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Abstract

In this paper we present the composite Euler method for the strong solution of stochastic di%erential equations driven
by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit
Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain
better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For
the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the
methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear
SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown
to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very
promising method. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we consider numerical methods for the strong solution of stochastic di%erential
equations (SDEs) driven by d-dimensional Wiener processes

dy(t) = f(t; y(t)) dt +
d∑

j=1

gj(t; y(t)) dWj(t); y(t0) = y0; t ∈ [t0; T ]; (1)

where f(t; y(t)) is the drift coe?cient, gj(t; y(t)) is the di%usion coe?cient and Wj(t) is the standard
Wiener process whose increment @Wj(t)=Wj(t+@t)−Wj(t) is a Gaussian random variable N (0; @t).
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When d = 1, the SDEs driven by one Wiener process are given by

dy(t) = f(t; y(t)) dt + g(t; y(t)) dW (t); y(t0) = y0; t ∈ [t0; T ]: (2)

There are similar relationships between the numerical methods for ordinary di%erential equations
(ODEs) and those for SDEs. You can Jnd these relationships in, for example, the analysis of Runge–
Kutta methods [2,4,7,14], order conditions [2,3,12], multistep methods [1,8] and adaptive step control
techniques [9]. There are a number of ways of developing numerical methods for SDEs. The Jrst
way is to construct new methods from scratch, the second way is to take existing methods for ODEs
and apply them to (1). For example, for solving the ODE

y′ = f(t; y(t)); y(t0) = y0; t ∈ [t0; T ]; (3)

we have the explicit Euler method

yn+1 = yn + hf(tn; yn)

and the implicit Euler method

yn+1 = yn + hf(tn+1; yn+1);

where tn = t0 + nh (n = 0; 1; : : : ; N ) and h = (T − t0)=N . Corresponding to these Euler methods, there
are three Euler methods for the SDE (2), namely
(1) the explicit Euler method

yn+1 = yn + f(tn; yn)h + g(tn; yn)@Wn;

(2) the semi-implicit Euler method

yn+1 = yn + f(tn+1; yn+1)h + g(tn; yn)@Wn;

(3) and the implicit Euler method

yn+1 = yn + f(tn+1; yn+1)h + g(tn+1; yn+1)@Wn;

where @Wn = W (tn+1) − W (tn).
Due to the speciJc nature of the Wiener process, considerable complications arise in a number of

straightforward attempts to generalize methods for ODEs. One of the main di?culties in developing
numerical methods for SDEs arises when considering sti%ness.

Applying the explicit Euler methods for ODEs to the linear test equation

y′ = �y; Re(�) ¡ 0

gives

yn+1 = (1 + �h)yn;

and the explicit Euler method is stable if |1 + �h|¡ 1, or if �h ∈ B(−1; 1) (the circle of radius 1
centred on (−1; 0)). Applying the implicit Euler method to the linear test equation, gives

yn+1 =
1

1 − �h
yn

and the implicit Euler method is stable if |1=(1 − �h)|¡ 1, that is stable for any h¿ 0. Clearly the
implicit Euler method can cope with sti%ness (where the eigenvalues of (3) have widely varying
negative real part) whereas the explicit Euler method cannot.



K. Burrage, T. Tian / Journal of Computational and Applied Mathematics 131 (2001) 407–426 409

Consider now what happens in the stochastic case. Applying the implicit Euler method to the
linear test equation (interpreted in the Itô sense),

dy = ay dt + by dW (t); y0 = y(t0) (4)

gives

yn+1 = R(h; @Wn)yn;

where

R(h; @Wn) =
1

1 − ah − b@Wn
:

As @Wn may take any value in (−∞;∞), |R| can become unbounded for any a, b and h. For
problems which are sti% in both the deterministic and stochastic components, the implicit Euler
method is not appropriate. In addition, the numerical solution of the implicit Euler method converges
to the exact solution of the corresponding right-point SDE but not that of the Itô SDE [6].

Thus in this paper, we introduce a modiJed method to improve upon the stability properties of
the Euler methods. The di?culty with the implicit Euler method is that R(h; @Wn) may approach
inJnity if the generated random number @Wn is in the neighbourhood of (1 − ah)=b. In this case
another method can be used such as the semi-implicit Euler method. This leads to the following
composite method

yn+1 =




1 + b@Wn

1 − ah
yn under certain condition;

1
1 − ah − b@Wn

yn else:

We call this method the composite Euler method and it is a combination of the semi-implicit Euler
method and the implicit Euler method, given by

yn+1 = yn + f(tn+1; yn+1)h + [�ng(tn; yn) + (1 − �n)g(tn+1; yn+1)]@Wn; (5)

where �n ∈ [0; 1] and is determined in every step. It becomes the semi-implicit Euler method when
�n ≡ 1, or the implicit Euler method when �n ≡ 0. We can obtain di%erent composite Euler methods
if di%erent criteria for choosing �n are used.

