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Abstract

We present an implemented approach for domain-restricted question answering from structured knowledge sources, based on
robust semantic analysis in a hybrid NLP system architecture. We perform question interpretation and answer extraction in an archi-
tecture that builds on a lexical-conceptual structure for question interpretation, which is interfaced with domain-specific concepts
and properties in a structured knowledge base. Question interpretation involves a limited amount of domain-specific inferences,
and accounts for higher-level quantificational questions. Question interpretation and answer extraction are modular components
that interact in clearly defined ways. We derive so-called proto queries from the linguistic representations, which provide partial
constraints for answer extraction from the underlying knowledge sources. The search queries we construct from proto queries ef-
fectively compute minimal spanning trees from the underlying knowledge sources. Our approach naturally extends to multilingual
question answering, and has been developed as a prototype system for two application domains: the domain of Nobel prize winners,
and the domain of Language Technology, on the basis of the large ontology underlying the information portal LT WORLD.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The recent TREC and CLEF evaluation fora have engendered significant progress in the underlying research and
the performance of practical QA systems. While these competitions focus on open-domain textual QA on the basis
of large document bases or the WWW, there is increasing need for question answering in restricted domains, due to
several reasons: First, where open-domain QA exploits the wealth of information on the Web, it is also confronted
with the problem of reliability: information on the Web may be contradictory, outdated, or utterly wrong. Second, the
utilisation of formalised knowledge in a restricted domain can improve accuracy, since both questions and potential
answers may be analysed with respect to the knowledge base [27]. Third, there is a need for accurate specialised
information management solutions in both business intelligence and public administration.

* The research reported here has been conducted in the project QUETAL, funded by the German Ministry for Education and Research, BMBF,
grant no. 01 IW C02. Special thanks go to Bogdan Sacaleanu for implementation of the QA-control server that connects question and answer
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contributions to the realisation of the overall QUETAL QA architecture. We are grateful to Bonnie Webber for insightful comments and valuable
suggestions on earlier versions of the paper.
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QA systems for restricted domains may be designed to retrieve answers from so-called unstructured data (free
texts), semi-structured data (such as XML-annotated texts), or structured data (databases). Question answering applied
to restricted domains is interesting and challenging in two important respects. Restricted domains tend to be small
and stable enough to permit careful knowledge and data modeling in terms of structured knowledge bases, and can
therefore serve as certified information sources. Whenever such structured data can be exploited, this offers clear
advantages over open text QA. More importantly though, QA in restricted domains requires techniques that crucially
differ from the techniques that are currently applied in open-domain textual QA. Since document volumes tend to be
small, textual QA techniques cannot exploit data redundancy. Further, both in domain-restricted textual QA and QA
from structured knowledge sources, we cannot expect the answer to a given question to follow directly from some
textual passage or to be explicitly represented in the knowledge base. Yet, despite a tendency towards deeper analysis,
current techniques in QA are still knowledge-lean, in exploiting data redundancy and paraphrasing techniques.

Since the question is the primary source of information to direct the search for the answer, a careful and high-
quality analysis of the question is of utmost importance in the area of domain-restricted QA. Most importantly, since
we need to answer questions where the answer cannot be directly derived from the underlying document or knowledge
base, we need a semantic interpretation of the question that can be tightly connected to the domain knowledge sources
and the process of answer extraction.

We present an approach to domain-restricted QA from structured knowledge sources that starts from these consid-
erations. We focus on a high-quality linguistic analysis of the question, with a lexical-conceptual interpretation of the
question relative to the chosen application domain. Our approach extends to multilingual QA scenarios and provides
a natural interface to the underlying knowledge bases, enabling flexible strategies for answer extraction.

In Section 2 we give an overview of the architecture and the base components of the system. The system presented
in this paper is embedded in a hybrid QA system architecture, the QUETAL QA system. Within this architecture we
are using an NLP platform that integrates a wide range of NL processing tools. We further introduce the main aspects
of domain modelling for our two application domains: Nobel prizes and Language Technology.

Section 3 describes our approach to question analysis. We start from HPSG analyses of questions, which are
enriched with a lexical-conceptual representation that can be further modified by domain-specific inference rules. We
show how our account to question interpretation extends to multilingual question answering. Section 4 describes the
interface between question interpretation and domain ontologies for query processing. We define a mapping between
the lexical concepts used in semantic question interpretation and the concepts in the underlying domain ontology. This
mapping is used to extract so-called proto queries from the semantic representation of the question. Proto queries are
abstract query patterns in a higher-level query language that are translated to concrete database or ontology query
language constructs in the answer extraction phase. Section 5 goes into the details of the concrete query construction
and explains how a proto query can be (partially) mapped to SQL in the MySQL system and to SeRQL in the Sesame
RDF framework.

In Section 6 we perform an evaluation of our current system, and discuss prospects for future developments.
Section 7 compares our approach to related work in the field of natural language interfaces to databases. Section 8§,
finally, concludes with prospects on future work.

2. Architecture
2.1. Overall system architecture

The QA system for structured knowledge sources described below is part of a general QA system architecture,
the QUETAL architecture.! The hypothesis underlying the QUETAL architecture design is that QA systems perform
best if they combine virtues of domain-specialised and open-domain QA, accessing structured, semi-structured, and
unstructured knowledge bases.

The core idea is that—instead of providing specific information portals (with system-specific user interfaces)—the
QUETAL system offers a single and uniform natural language-based QA access to different information sources that
exhibit different degrees of structuring.

I See the QUETAL project homepage at http://quetal.dfki.de.


http://quetal.dfki.de

22 A. Frank et al. / Journal of Applied Logic 5 (2007) 20—48

NL Question ———» QA Controller
Q-Obj A-Obj
'@' D‘O
Question Analysis Search and Answer Extraction Answer Preparation

Ling Q Inter-
Analysis | pretation

Fig. 1. Hybrid QA system architecture.

The QUETAL architecture is hybrid in two senses. The question analysis is hybrid in that shallow and deep NLP
are combined to yield both robustness and a rich semantic representation of questions. The answer document base is
hybrid in that three types of information sources are employed: (i) unstructured text retrieved via Web-based or local
full-text search engines and information retrieval systems, (ii) semi-structured text that has been enriched offline with
IE and NLP techniques, (iii) structured fact databases, for instance, ontologies and traditional relational databases
that contain domain-specific facts, relations and concepts.> As depicted in Fig. 1, the QA process starts with linguistic
analysis and a subsequent interpretation of the question. After a question type has been identified together with an
expected answer type, both represented in a so-called Q(uestion)-Obj(ect), one (or more than one) information source
is selected to retrieve answer candidates. From the returned A(nswer)-Obj(ect), an answer is prepared. As QUETAL
supports crosslingual QA, intermediate translation stages after question analysis and answer generation are integrated
[43,44].

