
erates to a small core of unique concepts. Other efforts for
detecting synonyms use resources such as WordNet,8 but this is
not applicable to technical biological domains. Instead, we used do-
main experts to create acceptable synonym mappings. The decision
to group words can be approximate, and some grouped words are
not exact synonyms, such as SNP and allele. These similar words have
been grouped to limit the number of distinct concepts in the ontol-
ogy. The approach described in this paper is completely applicable to
other domains. The main drawback of such domain change is the hu-
man effort that will be required to develop an ontology adapted to
the domain if none is available.

6. Conclusion

We have described a new method that uses the syntactical
structure of sentences to extract biomedical relationships from
text. We use key pharmacogenomic entities (genes, drugs, and
phenotypes) to bootstrap a process whereby other entities that
are modified by these concepts are identified and stored in an
ontology. The relationships used in pharmacogenomics literature
are also captured and normalized, yielding a core set of 41,134
relationships that capture approximately 80% of extracted relation-
ships in the text. Our ontology allows us to label automatically any
parsed sentence that provides a relationship between the key enti-

http://wordnet.princeton.edu/


Fig. 8. Two semantic networks extracted for the VKORC1 gene. (a) Displays pharmacogenomics (PGx) relationships extracted from sentences that contain VKORC1 or one of
its synonyms as a key entity. Thus, for example, it shows that VKORC1 predicts warfarin drug dose. (b) Displays PGx relationships for entities that are modified by VKORC1
(e.g., VKORC1_haplotype, VKORC1_variant). Thus, for example, VKORC1 haplotypes influence warfarin drug effect. Each node represents a PGx key or modified entity, e.g.,
warfarin or warfarin_drug_effect. Edges represent relationships between these entities that are mentioned in MEDLINE abstracts. When several sentences mention a
relationship between the same two entities, the edge is wider and is labeled with the most frequent types of relationship. Networks have been generated using Cytoscape
v2.6.3 (http://www.cytoscape.org).
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ties or the derivative modified entities – totaling more than 200 to-
tal entity types. We created a knowledge base of relationships from
17 million MEDLINE abstracts containing 87 million sentences.
This knowledge base allows us to create semantically rich summa-
ries of the relationships between genes, drugs, and phenotypes. By
going beyond classic entity recognition for gene, drug and pheno-

http://www.cytoscape.org


Fig. 9. A summary of the pharmacogenomics (PGx) concept network. Nodes represent concepts frequently appearing in PGx relationships. Their size is dependent on the
number of instantiated PGx entities. Edges represent relationships between instances of two concepts. Their width is dependent on their number. This network has been built
from the knowledge base of 41,134 relationships extracted from the text of MEDLINE abstracts. Thus, for example, there are many statements in the PGx literature relating
drugs to genes, and genes to diseases. There are somewhat less relating drug metabolism specifically to genomic variation. This network has been generated using Cytoscape
v2.6.3 (http://www.cytoscape.org).
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type, and by not requiring prior enumeration of relationship types,
we have created a novel accurate and extensible approach to pro-
cessing PGx text. To the best of our knowledge, our work is the first
to use reasoning with an OWL ontology to integrate heterogeneous
relationships extracted from text.
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