There have been other attempts in the literature in order to improve the stability properties of nu-
merical methods for sti% SDEs. For example, Milshtein et al. [13] present balanced implicit methods
by introducing a modiJed implicit di%usion coe?cient, given by

yn+1 = yn + f(tn; yn)h +
d∑

j=1

gj(tn; yn)@Wnj + Cn(yn − yn+1);

where

Cn = c0(tn; yn)h +
d∑

j=1

cj(tn; yn)|@Wnj|:

For balanced implicit methods, the type and degree of implicitness can be chosen by appropriate
weights c0 and cj (j = 1; 2; : : : ; cd). We consider extensions of this idea in later papers.
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The outline of the contents of this paper is as follows. From Sections 2–5, we discuss the composite
Euler method for SDEs driven by one Wiener process. We give three criteria for selecting �n and
two composite Euler methods in Section 2. In Section 3 we give the mean-square and asymptotic
stability regions of these composite Euler methods. The convergence properties of the composite
Euler methods are discussed in Section 4. Numerical results for solving one-dimensional SDEs are
presented in Section 5. In Section 6 we give criteria for selecting �nj in the composite Euler method
for SDEs driven by d-dimensional Wiener processes.

2. The composite Euler method

In this section we consider the composite Euler method (5) for the SDE (2). First, we discuss
criteria for choosing �n in the composite Euler method when solving the linear test equation (4).
Applying the composite Euler method to (4), gives

yn+1 = yn + ahyn+1 + [�nbyn + (1 − �n)byn+1]@Wn;

that is

yn+1 =
1 + �nqIn

1 − p − (1 − �n)qIn
yn; (6)

where p = ah, q = b
√

h, @Wn =
√

hIn and In is the nth realization of I , the standard normal random
variable N(0; 1).

The general principle for selecting �n is to ensure

lim
N→∞

N−1∏
n=0

1 + �nqIn
1 − p − (1 − �n)qIn

converges to 0 as fast as possible when the underlying problem is itself asymptotically stable. Since
the solution of (4) (interpreted in the Itô sense) is

y(t) = e(a−(1=2)b2)t+bW (t)y0;

the problem is asymptotically stable whenever Re(a − 1
2b

2) ¡ 0. In this paper it is assumed that
a¡ 0 and b¿ 0.

A simple criterion is that the implicit Euler method is used when In ¡ 0. In this case∣∣∣∣ 1
1 − p − qIn

∣∣∣∣¡ 1:

Criterion 1. For solving SDEs; a simple criterion for selecting �n in the composite Euler method
is given by

�(1)
n =

{
0; In ¡ 0;

1; In¿0:

The composite Euler method with Criterion 1 is called the composite Euler method of type 1.
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Let

f(�) =
1 + qIn�

1 − p − (1 − �)qIn
;

we now consider the criterion for choosing the optimal value of �n. It is easy to obtain

min
�∈[0;1]

|f(�)| = min{|f(0)|; |f(1)|}:
Let

Qn0 = f(0) =
1

1 − p − qIn
; Qn1 = f(1) =

1 + qIn
1 − p

;

then the criterion for selecting the optimal �n is given below.

Criterion 2. For the linear test equation; the criterion for selecting the optimal �n in the composite
Euler method is given by

�(2)
n =

{
0; |Qn0|¡ |Qn1|;
1; |Qn0|¿|Qn1|:

Now, we consider the criterion for selecting �n in the composite Euler method when solving
the scalar nonlinear SDE (2). Assuming yn+1, y∗

n+1 are numerical solutions of (5) with yn, y∗
n ,

respectively, then

yn+1 = yn + f(tn+1; yn+1)h + [�ng(tn; yn) + (1 − �n)g(tn+1; yn+1)]
√

hIn;

y∗
n+1 = y∗

n + f(tn+1; y∗
n+1)h + [�ng(tn; y∗

n ) + (1 − �n)g(tn+1; y∗
n+1)]

√
hIn

and the following approximate result holds:

yn+1 − y∗
n+1 ≈

(1 + �n(@g=@y)
√

hIn)|y=yn

(1 − (@f=@y)h + (�n − 1)(@g=@y)
√

hIn)|y=yn+1

(yn − y∗
n )

≈ 1 + �n(@g=@y)
√

hIn
1 − (@f=@y)h + (�n − 1)(@g=@y)

√
hIn

∣∣∣∣∣
y=yn

(yn − y∗
n ):

Let

Rn0 =
1

1 − (@f=@y)h − (@g=@y)
√

hIn

∣∣∣∣∣
y=yn

; Rn1 =
1 + (@g=@y)

√
hIn

1 − (@f=@y)h

∣∣∣∣∣
y=yn

;

then Criterion 3 is similar to Criterion 2.