2.2. Architecture for domain-restricted QA

The architecture for domain-restricted QA from structured knowledge sources (Fig. 2) is embedded in the general
QUETAL architecture. A question is linguistically analysed by the Heart of Gold (HoG) NLP architecture, which
flexibly integrates deep and shallow NLP components [16], for instance, PoS tagger, named entity recognition and
HPSG parser. The semantic representations generated by the Heart of Gold are then interpreted and a question object
is generated that contains a proto query. This proto query can be viewed as an implementation-independent, ‘higher-
level’ representation of a database or ontology query. From this, an instance of a specific database or ontology query is
constructed. From the result(s) returned by the queried information source, an answer object is generated which forms
the basis for subsequent natural language answer generation. The individual stages of this QA process are described
in detail in Sections 3 to 5.

2.3. Domain modeling and inference services
This section addresses the modelling of the two domains we have chosen to show the applicability of our ap-
proach: the relatively small Nobel prize domain and the larger LT WORLD domain. The main reason for including

more than one domain is to be able to show that the modularity of the architecture facilitates portability from one
domain to another. Another reason was to demonstrate scalability from a relatively small domain (Nobel prizes) to

2 See [43,44] for textual QA in QUETAL. Semi-structured text will be addressed at a later stage of the project.
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Fig. 2. Architecture of domain-restricted QA from structured knowledge sources.

a considerably more complex one. Even though building up a domain (an ontology/a data base) is a time-intensive
knowledge engineering task, these domains were already available and are actively developed (see also the discussion
in Section 6.5). Furthermore, our approach shows that a lot of linguistic knowledge (mostly the HPSG grammar) can
be reused, independent of the underlying domain. The current tendency that upper- and mid-level ontologies become
standardised and that domain ontologies refer to these general ontologies, will make it even easier to interface our
system to a new domain.

2.3.1. The Nobel prize ontology and data base

The domain ontology plays a crucial role in our approach. It is used as the interface between question analysis,
answer extraction and knowledge database design. We chose Nobel Prize as our initial subject domain, since it is a
domain for which both complete records of all awarded prizes in structured formats and thousands of free texts about
awards and laureates can be found on the web.? Furthermore the data are manageable in size, authoritative and can be
used as our gold-standard for evaluation of the QA task. Here we focus on the exploitation of the structured data for
QA.

We started our specification with an existing general ontology as reference. Two sources have been selected: the
knowledge-engineering-based top-level ontology SUMO [45] and its mid-level specification MILO [47], and on the
other hand the structured thesaurus WordNet [41]. Since there is a mapping between the artificial concepts in SUMO
and the word senses in WordNet [46], we chose the SUMO ontology as our backbone and define sub-concepts by
referring to the mapping between SUMO concepts and WordNet word senses.

The main concepts in our application domain are prize, laureate, prize-area, including domain-
independent general concepts, such as person or organization. Fig. 3 lists some of the mappings between
domain concepts and SUMO concepts. Laureate corresponds to the SUMO concept cognitiveAgent, inherit-
ing therefore its two subconcepts human and organization. Most subconcepts of the concept prize-area,
except for Peace, are subconcepts of the general concept £ieldOfStudy, for example, Chemistry. Each
concept is further specified by its attributes: person is assigned the attributes firstname and surname. The
concepts are organized via hierarchical relations. In addition to the domain-specific relations, such as nobel -
prize-nomination, we also model some general relations like person-affiliation.

3 Peace Nobel Prizes (as many other prizes) can be also awarded to organisations and not just to persons.
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type domain SUMO

entity prize award, ...

entity laureate cognitiveAgent
entity person human

entity organization cognitiveAgent, group
entity prize-area fieldOfStudy

event nobel-prize-winning unilateralGetting

event nobel-prize-nomination declaring, deciding

Fig. 3. Mappings between domain and SUMO concepts.

2.3.2. The LT WORLD ontology and data base

As our second scenario for domain-restricted QA, we have chosen the Language Technology World information
portal LT WORLD (http://www.lt-world.org). LT WORLD is an ontology-based virtual information center on the
wide spectrum of Human Language Technology, providing information about people, technologies, products, patents,
resources, projects, and organisations in this area. The service is free and is provided by the German Research Center
for Artificial Intelligence (DFKI) to the R&D community, potential users of language technologies, students and other
interested parties.

Most of the concepts referred to in LT WORLD have a direct counterpart in the underlying ontology [54]. For
example, people actively working in Language Technology are modelled as instances of the class/concept Ac-
tive_Person. Active_Person is a subclass of Players_and_Teams which has further subclasses such
as Projects or Organisations. The fact that people coordinate projects is represented by the property/role
hasCoordinated which maps from People U Organisations (domain) to Projects (range). The com-
plex domain People U Organisations of this property indicates that projects might be coordinated not only by
People, but also by instances of Organisations.

The original ontology behind LT WORLD made use of RDF and RDF Schema [11,38]. A newer version of the
ontology has recently been ported to the Web ontology language OWL [8], the new emerging language for the Se-
mantic Web that originated from the DAML+OIL standardisation. OWL still makes use of constructs from RDF and
RDFS such as rdf : resource, rdfs:subClassOf, or rdfs:domain, but its two important variants OWL
Lite and OWL DL restrict the expressive power of RDFS, thereby ensuring decidability. What makes OWL unique
(as compared to RDFS) is the fact that it can describe resources in more detail and that it comes with a well-defined
model-theoretical semantics, inherited from description logic [4]. We have already seen such a new language construct
(not available in RDFS): the union operator above, which OWL calls unionO£. From description logic, OWL inher-
its further modelling constructs, such as intersectionOf, equivalentClass, or cardinality restrictions. The
description logic background furthermore provides automated reasoning support such as consistency checking of the
TBox and the ABox, subsumption checking, etc.* Even though the least expressive variant of OWL, viz., OWL Lite
has an EXPTIME worst-case complexity, optimised implementations based on tableaux algorithms are known [36],
which actually work well for most practical cases and have been implemented in a few systems (see Section 2.3.3).

Our interest in OWL (as compared to RDF/RDEFS) is based on the following three practical observations: (i) The
standardisation and the propagation of OWL by W3C and the replacement of older frameworks such as (the American)
DAML or (European) OIL initiatives forces projects (such LT WORLD) that build up new ontologies to use this new
emerging standard. (ii) The modelling primitives in OWL help us to better formulate the intended meaning of the
modelled concepts and properties in LT WORLD.> (iii) The well-defined semantics of OWL, which is reflected in
implemented systems, helps us to reveal modelling errors which could not be observed otherwise. For instance in our

4 TBox and ABox are terms, introduced in the early days of description logic (or terminological logic; [10]). TBox refers to the termi-
nological knowledge—knowledge about concepts that are relevant to our domain; for example, that Active_Person is a subconcept of
Players_and_Teams. In that sense, a TBox defines a domain schema. An ABox, however, represents assertions about individuals (of cer-
tain concepts), for instance, that Wolfgang Wahlister hasCoordinated the SmartWeb project. Nowadays, the term ontology usually refers to
both the TBox and the ABox.