Criterion 3. The criterion for selecting �n in the composite Euler method for solving a scalar
nonlinear SDE is given by

�(3)
n =

{
0; |Rn0|¡ |Rn1|;
1; |Rn0|¿|Rn1|:

The composite Euler method with Criterion 2 or 3 is called the composite Euler method of
type 2.
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Now, we consider the numerical solution of the scalar nonlinear equation (5). This resulting
nonlinear equation can be solved by Jxed-point iteration, Newton–Raphson iteration, line search or
other iterative methods. Two factors should be taken into account when using such an iteration
method.

The Jrst factor is that we should consider the convergence properties of iterative methods for
nonlinear equations and the stability properties of numerical methods for SDEs together, especially
when min{|Rn0|; |Rn1|}¿ 1. The second factor is that the stability properties of numerical methods
for SDEs vary from step to step because of the uncertainty of the stochastic component, and so it
may be necessary to obtain convergence by varying the stepsize. In this paper, the nonlinear equation
(5) is solved by Newton–Raphson iteration.

3. Stability properties of the composite Euler method

Applying a numerical scheme to the linear test equation (4), the numerical scheme is represented
by

yn+1 = R(h; a; b; @Wn)yn = R(h; a; b;
√

hIn)yn: (7)

Saito and Mitsui [16] introduce the deJnition of mean-square (MS) stability.

De�nition 1. A numerical scheme is said to be MS-stable for h, a, b if

NR(h; a; b) = E(R2(h; a; b;
√

hI)) ¡ 1:

NR(h; a; b) is called the MS-stability function.

The MS-stability function of the semi-implicit Euler method is

NR1 =
1 + q2

(1 − p)2

and that of the implicit Euler method does not exist.
The MS-stability function of the composite Euler method is

NR2 =
1

2�

∫ ∞

−∞

(1 + �(x)qx)2

(1 − p − (1 − �(x))qx)2
e−x2=2 dx; (8)

where the criterion function �(x) is deJned according to the corresponding Criterion 1 or 2, given
by

Criterion 1: �(1)(x) =

{
1; x ¿ 0;

0; x ¡ 0;
(9)

Criterion 2: �(2)(x) =




1;
∣∣∣∣1 + qx

1 − p

∣∣∣∣¡
∣∣∣∣ 1
1 − p − qx

∣∣∣∣ ;
0;

∣∣∣∣1 + qx
1 − p

∣∣∣∣¿
∣∣∣∣ 1
1 − p − qx

∣∣∣∣ :
(10)
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Fig. 1. MS-stability regions of the Euler methods.

It appears not to be possible to Jnd a simple analytical expression of the integral in (8). Thus, we
use the composite Trapezoidal rule to compute the integral in (8). The integral interval (−∞;∞) is
approximated by [ − 10; 10] as the magnitude of the integrand in (8) is very small when |x|¿ 10.
Fig. 1 gives the MS-stability regions of the semi-implicit Euler method and the composite Euler
method of types 1 and 2. The MS-stability regions of the semi-implicit Euler method and the
composite Euler method of type 1 are those under the plotted line in Fig. 1. The MS-unstable region
of the composite Euler method of type 2 is indicated in Fig. 1. The region outside the indicated
region is the MS-stable region of the composite Euler method of type 2. The MS-stability region of
the composite Euler method of type 1 is a little smaller than that of the semi-implicit Euler method,
while the MS-stability property of the composite Euler method of type 2 is much better than that
of the semi-implicit Euler method.

The next important stability deJnition that must be considered is asymptotic stability. Saito and
Mitsui [15] give the deJnition of T -stability to measure asymptotic stability and give two examples
concerning the asymptotic stability regions of the Euler–Maruyama scheme for weak solutions of
SDEs. We have extended the deJnition of T -stability from weak solutions to strong solutions [5].
For a given number l, discretize the interval [ − M1; M1] as

−M1 = x0 ¡x1 ¡ · · ·¡xl = M1:

Let

pi =
∫ xi

xi−1

1√
2�

e−x2=2 dx; ui ∈ (xi−1; xi); i = 1; 2; : : : ; l;
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then the standard Gaussian random variable I can be approximated by a discrete random variable
U with distribution

U u1 u2 : : : ul

pi p1 p2 : : : pl

Assuming m random numbers are generated, there are �mpi� numbers in the interval [xi−1; xi] and
it is assumed that these numbers are all equal to ui. We can compute

Tm =
l∏

i=1

|R(h; a; b;
√

hui)|�mpi�

or the average

T = T (h; a; b) =
l∏

i=1

|R(h; a; b;
√

hui)|pi ; (11)

and say the numerical scheme is T -stable if T ¡ 1.
Higham [10] studies the asymptotic stability property of a numerical method applied to the linear

test equation. It can be proved that the deJnition of asymptotic stability [10] is equivalent to that of
T -stability [5]. We can use Lemma 7 in [10] to decide whether the T -stability region of a numerical
method exists or not and then use formula (11) to plot the T -stability region of the numerical
method.

The deJnition of T -stability is based on a very large sample size. In practical computation, the
number of timesteps is not very large, so the convergence rate of Tn → 0 should be considered.
In order to obtain a stable numerical result in practical computations, the following T (A)-stability
deJnition is introduced to consider a stricter condition for T -value [5].

De�nition 2. The numerical scheme is said to be T (A)-stable if

T (h; a; b) ¡A;

where 0 ¡A¡ 1.

Fig. 2 gives the T (A)-stability regions of the composite Euler method of type 2. The composite
Euler method of type 2 is T (1)-stable for all q when p60.

Now, we consider the T (A)-stability properties of the composite Euler method of type 1 with an
equidistant mesh

−M1 = x0 ¡x1 ¡ · · ·¡xl+1 ¡ · · ·¡x2l ¡ x2l+1 = M1:

Thus xl+1 = 0 and xi and −xi all are grid points. Let

fi(p; q) =
1 + qxi

1 − p
× 1

1 − p + qxi
; xi ¿ 0;
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Fig. 2. T (A)-stability regions of the composite Euler method of type 2.

then fi(p; q) is a monotonously increasing function with variables p and q, and

lim
p→−∞ fi(p; q) = 0; lim

q→+∞ fi(p; q) =
1

1 − p
:

The T -value, given by

T 2l+1(p; q) =
1

1 − p

2l+1∏
i=l+1

fi(p; q)

is a monotonously increasing function with variables p and q, and

lim
p→−∞ T (p; q) = 0; lim

q→+∞ T (p; q) =

√
1

1 − p
:

The T (A)-stability properties of the composite Euler method of type 1 are not as good as those
of the composite Euler method of type 2 but is better than those of the Euler methods. As an
example, the T (0:8)-stability region of the composite Euler method of type 1 is presented in Fig. 3.
It is T (0:8)-stable for any q when p¡ − 0:57.

4. Convergence properties

The solution of SDE (2) can be written as

y(t) = y0 +
∫ t

t0
f(s; y(s)) ds +

∫ t

t0
g(s; y(s)) dW (s);
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Fig. 3. T (A)-stability regions of the composite Euler method of type 1.

where the integral
∫ t

0 g(s; y(s)) dW (s) is a stochastic integral. This integral can be calculated by the
limit of the approximating sums. Giving an equidistant discretization of interval [0; T ],

t0 ¡t1 ¡ · · ·¡tN = T; tn = t0 +
(T − t0)n

N
; n = 0; 1; : : : ; N (12)

and letting (n = )tn + (1 − ))tn−1 () ∈ [0; 1]), the stochastic integral is deJned as the limit (in the
mean-square sense), as N → ∞, of the approximating sums

N∑
n=1

g(y((n))(W (tn) − W (tn−1)):

Unlike Riemann integrals, the values of stochastic integrals depend on the choice of ). For ex-
ample, the stochastic integral of the Wiener process is given by∫ T

t0
W (s) dW (s) =

1
2

(W 2(T ) − W 2(t0)) +
(
) − 1

2

)
(T − t0):

We have the following three types of stochastic integrals and corresponding SDEs:
• The Itô integrals when ) = 0. The corresponding Itô SDEs are the equations using the usual

notation (2);
• The Stratonovich integrals when ) = 1

2 . The corresponding Stratonovich SDEs are denoted by

dy(t) = f1(y(t)) dt + g(y(t)) ◦ dW (t):

• The backward integrals when ) = 1 [17]. The corresponding right-point SDEs [6] are denoted by

dy(t) = f2(y(t)) dt + g(y(t)) • dW (t):
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The relationships between these SDEs are

f1(y(t)) = f(y(t)) − 1
2g

′(y(t))g(y(t));

f2(y(t)) = f(y(t)) − g′(y(t))g(y(t)):

It can be proved that the numerical solutions of the implicit Euler method for solving right-point
SDEs converge to the exact solutions of the right-point SDEs with order O(h1=2) [6].

Now, we consider the convergence properties of the composite Euler method applying to the linear
test equation (6), given by

yN =
1 + �N−1b@WN−1

1 − ah − (1 − �N−1)b@WN−1
yN−1

= y0

N−1∏
n=0

1 + �nb@Wn

1 − ah − (1 − �n)b@Wn
:

Let

PN =
N−1∏
n=0

1 + �nb@Wn

1 − ah − (1 − �n)b@Wn
;

then

ln PN =
N−1∑
n=0

ln(1 + �nb@Wn) −
N−1∑
n=0

ln(1 − ah − (1 − �n)b@Wn);

ln(1 + �nb@Wn) = �nb@Wn − 1
2 (�nb@Wn)2 + 1

3 (�nb@Wn(n1)3; 0 ¡(n1 ¡ 1;