5 For instance, RDFS provides no means for saying that a concept is exactly the intersection of other concepts. OWL introduces such a concept-
forming operator: owl:intersectionOf, whereas the rdfs:subClassOf construct in RDFS is only a poor approximation. Reasoning
within ontologies which miss this and other constructs can lead to quite different results, for instance, during instance retrieval.
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original (RDFS-based) LT WORLD ontology, domain and range restriction of properties have not been respected in
some instances. These problems could be detected later by consistency checks on the ABox.

2.3.3. Inference services

The new LT WORLD ontology was developed using the OWL plugin of the Protégé knowledge base editor ([34,
39]). This version of Protégé comes with a partial OWL Lite support by means of the Jena Semantic Web framework
[50]. But even though Jena provides incomplete OWL Lite support, a large number of inconsistencies were detected
and could thus be eliminated.

The latest version of LT WORLD consists of more than 600 concepts, 200 properties, and 17,000 instances. From
an RDF point of view, we have more than 400,000 unique triples. It was confirmed by several tests that querying the
ontology through Jena (using RDQL) takes too much time, the main reason being that the OWL reasoner uses the rule
engines in Jena for all kinds of inference.

We then looked for implemented description logic systems which view OWL as a mere syntactic variant of the
ALC language family [36]. The FaCT system [35] seemed to be a good candidate but does not provide much ABox
support, which is vital for us (17,000 instances) and other Semantic Web applications. For a long time, we then used
the Racer system [32]. With the help of Racer, many further modelling errors in LT WORLD were uncovered which
fell through the “grid” of Protégé/Jena.

During ontology development, the number of instances grew and the complexity of instance descriptions increased.
It turned out, though, that the ABox does not really scale up well and that 5,000 instances is the maximum number
of instances that Racer can handle for queries to LT WORLD. TBox reasoning (as is the case for the FaCT system) is
fine, though.

As other people noticed before, we observed that description logic systems can handle complex TBoxes with
several hundreds to thousands of concepts, but break down when it comes to ten thousands or even millions of
instances—which will be the case when the vision of the Semantic Web should become a reality. We therefore moved
to RDF database systems (see [31,33]). The basic idea is that even though we are developing OWL ontologies (LT
WORLD) with Protégé, the information that is stored on disk is still RDF on the syntactic level. We are thus interested
in RDF DB systems which make sense of the semantics of OWL and RDFS constructs such as rdfs: subClassOf
or owl:equivalentClass. To see why the interpretation of such constructs is of main importance, imagine we
want to know the subclasses of class c1. From

{{(c2 rdfs:subClassOf cl), (c3 rdfs:subClassOf c2)}

a pure RDF database system can only return {c2}, but by knowing that rdfs: subClassOf is a transitive and
reflexive relation, we get the right result, viz., {c1, c2, ¢3}. Similar considerations hold for equivalentClass.

We currently solved the scalability problem by porting the ontology to Sesame (http://www.openrdf.org/), an open-
source middleware framework for storing and retrieving RDF data [12]. Sesame partially supports the semantics of
RDFS and OWL constructs via entailment rules that compute “missing” RDF triples in a forward-chaining style at
compile time. Consider, for instance, the equivalentClass construct in OWL. From an RDF triple

(Author owl:equivalentClass Writer)
anew triple
(Writer owl:equivalentClass Author)
is computed. The (slightly simplified) entailment rule which is responsible for this behaviour looks like this:
<rule name="owl-equivalentClass-inverse">
<prem> <subj "cl"/> <pred "equivalentClass"/> <obj "c2"/> </prem>

<cons> <subj "c2"/> <pred "equivalentClass"/> <obj "cl"/> </cons>
</rule>
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These predefined rules can be altered and the XML rule file can be extended, according to the users’ needs.® LT
WORLD originally consists of about 200,000 of RDF triples, resulting from the 17,000 instances. The closure compu-
tation adds almost the same number of new entailed triples, so that Sesame must handle in the end 404,767 statements.
Closure computation is fast and takes only a few seconds of real time on a mid-size Linux machine.

Since sets of RDF statements represent RDF graphs, querying information in an RDF framework means to specify
path expressions. Sesame comes with a very powerful query language, SeRQL, which includes (see [1]): (i) gener-
alised path expressions, including multi-value nodes and branches, (ii) a restricted form of disjunction through optional
matching, (iii) existential quantification over predicates, and (iv) Boolean constraints.

We will see in Section 5.2 that all of the above features, even predicate quantification (which gives us some decid-
able second-order expressiveness here) are needed to arrive at a SeRQL query which retrieves the right objects in LT
WORLD. Speaking in terms of Codd’s relational model, we note that SeRQL is not relationally complete, but clearly
supports the basic algebraic operations selection, projection, and product (see also [33]).

Sesame has been tested with several 100,000 instances [31]. Its storage model can be configured by either using
an existing database system (PostgreSQL, MySQL, or Oracle) or by going for a pure in-memory representation of
the data. We have opted for the latter version in LT WORLD to speed up query time. The system scales up very well,
giving satisfactory performance. The memory footprint ranges from 70 to 200 MBytes.

The following sections are devoted to the core of our architecture for domain-restricted QA (see Fig. 2). Question
processing in the HoG comprises question analysis and interpretation (Section 3), the mapping to domain concepts,
and the construction of proto query terms, to be handed over to the answer extraction modules (Section 4). Section 5
explains the details of query construction and answer extraction for our concrete application domains.

3. Question analysis and interpretation

Question processing starts with generic syntactic and semantic analysis on the basis of HPSG parsing in a hybrid
shallow/deep parsing architecture. This is described in Section 3.1. The parser output is a logical form of the question
in the formalism of (Robust) Minimal Recursion Semantics (RMRS). On the basis of the RMRS output structures, a
special question interpretation process identifies further semantic information that is relevant for question processing:
the queried variable and its associated expected answer type (see Section 3.2). The refined RMRS is further enriched
by a lexical-conceptual structure, following the framework of Frame Semantics. On the basis of this enriched repre-
sentation, we define domain-specific inference rules (see Sections 3.3 and 3.4). In Section 3.5 we discuss how our
approach to question interpretation provides a natural account for multilingual and crosslingual QA scenarios. Fig. 4
gives a detailed overview of the question interpretation process, including the construction of proto queries, to be
discussed in Section 4.