−ln(1 − ah − (1 − �n)b@Wn) = ah + (1 − �n)b@Wn + 1
2 (ah + (1 − �n)b@Wn)2

+ 1
3 [(ah + (1 − �n)b@Wn)(n2]3; 0 ¡(n2 ¡ 1:

Finally, we have that

ln PN = a(tN − t0) + b(W (tN ) − W (t0)) +
1
2

N−1∑
n=0

(1 − 2�n)(b@Wn)2 + RN :

It can be proved that RN converges to zero in mean-square sense, namely

lim
N→∞

E(R2
N ) = 0:

For Criterion 1 and the corresponding criterion function �(1)
n (9), we have that

E(�(1)
n b2(@Wn)2) =

∫ ∞

−∞
�(1)

n (x)b2x2 1√
2�h

e−x2=2h dx =
∫ ∞

0
b2x2 1√

2�h
e−x2=2h dx =

1
2
b2h;

lim
N→∞

E


(1

2

N−1∑
n=0

(1 − 2�(1)
n )(b@Wn)2

)2

= 0:
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This means that the numerical solutions of the composite Euler method of type 1 converge to the
exact solution of the Stratonovich linear test equation, namely

lim
N→∞

E[(yN − y0ea(T−t0)+b(W (T )−W (t0)))2] = 0:

For Criterion 2 and the corresponding criterion function �(2)
n (10), we have the following result.

Theorem 1. For the composite Euler method of type 2; the following result is true:

lim
h→0

P{�(2)
n (@Wn) = 1} = 1:

Proof. For any given +¿ 0, Jnd a large number M to satisfy

P{|In|¿M} =
+
2
;

where In ∼ N(0; 1) and @Wn =
√

hIn. Let events A, B and C satisfy

A = {|Qn1|¡ |Qn0|}; B = {|In|6M}; C = {|In|¿M};
respectively, then we have that

P{�(2)
n (@Wn) = 1} = P{|Qn1|¡ |Qn0|} = P{AB} + P{AC}:

For given a¡ 0, b¿ 0 and +, Jnd a stepsize h0 satisfying

P{0 ¡In ¡ − a
b

√
h0} =

+
2
:

Supposing that the step size h is small enough to ensure b
√

hM ¡ 1 and h¡h0, then the following
result is true:

0 ¡
1 + b

√
hx

1 − ah
¡

1

1 − ah − b
√

hx

when −M ¡x ¡ 0 or − (a=b)
√

h¡x ¡M . Thus,

P{AB} = P{−M ¡In ¡ 0} + P
{
− a

b

√
h¡ In ¡M

}
¿ 1 − +:

So we can prove this theorem as

1 ¿P{�(2)
n (@Wn) = 1}¿P{AB}¿ 1 − +:

For Criterion 2 and the corresponding criterion function �(2)
n (10), we have that

lim
h→0

E

(
N−1∑
n=0

�(2)
n b2(@Wn)2

)
= lim

h→0

N−1∑
n=0

∫ ∞

−∞
�(2)

n (x)b2x2 1√
2�h

e−x2=2h dx

= lim
h→0

N−1∑
n=0

∫ ∞

−∞
b2x2 1√

2�h
e−x2=2h dx = b2(T − t0)
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and

lim
N→∞

E



(

1
2

N−1∑
n=0

(1 − 2�(2)
n )(b@Wn)2 −

(
−1

2
b2(T − t0)

))2

= 0:

This shows that the numerical solutions of the composite Euler method of type 2, applied to the
linear test equation, converge to the exact solution of the Itô linear test equation, namely

lim
N→∞

E[(yN − y0e(a−(1=2)b2)(T−t0)+b(W (T )−W (t0)))2] = 0:

The above analysis shows that the composite Euler method of type 2 has the same convergence
properties as that of the semi-implicit Euler method, and is nearly a semi-implicit Euler method
when the stepsize is small. For the medium stepsize which is often used in practical computation,
a small portion of the implicit Euler method is used in order to improve the stability properties. In
this case we obtain numerical results with acceptable accuracy (see numerical results in the next
section).

5. Numerical results

Numerical results for solving SDEs driven by one Wiener process are reported in this section. De-
noting y(i)

N and y(i)(tN ) as the numerical solution and exact solution at step point tN in ith simulation,
respectively, we use means of absolute errors M and rates R, deJned by

M =
1
K

K∑
i=1

|y(i)
N − y(i)(tN )|; R =

M√
h
;

to measure the accuracy and the convergence properties of the composite Euler method.
The Jrst test equation is the linear test equation with a = −1 and b = 1

Itô’s form : dy = −dt + dW (t);

Stratonovich’s form : dy = −dt + d ◦ W (t);
y(0) = 1; t ∈ [0; 3]

with exact solutions

Itô’s form : y(t) = e−(3=2)t+W (t);

Stratonovich’s form : y(t) = e−t+W (t):

Table 1 gives numerical results of the composite Euler method of types 1 and 2. The data
is obtained by K = 5000 simulations. The numerical solutions of the composite Euler method of
type 1 converge to the exact solution of the Stratonovich linear test equation, while those of the
composite Euler method of type 2 converge to exact solution of the Itô linear test equation. For the
composite Euler method of type 2, the percentages in Table 1 are used to indicate the portion of
the semi-implicit Euler method which is used in all K simulations. The percentage approaches 100%
when the stepsize h approaches zero.