3.1. Hybrid NLP for question analysis

For question analysis we employ deep HPSG syntactic and semantic analysis. HPSG parsing is efficiently per-
formed using the PET parser of [15]. For increased robustness, the parser is embedded in an NLP processing platform
for integrated shallow and deep analysis, the Heart of Gold (HoG) architecture [16]. Within this architecture, HPSG
parsing is seamlessly integrated with the Information Extraction system SProUT [25]. SProUT performs named entity
recognition (NER) on the basis of unification-based finite-state transduction rules and gazetteers. It provides struc-
tured representations both for general named entity classes and domain-specific terms and named entities. The Heart
of Gold architecture is designed for integration of NLP components for multiple languages.

In our QA application we are using wide-coverage HPSG grammars for English and German.” Both grammars
are integrated with shallow NE recognition. HPSG parsing delivers semantic representations in the formalism of
Minimal Recursion Semantics (MRS) [19]. MRS is designed for the underspecification of scope ambiguities and uses

6 Such a closure computation, as known from expert systems, is guaranteed to terminate, since new URIs are not generated by the construction
rules at compile time. Only new triples are computed and there are only finitely-many possibilities here, assuming that the number of predicates
stays constant (which is the case). Given u URIs and p predicates, at most p x u? triples can be generated.

7 The open-source English Resource Grammar [7,18] and the German HPSG grammar developed at DFKI [22-24,42].
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a flat, non-recursive semantic representation format. The basic units of semantic formulas are so-called elementary
predications (EPs). As depicted by the example in Fig. 5, EPs consist minimally of a relation; for example, a relation
_win_v, associated with a distinguished label (LBL), and an individual (x) or event (e) variable (ARG0). Argument
relations are represented by (abstract) role features (ARG 1-ARGN), numbered according to their relative obliqueness.
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Basic predicate-argument structure is then expressed by coindexation of the argument’s inherent variable (or, in the
case of propositional or scopal arguments, its label) with the appropriate role feature of the predicate; for example,
in Fig. 5, the ARG1 of _win_v is identified with the individual variable (x25) introduced by the proper name “Nadine
Gordimer”. Scope ambiguities are represented compactly by means of subordination (qeq) constraints in the HCONS
list. For example, quantifiers (such as _which_gq in Fig. 5) specify their restrictor argument RSTR to outscope their head
noun via a qeq relation (here, 719 qeq h22, with h22 the label of the noun relation _year_n), but remain underspecified
with respect to their scope argument BODY (here, h21).

Fig. 5 can, roughly, be read as an interrogative proposition (int_m_rel) with a wh-quantified modifier “in which
year”,8 where the modified event 2 is a winning relation, its logical subject ARG1 refers to an individual x25, with
proper name “Nadine Gordimer”,° and whose logical object x31 is represented as a definite quantified (_the_q_rel)
compound noun (compound_rel) composed of a head noun relation _prize_n and a proper name relation (“Nobel”).
The former is modified by the PP “for Literature”, where the preposition’s ARG1 refers to the variable of the modifié
(x31), and its ARG2 to the (inherent) variable for “Literature”, which is recognized, by NE recognition, as a proper
name in the domain of Nobel prizes. As seen in the bottom structures, NE recognition delivers EPs for the main
NE relation types (here, ne-person-rel and ne-sciencearea-rel), together with more fine-grained information, such as
surname and given_name relations. The latter are represented as modifiers, taking the ARGO variable of the main
relation as value of their ARG1 argument.

Although MRS had mainly been designed to address computational issues, such as tractability and order-
independence, there is now a substantial body of theoretical work in HPSG using MRS as meaning representation
language (see, for example, [9,40,56]).

A variant of MRS, Robust Minimal Recursion Semantics (RMRS) has recently been designed in [17]. The RMRS
formalism facilitates the integration of deep semantic analyses with partial semantic structures, as produced by shal-
low NLP components, such as chunkers or robust PCFGs. Within the Heart of Gold architecture, RMRS constitutes the
interchange format for all the different NLP components, including NE recognition. Fig. 5 displays an example of the
RMRS analysis produced by HPSG parsing, along with the RMRS representations provided by named entity recog-
nition. The RMRSs of the SProUT NER component are available as highly structured, IE-like NE representations,
decomposing, for instance, a complex person name into surname and given_name relations. The identified NE classes
are further mapped to coarse-grained HPSG NE-types (see named_abb_rel), which are directly delivered to the HPSG
parser to enhance robustness. Both these highly structured RMRS representations and the coarse-grained HPSG types
are automatically generated by XSLT stylesheets that are compiled from the XML output structure specifications of
SProUT NE types (see [52] for an earlier approach).

3.2. Question interpretation

The RMRS analysis of questions as delivered by HPSG parsing marks the proposition with the semantic relation
int_m_rel, for interrogative message type.‘o In wh-questions, interrogative pronouns introduce sortal relations for the
queried constituent, such as person_rel (who), thing_rel (what), time_rel (when), etc. For wh-phrases with nominal
heads, the semantic relation introduced by the noun constrains the semantic type of the queried constituent (see
_year_n in Fig. 5). Imperative sentences such as “List all persons who work on Information Extraction.” introduce an
imperative message type imp_m_rel.

While the RMRS representation of the question encodes important semantic information for question interpreta-
tion, such as the message type and the marking of wh-phrases, this representation must be further enriched in order
to derive concise queries for answer extraction from structured knowledge sources. This we perform in a special
semantic interpretation process that takes as input the RMRSs provided by “general purpose” HPSG parsing. The
minimal information we need to identify is the queried variable (q_var) in the RMRS for the question, along with

8 See Section 3.2 below for the details of the MRS representation of interrogative sentences.

9 Note that several relations can be predicated over the same ARGO variable, as is the case for “Nadine Gordimer”, represented as a proper name
quantifier proper_qg_rel and a named relation with constant argument value CARG Nadine Gordimer.

10 1 Fig. 5, int_m_rel (labeled hl) embeds, as its ARGO, the generic proposition relation prpstn_m_rel (for proposition_message) with label h5.
The proposition labelled /5, in turn, embeds the event variable e2 of the verb relation, with intervening qeq constraint (210 qeq h13) and temporal
modification by the PP “in which year”, labeled hl13, which modifies e2 as its ARG1 argument.



A. Frank et al. / Journal of Applied Logic 5 (2007) 20-48 29

sortal information for this queried variable, the expected answer type (EAT). This information is usually employed in
textual QA systems, but can also be effectively used for answer extraction from structured knowledge sources, as will
be discussed in Section 5 below.

The question interpretation module takes as input the RMRS representations of the question as delivered by hybrid
analysis in the Heart of Gold: the RMRS produced by the English or German HPSG parsers, and the RMRSs for
recognised named entities.!! We apply interpretation rules that refer to (partial) argument structures in the RMRS in
order to identify and mark the queried variable g_var of the question. We further determine the ontological type of
the queried variable, which provides important semantic constraints for answer extraction. Pronominal wh-phrases
introduce a semantic relation for the queried variable, such as person, location, or reason. For these general concepts,
as well as for wh-phrases headed by common nouns, we perform a concept lookup, either by selecting an ontological
class from SUMO, by way of its WordNet lookup facility, or else by directly mapping the lexeme to its corresponding
domain concept.!? For the example displayed in Fig. 5, this yields the additional semantic constraints: g_var(x15)
and EAT(x15, ’year’), with x15 the variable corresponding to “year”. These additional constraints are encoded in the
RMRS by way of elementary predications (EPs) g_ focus and EAT _rel, as seen below. In both EPs the value of the
ARGO feature identifies the queried variable. EAT_rel in addition encodes the feature SORT, which takes as value the
sortal type determined for the queried variable.

ARGO xI5
SORT year

ARGO xI5

[REL q jocus:| REL  EAT _rel

The RMRS as logical form of the question now explicitly encodes the queried variable, along with ontological restric-
tions as additional sortal constraints. The remaining EPs in the RMRS define relational constraints on the requested
information. In our example, we are looking for the time when a Nobel prize was won, by a person named “Nadine
Gordimer”, where the area was “Literature”. These are the key relational constraints that need to be satisfied when
retrieving the answer from the underlying knowledge base.

It is the task of question interpretation to identify these relational constraints on the basis of the semantic repre-
sentation of the question. These constraints can then be translated to a search query in the formal query language of
the underlying knowledge base. We perform this task in three steps: We first enrich the RMRS with a frame-based
lexical-conceptual representation (Section 3.2). On the basis of a pre-defined set of domain-relevant frames and roles
we extract from this enriched representation relational constraints for query construction. These relational constraints,
defined in a so-called proto query, can then be translated to a search query with corresponding domain-specific con-
cepts and properties, to retrieve the requested information from the knowledge base.

The motivation for this approach is two-fold: First, the projection of a frame-based lexical-conceptual structure
yields a normalised semantic representation that naturally accounts for linguistic variants, or paraphrases of questions.
It further constitutes a natural approach for multi-lingual and cross-lingual question answering in restricted domains.
Second, by defining a set of domain-relevant frames and roles we can establish a modular interface between the lin-
guistically determined lexical-conceptual representation of the question and the concepts of the underlying knowledge
bases. On the basis of a mapping between domain-relevant frames and corresponding concepts in the domain ontolo-
gies, we can efficiently identify and extract the domain-relevant constraints from the semantic representation of the
question. These constraints are encoded in a proto query that is handed over to the answer extraction process. The
use of abstract proto queries gives us a clean interface that abstracts away from the syntax and functionality of the
backend query languages.

3.3. Projection of a frame-semantic representation

We enrich the RMRS with a lexical-conceptual projection, following the theory of Frame Semantics, as pursued in
the FrameNet project [5]. FrameNet is building a lexical database of frame-semantic descriptions for English verbs,

11 For the entire question interpretation process depicted in Fig. 4 we are currently using the term rewriting system of [21]. To this end, the input
RMRSs are translated to a corresponding term representation.

12 In our current prototype system concept lookup is encoded manually. In future work we will experiment with automated methods for concept
lookup using WordNet-based word sense disambiguation [13,14].
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nouns, and adjectives. A frame models a conceptual situation with a number of concept-specific roles that identify
the participants in the situation. Each frame lists a number of lexical units that can evoke the corresponding frame. In
addition, FrameNet defines peripheral or extra-thematic roles, such as MANNER or TIME. An example is given in (1).

(1) A business man making an investment would know that [he recipienT] Would getgerTinG [his money THEME]
back [within four years ryyg].

An important motivation for using a frame-semantic projection is that—due to their design as lexical-conceptual
semantic structures—frames account very naturally for the normalisation of paraphrases. For illustration, consider the
semantically equivalent paraphrases in (2.a), which are all very typical expressions for requesting information from a
database about Nobel prizes.

HPSG semantic representations in terms of (R)MRS, however, are tailored to account for structural semantic prop-
erties such as quantifier scoping and predicate-argument structure, and thus still reflect the various different argument
structures involved, as illustrated in (2.b).

Following related work in [28], we enrich the RMRS representation with a frame-semantic projection, by mapping
the different argument structures of verbs or nouns to their corresponding frame structure, which states the name of
the frame and its frame-specific roles. An example of such a frame assignment rule is given in (2.c).!3 (2.d) displays
the frame-semantic representation obtained for the partial RMRS variants in (2.b).

(2) a. (win/ be awarded / obtain / get / be winner of ) a prize
b. Different argument structures in RMRS representation

REL  win/get/ REL  award
obtain ARGO el REL winner REL rize
ARGO el V| ARGl ul v | ARGO xI/ priz
ARGO x2
ARGl xI ARG2 x2 ARGl x2
ARG2 x2 ARG3 «xI

c. RMRS-based frame assignment rule

REL win GETTING el
. AWARD x2

ARGO el REL  prize SOURCE ul
LAUREATE x/

ARG1 xI/ ARGO x2 THEME x2
DOMAIN u3

ARG2 x2 RECIPIENT x/

d. Conceptual (frame-semantic) representation

[ GETTING el
SOURCE ul
THEME x2

| RECIPIENT xl

AWARD x2
LAUREATE xI/
DOMAIN u3

3.4. Inferences

The frame-semantic representations can be further enriched by applying simple forward-chaining inference rules.

Frames define a number of core frame elements, which can be understood to be existentially quantified even in cases
where the role is not overtly realised. Thus, we can introduce non-instantiated argument variables for unexpressed
frame elements (see SOURCE in the GETTING frame in (2.d)).