Applying a numerical method to nonlinear SDEs, we may obtain stable or unstable solutions in
di%erent simulations. The main reason for obtaining unstable solutions is the convergence property
of Newton–Raphson iteration for solving nonlinear equation with unknown variable yn+1 in every
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Table 1
Numerical results of linear test equation with b = 1

1=h Composite of type 1 Composite of type 2 %

Itô Stratonovich Itô Stratonovich

M R M R M R M R

24 0.1466 0.58 0.0636 0.25 0.01532 0.061 0.1801 0.72 90.11
25 0.1438 0.81 0.0456 0.25 0.00981 0.055 0.1706 0.96 92.98
26 0.1490 1.19 0.0381 0.30 0.00624 0.049 0.1751 1.40 95.05
27 0.1457 1.64 0.0233 0.26 0.00408 0.046 0.1607 1.81 96.50
28 0.1573 2.51 0.0291 0.30 0.00279 0.044 0.1712 2.74 97.49
29 0.1667 3.77 0.0147 0.33 0.00218 0.049 0.1776 4.01 98.23
210 0.1770 5.66 0.0111 0.35 0.00153 0.049 0.1839 5.88 98.76

step. We can expect an accurate approximation in a step if the stability property of the numerical
method for SDE and the convergence property of the iterative method for the nonlinear equation
are all satisfactory in this step. When solving nonlinear test equations, we just consider means and
rates of the stable solutions in this paper.

The second test equation is a nonlinear SDE, given by

Itô’s form : dy = a2y(1 + y2) dt + a(1 + y2) dt;

Stratonovich’s form : dy = a(1 + y2) ◦ dt;
y(0) = 1; t ∈ [0; 2]:

The exact solution of the second test equation is given by [11]

y = tan(aW (t) + arctan y0): (13)

The third nonlinear test equation is given by

Itô’s form : dy = −(- + .2y)(1 − y2) dt + .(1 − y2) dW (t);

Stratonovich’s form : dy = −-(1 − y2) dt + .(1 − y2) ◦ dW (t):
y(0) = 0:5; t ∈ [0; 3]:

The exact solution of the third test equation is given by [11]

y(t) =
(1 + y0) exp(−2-t + 2.Wt) + y0 − 1
(1 + y0) exp(−2-t + 2.Wt) + 1 − y0

: (14)

For the second and third test equations, we apply the composite Euler method of type 1 to the
Stratonovich test equations and the composite Euler method of type 2 to the Itô test equations. Tables
2 and 3 give means and rates of these composite Euler methods for solving the second and third
test equations, respectively. All of the data in this table are based on 1000 simulated trajectories.
For the composite Euler method of type 2, the percentages in Tables 2 and 3 are used to indicate
the portion of the semi-implicit Euler method which is used in all 1000 simulations.

The numerical results in Tables 2 and 3 suggest that the convergence properties of the composite
Euler method, applied to nonlinear SDEs, are the same as those applied to linear equations.

Next, we show that the stability properties of the composite Euler method of type 2 is better
than those of the Euler methods. First, we consider the Itô linear test equation with a = −5 and
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Table 2
Numerical results for the second test equation

1=h Stratonovich form (type 1) Itô form (type 2)

a = 0:1 a = 0:3 a = 0:1 a = 0:3

M R M R M R % M R %

24 0.0115 0.046 0.0423 0.16 0.00981 0.039 98.03 0.0628 0.25 89.16
25 0.0089 0.050 0.0376 0.21 0.00659 0.037 98.60 0.0548 0.31 92.59
26 0.0068 0.054 0.0350 0.28 0.00492 0.039 98.95 0.0470 0.37 94.10
27 0.0042 0.048 0.0333 0.37 0.00333 0.037 99.29 0.0383 0.43 95.87
28 0.0033 0.052 0.0276 0.44 0.00234 0.037 99.48 0.0328 0.52 97.20
29 0.0020 0.045 0.0234 0.52 0.00162 0.036 99.63 0.0283 0.64 97.92
210 0.0015 0.046 0.0212 0.49 0.00113 0.036 99.74 0.0234 0.74 98.31