We further define domain-specific inference rules that can be derived from inherent semantic relations between
frames. The rule in (3), for example, defines that whenever there is an AWARD frame where the role LAUREATE refers
to some variable in the logical form, this variable in turn projects a frame LAUREATE, with its own specific core
semantic roles, such as NAME, etc. By application of rule (3), we extend the frame representation in (2.d) with an

13 We abstract here from the concrete syntax of the rewrite system we are using.
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additional frame LAUREATE, bound to the variable x1. Inferences of this type turn out to be very effective to obtain
maximally connected representations in the frame semantic projection.'*

(3) AWARD x2 LAUREATE x]
LAUREATE x/ NAME ud

In addition to such forward-chaining inferences we define a number of inference rules that are crucial to bridge
mismatches between the representation that is generated on the basis of the linguistic analysis and the structure of
the underlying knowledge base, that is, the concepts or relations in the underlying ontology or database. In example
(4), the linguistic analysis of the question determines a frame-semantic structure where the temporal modifier of the
winning event is mapped to the TIME role of the GETTING frame. The underlying domain ontology, however, does not
encode a concept that corresponds to the GETTING frame. Instead, this temporal information is encoded as a property
of the award. Mismatches of this type can be accounted for by inference rules, as illustrated in (4.c). The rule states
that if there is a GETTING frame where the THEME is an AWARD, and its TIME role refers to some temporal variable,
the AWARD frame inherits the value of this TIME role. This corresponds to an inference according to which the time
of receiving an award is equal to the time (attribute) of the award.

(4) a. When did Marie Curie win the Nobel prize for Physics?
b. Partial RMRS and frame-semantic projection

REL  sciencearea REL  person
ARGO x3 ARGO x/
| CARG  physics CARG MarieCurie

REL  ¢_focus ARGO 1]

- REL eat_rel
ARGO 1] ] .
- SORT fime

[ GETTING el

AWARD x2
SOURCE ul LAUREATE x1
LAUREATE x/ . .
THEME x2 NAME MarieCurie
DOMAIN x3
RECIPIENT x/ AFFILIATION u6
TIME u2

TIME tl

c. Inference rule

THEME x2

GETTING el [
TIME tl

AWARD x2 AWARD x2
TIME u2 TIME tl

Inferences of this type allow us to map linguistically determined frame-semantic representations to the structure of
the underlying domain ontology, and thus, to extract appropriate query constraints for the answer extraction process.
This will be discussed in more detail in Section 4.

3.5. Multilinguality

Our approach to question interpretation naturally extends to multilingual and crosslingual QA scenarios. Since
frames are defined as lexical-conceptual structures, they are to a large extent language independent.!> Thus, question
interpretation in terms of a frame-semantic representation effectively implements a kind of ‘interlingua’ approach for

14 Tightly connected frame representations in turn are useful for the extraction of concept-relating paths in the query construction phase (see
Sections 4 and 5 below).
15 This is currently explored by international activities around FrameNet [26,53].
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RMRS (en) RMRS (ge)
RMRS (en) — frames RMRS (ge) — frames

Ll Ll

domain-specific frames & inferences

Ll

computation of proto-query

L1l

term translation (en <> ge)

Fig. 6. Multilingual QA: frame-semantic representations as interlingua.

question answering: the frame-semantic representations serve as a language-independent interface to the underlying
knowledge bases. !0

As illustrated in Fig. 6, HPSG grammars for different languages—in our scenario, English and German—provide
semantic structures in a uniform formalism, (R)MRS. The language specific relations in these semantic forms are
translated by language- and lexeme-specific frame projection rules to a common, language-independent frame-
semantic representation.

The remaining parts of the question interpretation and answer extraction processes are then uniform across lan-
guages. Domain-specific inference rules refer to the common frame-semantic representations, thus they are applied
to the same type of intermediate structures in question interpretation, irrespective of whether they were produced by
German or English HPSG grammars. Similarly, the subsequent rules for the extraction of proto queries uniformly
operate on the language-independent frame-semantic representations (see Section 4).

For crosslingual QA from structured knowledge sources, we perform term translation for instances (named entities)
and domain-specific terms of the knowledge base that can appear as values in search queries constructed from the
question’s representation.

As expected, we experienced very moderate development effort when porting the question processing module from
English to German.!”

4. Interfacing question interpretation and domain ontologies

The process of question interpretation yields a lexical-conceptual frame structure on top of the RMRS obtained
from HPSG parsing. On the basis of pre-defined mappings from domain-relevant frames and roles to concepts in the
underlying knowledge bases, we extract query constraints from the frame-semantic representation of the question,
which are composed to so-called proto queries—abstract query patterns that can be translated to concrete ontology
or database query languages of the underlying domain knowledge bases. This is discussed in Sections 4.1 and 4.2.
Section 4.3 explains the construction of proto queries for more complex questions involving quantification. Finally, we

16 We do not present any claims to the effect that frames could be used as an interlingua in MT. Our architecture also differs from interlingua
approaches as pursued, for example, in Rosetta [51], which assumes a close correspondence between source and target language grammars, in
that the translation relation needs to observe a principle of compositionality. In our approach, frame representations serve as a coarse-grained
language-independent conceptual representation that is constructed independently by language-specific rules for the individual languages.

7" The main body of frame projection rules could be carried over from English to German by adapting the language-specific predicate names,
while differences in argument structure required the definition of new projection rules. According to the architecture as displayed in Fig. 6, German
and English frame projection rules are defined as interchangeable sub-modules. In the same way, the sets of rules that define domain-specific
inferences and the mapping of frames to domain concepts (see Sections 4.1 and 4.2) are defined as interchangeable sub-modules for the different
application scenarios, yet independently from the language parameter.
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discuss the extraction of path constraints that can connect otherwise unrelated frames in individual query constraints
of a proto query.

4.1. Mapping frames to domain concepts and properties

As a basis for the extraction of queries to the domain knowledge bases we define a set of domain-relevant frames
and roles, for which the domain models specify corresponding concepts and properties. This is done by simple clauses,
as illustrated below for the frame AWARD from the Nobel prize domain. !

frame_role2domain (award, laureate, _,_) .
frame role2domain (award,domain,_,_ ).
frame_role2domain (award, time, _,_) .

Besides the identification of domain-relevant frames, we can further specify a mapping to corresponding concepts and
properties in the underlying ontology. This option we pursued in the LT-World scenario, where the clauses in addition
state the target concepts and properties in the LT-World ontology.

frame_role2domain (project, leader, 'ActiveProject’, coordinatedBy) .
frame_role2domain (project,name, 'ActiveProject’,projectNameVariant) .

On the basis of this information we extract domain-relevant concepts from the semantic representation of the question,
and turn them into abstract query terms that are then translated to concrete database or ontology queries.'®

4.2. Construction of proto queries

A basic distinction for the construction of structured query terms is the distinction between queried vs. constrain-
ing concepts and attributes. For the extraction of queried concepts in (5.a), we select those domain-relevant frames
and roles that correspond to the queried variable (g_var) in the logical form, represented as the ARGO argument of
the g_ focus relation (see Section 3.2). We further extract the corresponding ontological restrictions encoded as the
expected answer type in EAT_rel. In (5.b) we extract all remaining (non-queried) domain-relevant frames and roles,
which provide additional constraints on the queried concepts. Again, we extract ontological restrictions, here in terms
of their named entity type, as encoded by the RMRS structures provided by NE recognition in the HoG. Subsequent
rules further identify the value of the constraint, in general the main predicate (relation) or CARG (constant name)
associated with the role’s variable, such as ‘Marie Curie’ in (5.b), or time constants for temporal constraints.

%) a g _focus(0id,Y),
frame(Frame, X), role(Role, X,Y), EAT_rel(Y, Sort),
frame_role2domain(Frame, Role,_, )
=> select_cond(Qid, Frame, Role, Sort).

b. —qg_focus(Qid,Y),
frame(Frame, X), role(Role, X,Y),ne_type(Y,NE),
frame_role2domain(Frame,Role, _,_ )

=> where_cond(Qid, Frame, Role, NE).

18 In the Prolog-like notation of the rewrite system of [21], arguments starting with underscore are anonymous variables, those beginning with
uppercase letters introduce named variables, and lowercased arguments refer to constants. The clauses state facts that can be matched by subsequent
rewrite rules, as in (5) below.

19 we already mentioned, in Section 3.5, Footnote 17, that the rules for identification and mapping of frames to domain-specific concepts are
defined as interchangeable sub-modules, which are independent of the language parameter and the general rule set for proto query construction.
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By this method we extract so-called proto queries from the frame-semantic structures, as illustrated below. (6.c) shows
the instantiated query terms that are extracted by rules like (5). The values of Frame and Role inthe select_cond
and where_cond terms are recorded as values of the attributes rel and at tr of the proto query (6.d).?°

(6) a. Inwhich areas did Marie Curie win a Nobel prize?
b. Question interpretation

REL R [ REL EAT _rel REL  person
[ARGO q]J%MS} ARGO xI10 ARGO «x17
. | SORT  FieldofStudy CARG MarieCurie
GETTING €2 | [ AWARD x21
THEME x21 LAUREATE x/7 | [ LAUREATE x/7 |

RECIPIENT xI7 DOMAIN x10

c. Extracted select_cond and where_cond terms:

select_cond (0, award,domain, 'FieldofStudy’)
where_cond (0, award, laureate, person, 'Marie Curie’)

d. Proto Query

<PROTO-QUERY id="1">

<SELECT-COND gid="0" rel="award" attr="domain" sort=
"FieldofStudy">

<WHERE-COND gid="0" rel="award" attr="laureate" netype="person"
val="Marie Curie">
</PROTO-QUERY>

4.3. Quantificational questions

QA from structured knowledge bases is particularly well suited to answer questions for which the answer is not
explicitly represented in the document or knowledge base, but must be inferred from the available information. Prime
examples are cardinality, quantificational or comparative questions, as in (7).

(7) a. How many researchers won a Nobel prize for Physics before 19117
b. Which institution has published most papers between 2000 and 2004?
c. Which nation has won more Nobel prizes in Physics than the US?

To account for these quantificational aspects, we employ special proto query conditions OP-COND and QUANT-
COND. These constructs go beyond the formal power of database query languages like SeRQL, but can be translated
to special post-processing operations in the answer extraction phase.

The quantificational conditions are strongly determined by the semantic representation of the question. It is for this
reason that the computation of proto queries is tightly integrated with question interpretation (see Fig. 4). Cardinality
questions are marked by operators such as how many that range over the queried variable. For such configurations we
generate a condition OP-COND which specifies the operator relation op-rel that corresponds to the semantics of
the quantifier. Since the quantification ranges over the queried variable, the domain of computation is defined as the
answer for the sub-query for the queried variable (domain-id="0" in Fig. 7).

20 Proto queries may be complex, that is, may be decomposed into individual sub-queries with specially marked dependencies. Therefore, all
conditions that pertain to a single sub-query are marked by a common sub-query index (qgqid). The main query index is associated with the
questions q_focus, as seen in (5). The rules that process complex quantificational queries, as in Fig. 7, introduce new gid indices for the generated
sub-queries.



A. Frank et al. / Journal of Applied Logic 5 (2007) 20—48 35

<PROTO-QUERY id="1">
<SELECT-COND gid="0" rel="award" attr="laureate" sort=""/>
<WHERE-COND gid="0" rel="award" attr="time" netype="" valfunc="before" valarg="1911"/>
<WHERE-COND gid="0" rel="award" attr="domain" netype="sciencearea" val="Physics"/>
<OP-COND oprel="card" domain-type="answer" domain-id="0"/>

</PROTO-QUERY>

Fig. 7. Proto query for How many researchers won a Nobel prize for Physics before 19117

<PROTO-QUERY id="8">
<SELECT-COND gid="0" rel="laureate" attr="origin" sort="?2"/>
<QUANT-COND gid="1" quantrel="foreach" domain-type="answer" domain-id="0"/>
<SELECT-COND gid="1" rel="award" attr="" sort=""/>
<WHERE-COND gid="1" rel="laureate" attr="origin" valfunc="answer\_of" valarg="0"/>
<WHERE-COND gid="1" rel="award" attr="domain" val="Physics"/>
<OP-COND oprel="max\_card" domain-type="answer" domain-id="1" />

</PROTO-QUERY>

Fig. 8. Proto query for Which nation has won most Nobel prizes for Physics?

<PROTO-QUERY id="1">
<SELECT-COND gid="0" rel="award" attr="time" sort=""/>
<WHERE-COND gid="0" rel="laureate" attr="name" netype="person" val="Marie Curie"
path="[award, laureate, laureate] " />
<WHERE-COND gid="0" rel="award" attr="domain" netype="sciencearea" val="Physics"/>
</PROTO-QUERY>

Fig. 9. Proto query for In which year did Marie Curie win the Nobel prize for Physics?

In quantificational and comparative questions of the types illustrated in (7.b, c¢) the quantification ranges over
a non-queried variable. In these cases we perform query decomposition. We compute conditions for a base query
that retrieves instances for the domain of quantification (for example, “nation” in Fig. 8). The quantifier condition
QUANT-COND defines that for each instance in this domain we perform a sub-query for the queried variable and
the non-queried relational constraints (select- and where-conditions), by referring to each instance of the quantifier
domain. An operator condition encodes the quantifier-specific relation (for example, max-card for most) that is to
be computed over the retrieved data records.

4.4. Extraction of concept-relating paths

The rules for the extraction of proto queries (5.a, b) only consider local frames and roles to define relational
constraints for proto queries. Thus, the concepts that appear in the individual SELECT- and WHERE-conditions may be
unconnected. An example is given in Fig. 9. Here, the WHERE and SELECT condition are about the frames laureate
and award, yet it is not clear whether or how these relate to each other.?!