Table 3
Numerical results for the third test equation

1=h Stratonovich form (type 1) Itô form (type 2)

b = 0:1 b = 1 b = 0:1 b = 1

M R M R M R % M R %

24 3:9 · 10−4 1:5 · 10−3 0.0226 0.0906 5:1 · 10−4 2:0 · 10−3 50.48 0.0211 0.0855 96.54
25 1:6 · 10−4 8:9 · 10−4 0.0193 0.1094 2:6 · 10−4 1:4 · 10−3 53.77 0.0175 0.0988 96.39
26 5:1 · 10−5 4:1 · 10−4 0.0153 0.1227 1:2 · 10−4 9:9 · 10−4 60.72 0.0108 0.0868 97.29
27 7:5 · 10−6 8:5 · 10−5 0.0130 0.1475 6:5 · 10−5 7:3 · 10−4 69.00 0.0087 0.0981 97.92
28 9:7 · 10−6 1:6 · 10−4 0.0096 0.1533 3:4 · 10−5 5:5 · 10−4 76.70 0.0059 0.0939 98.46
29 1:4 · 10−5 3:2 · 10−4 0.0072 0.1629 1:8 · 10−5 4:0 · 10−4 83.80 0.0049 0.1113 98.78
210 1:4 · 10−5 4:4 · 10−4 0.0051 0.1625 8:7 · 10−6 2:7 · 10−4 87.80 0.0035 0.1114 99.13

Table 4
The T -values of the methods with p = −0:25

q = 0:2 q = 0:6 q = 1:0 q = 1:6 q = 2:4

Semi-implicit method 0.7831 0.6428 0.6500 0.8156 1.1085
Composite method of type 2 0.7805 0.6395 0.5974 0.5604 0.4854

di%erent b. The linear test equation is solved with a Jxed step size h = 0:05, so p =−0:25. Table 4
lists some T -values, calculated by (11), of the semi-implicit Euler method and the composite Euler
method of type 2 with p = −0:25 and di%erent q. In the Jrst column of Table 5, we give means
of absolute errors with q = 0:6. The two methods are all stable in this case. The accuracy of the
numerical results of these two methods is nearly the same order. In the second column of Table 5
we give numerical results with q = 1:6. The composite method is stable, but we cannot get stable
results by the semi-implicit Euler method although p and q are in the T (0.9)-stability region of the
semi-implicit Euler method. This is in accord with the deJnition of T (A)-stability. We can obtain
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Table 5
Average errors with p = −0:25

q = 0:6 q = 1:6

Semi-implicit Composite (type 2) Semi-implicit Composite (type 2)

t1 = 1 0.0152 0.0160 34.66 0.0177
t1 = 2 2:01 · 10−4 1:29 · 10−4 477.08 5:74 · 10−5

t1 = 3 1:53 · 10−6 1:78 · 10−6 1:03 · 103 1:10 · 10−7

t1 = 4 1:73 · 10−8 8:59 · 10−9 1:81 · 105 4:61 · 10−9

t1 = 5 2:69 · 10−10 5:21 · 10−11 1:74 · 104 4:80 · 10−14

Table 6
The percentages of the stable solutions

. = 2:2 . = 2:6 . = 2:8 . = 3 . = 3:2

Semi-implicit 99.0 86.8 70.5 45.3 17.5
Composite (type 2) 98.7 91.7 84.5 75.0 62.0

stable results by the semi-implicit Euler method at t1 = 15 with the same p and q. In this case, the
number of time steps is 300.

For nonlinear SDEs, we consider numerical solutions of the third test equation (Itô’s form) with
h = 0:05, - = −10 and di%erent .. This approach is di%erent from that in practical computation. In
practical computation we would choose a suitable step size h for the given - and . in order to get
numerical solutions with satisJed accuracy.

Table 6 gives percentages of stable solutions obtained by the semi-implicit Euler method and
the composite Euler method of type 2. All of the data in this table are based on 5000 simulated
trajectories. We can see the stability property of the composite Euler method of type 2 is much
better than that of the semi-implicit method for solving the third test equation.

6. SDEs driven by d -dimensional Wiener processes

In this section we consider the composite Euler method applied to the Itô SDEs driven by
d-dimensional Wiener processes (1), leading to the numerical scheme

yn+1 = yn + f(tn+1; yn+1)h +
d∑

j=1

[�njgj(tn; yn) + (1 − �nj)gj(tn+1; yn+1)]@Wnj: (15)

We will give the criterion for selecting �nj and analyse the stability properties of the composite Euler
method (15) for linear scalar multiplicative problems.

Applying the composite Euler method (15) to the linear scalar multiplicative test equation

dy = ay dt +
d∑

j=1

bjy dWj(t) (16)
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gives

yn+1 = yn + ayn+1h +
d∑

j=1

(�njbjyn + (1 − �nj)bjyn+1)@Wnj;

so that

yn+1 =
1 +

∑d
j=1 �njqjInj

1 − p −∑d
j=1(1 − �nj)qjInj

yn;

where p= ah, qj = bj

√
h, @Wnj =

√
hInj and Inj is the nth realization of the standard normal random

variable Ij.
Let

Q�n1···�nd =
1 +

∑d
j=1 �njqjInj

1 − p −∑d
j=1(1 − �nj)qjInj

;

then similar to the analysis in Section 2, the following result holds, namely

min
06�nj61

|Q�n1···�nd | = min
�nj=0;1

{|Q�n1···�nd |}:

For SDEs driven by two-dimensional Wiener processes, for example, the above result is

min
06�1 ;�261

|Q�1�2 | = min{|Q00|; |Q01|; |Q10|; |Q11|}:

In step n, if a sequence �01; �02; : : : ; �0d satisJes

min
�nj=0;1

{|Q�n1···�nd |} = |Q�01···�0d |; (17)

we can choose

�nj = �0j; j = 1; 2; : : : ; d: (18)

Next, we consider the stability properties of the composite Euler method (15) applied to the SDEs
driven by two-dimensional Wiener processes.

For the MS-stability property of the composite Euler method, similar to (8), we can deJne a
function

f(p; q1; q2; x1; x2) =
1 + �1(x1)q1x1 + �2(x2)q2x2

1 − p − (1 − �1(x1))q1x1 − (1 − �2(x2))q2x2
;

where �1(x1) and �2(x2) are deJned by

(�1(x1); �2(x2)) = (�01; �02)

and �01 and �02 are determined by (17) and (18). The MS-stability function of the composite Euler
method is given by

NR3 =
∫ ∞

−∞

∫ ∞

−∞
f2(p; q1; q2; x1; x2)

1
2� e−(x2

1+x2
2)=2 dx1 dx2

and the composite Euler method is MS-stable if NR3 ¡ 1.



424 K. Burrage, T. Tian / Journal of Computational and Applied Mathematics 131 (2001) 407–426

Fig. 4. MS-stability regions of the composite method.

Fig. 5. T (A)-stability regions of the composite method.

Fig. 4 gives MS-stability regions of the composite Euler method with di%erent p. The MS-unstable
regions of the composite Euler method are those which are enclosed by the plotted line and axes.
When p = −0:3, the MS-unstable region (two seperated regions) is very small. When p¡ − 0:33,
the composite Euler method is MS-stable for any q1 and q2.
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Table 7
The means of the absolute errors with p = −0:25

Case 1 Case 2

Semi-implicit Composite Semi-implicit Composite

t1 = 1 1:03 · 10−2 5:54 · 10−3 0.592 1:56 · 10−3

t1 = 2 1:42 · 10−4 5:89 · 10−5 3.024 4:19 · 10−7

t1 = 3 1:31 · 10−6 2:65 · 10−7 0.159 7:18 · 10−10

t1 = 4 9:61 · 10−10 1:84 · 10−10 1:09 · 10−3 8:99 · 10−16

t1 = 5 2:74 · 10−12 2:8 · 10−13 3:39 · 10−6 8:75 · 10−23

Fig. 5 gives T (A)-stability regions of the composite Euler method with p = −0:01 and −0:25,
respectively. The areas enclosed by the solid line and axes are the unstable regions of the composite
Euler method with di%erent A. The T (A)-stability property of the composite Euler method is better
if any of −p, q1, q2 is larger. For any q1, q2, the T -value is always less than 0.6 when p¡ − 2

3 .
Table 7 gives two typical cases of numerical results with p=−0:25. Here a Jxed step size h=0:05

is used. The T-values of the semi-implicit Euler method and the composite Euler method are denoted
by Tsemi and Tcomposite, respectively.
Case 1: q1 = 0:4472, q2 = 0:2236. Then Tsemi = 0:6799 and Tcomposite = 0:6800. At t1 = 5, the

semi-implicit and composite Euler methods are stable as the number of the time steps is 100. The
accuracy of these two methods is nearly the same.
Case 2: q1 = 1, q2 = 0:6633. Then Tsemi = 0:6902 and Tcomposite = 0:5474. In this case we can obtain

stable results by the semi-implicit and the composite Euler methods at t1 = 5. The accuracy of the
composite Euler method is better than that of the semi-implicit Euler method as the T -value of the
composite method is smaller.

7. Conclusions

In this paper, we have constructed the composite Euler method by combining the semi-implicit
Euler method and the implicit Euler method. At each step an SDE is solved by either the semi-implicit
Euler method or the implicit Euler method according to the characteristics of the SDE. For the linear
test equation, the convergence properties of the composite Euler method depend on the criterion for
choosing parameter �n. For nonlinear equations, the numerical results suggest that the convergence
properties of the composite Euler method applied to the nonlinear SDEs is the same as those applied
to linear equations. The theoretical analysis and the numerical results show that the composite Euler
method is a very promising method.

Future work should be based on the construction of high-order composite stochastic Runge–Kutta
methods. As nearly all of the existing stochastic Runge–Kutta methods are explicit and semi-implicit
methods, we should construct the corresponding semi-implicit and=or implicit stochastic Runge–Kutta
methods, study the stability properties of these methods and then consider the optimal combination
of these methods. These topics will be the subjects of future work.
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