The frame-semantic representation of the question does, however, often specify connecting paths between these
frames and roles. In part, these connections are determined by the linguistic structure, in part by domain-specific
inferences (see Section 3.4). In the frame-semantic representation for the example in Fig. 9, the frames laureate
and award are connected due to an inference rule that concludes, from two frames award and laureate that
participate as role fillers in a single getting frame, that the value of an unfilled role 1aureate of the obtained
award is identical to the laureate, i.e. the recipient of the getting frame:

21 The frame/role pairs laureate/name and laureate/domain are triggered by the verb win and its ARG1 argument, and the compound
Nobel prize and its modifier PP for Physics, respectively. The frame/role pair award/time is obtained from the temporal verb modifier and the
inference rule (4.c) described in Section 3.4.
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(8) GETTING el
AWARD x!
THEME x1 [LAUREATE x2] =ul =x2
LAUREATE ul
RECIPIENT x2

Thus, for all pairs of SELECT and WHERE conditions of a proto query that refer to distinct frames, we extract, from
the question’s frame-semantic representation, the connecting paths that lead from the frame and role of the WHERE
condition to the frame and role of the SELECT condition, and record these connecting paths as a PATH attribute in
the query object conditions, as seen in Fig. 9. This path information is used in the answer extraction phase to further
specify the connections between the individual partial search constraints (see Section 5.2).

5. Answer extraction
5.1. Answer extraction from Nobel prize knowledge resources

The instances of domain relations are stored in the relational database MySQL. We store the Nobel prize winners
in two separate tables: one for persons and one for organisations, since the two concepts person and organization are
associated with different attributes. In the following examples, we call these nobel-prize-winner-person and nobel-
prize-winner-organization.

The first step to be taken in answer extraction is to translate proto queries provided by question interpretation to
SQL queries. Proto queries as introduced in Section 4 identify: (i) the answer type concept, which corresponds to
the value of the SQL SELECT command, (ii) additional concepts and their values, which constrain the answer type
value (these concepts will fill the SQL WHERE conditions), and (iii) dependencies between elementary questions, if a
question is complex and needs to be decomposed into several simple questions.

For example, for the simple fact-based question “Who won the Nobel Prize in Chemistry in 2000?” question
analysis returns the following proto query:

<PROTO-QUERY id="qgl3" type="sqgl">
<SELECT-COND gid="0" rel="award" attr="laureate" />
<WHERE-COND gid="0" rel="award" attr="domain" val="Chemistry"/>
<WHERE-COND gid="0" rel="award" attr="time" val="2000"/>
</PROTO-QUERY>

The task of SQL query translation is to first identify the tables where the requested concepts can be found, and
second, the relevant table fields which can match the values given in the proto query. We have defined mapping rules
between FrameNet frames and their roles and their corresponding database tables and their fields. In a special field
event-dependent we further mark concepts that are events. Below we list some examples of table entries.

Rel Attr val-concept DBTable DBField event-dependent
award laureate person nobel-prize-winner-person name yes

award laureate organization nobel-prize-winner-organization name yes

award domain prize-area nobel-prize-winner-person area no

award domain prize-area nobel-prize-winner-organization area no

award time date time nobel-prize-winner-person year yes

award time date time nobel-prize-winner-organization year yes

The SELECT-COND in the example above only mentions the frame-semantic rel and at tr attributes award and
laureate. Yet, there is no direct mapping to a table for laureate. In such cases we make use of our ontology and
discover that laureate corresponds to cognitiveAgent which has two subconcepts: human and group. Their
corresponding domain concepts are person and organization. We thus expand laureate to person and
organization and find their corresponding tables. In the same way, we identify the tables for the WHERE-COND.
In this example, SELECT- and WHERE-COND require access to the same tables. Thus, we generate the following two
SQL queries:
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SELECT name FROM nobel-prize-winner-person
WHERE year="2000" AND area="chemistry"

SELECT name FROM nobel-prize-winner-organization
WHERE year="2000" AND area="chemistry"

The final answer is obtained by merging their results. While the example just considered involves concept expansion,
we also perform concept disambiguation. This is illustrated by the example In which year did Nadine Gordimer win
the Nobel prize for Literature?, with the proto query

<PROTO-QUERY id="1">
<SELECT-COND rel="award" attr="time" sort="Year" />
<WHERE-COND rel="award" attr="domain" netype="prize-area" val="Literature" />
<WHERE-COND rel="award" attr="laureate" netype="person" val="Nadine Gordimer" />
</PROTO-QUERY>

Again, both the SELECT-COND and the first WHERE-COND identify the two tables nobel-prize-winner-
person and nobel-prize-winner-organization. However, in the second WHERE-COND, the linguistic
analysis recognises that the entity type of laureate is person. We can use this information for table disambigua-
tion and choose the table nobel-prize-winner-person.

The SQL query for this question then is:

SELECT year FROM nobel-prize-winner-person
WHERE area="Literature" AND name="Nadine Gordimer"

Finally, we distinguish queried entities that are independent of individual prize winning events from event-dependent
entities. Consider the two questions:

(9) How many areas are there for the Nobel Prize?
(10) How many Nobel Prize winners has France produced?

In the first case, every area in which a person or organisation has won a Nobel prize is only counted once. For
answering the second question, we could also count every person once, even if the person has been awarded two
prizes, such as Marie Curie. However, in line with counting tourists visiting Paris or customers of Harrod’s, we
decided to make the cardinality of recipients event-dependent.

Thus, the answer to the first question will be: Six areas: Chemistry, Physics, Peace, Literature, Medicine, Eco-
nomics, although all areas occur more than once in award-winning events. We treat area as event-independent,
generating an SQL query with a DISTINCT condition:

SELECT DISTINCT area FROM table

The answer to the second question will be: Three winners: Marie Curie (2) and Pierre Curie (1). Here, the person in
the award relation is handled as event-dependent. In this case we generate the SQL query

SELECT person FROM table WHERE country="France"

5.2. Answer extraction from the LT World ontology

In this section, we show how a proto query can be mapped to an expression in the query language SeRQL of
Sesame.

Based on the mapping from domain-specific frames and roles in the proto query conditions to domain concepts
and properties (see Section 4.1), we first perform a translation of the values of rel, attr, and path attributes to
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the corresponding domain concepts and attributes of the LT World ontology. Thus, each relation (value of rel) now
denotes a concept in the ontology and each attribute (value of attr) denotes an OWL property.

In a SeRQL query, instances of a concept are identified by variables in the subject position of an RDF triple. The
concept itself is stated in the object position, and subject and object are connected by rdf : type—this is exactly the
way how instances of a specific concept are represented in the RDF base of Sesame. For example,

<SELECT-COND gid=".." rel="Organisations" attr="locatedIn"... />
leads to the introduction of the following RDF triple (_r is a fresh variable, 1tw the LT WORLD namespace):
{_r} rdf:type {ltw:0rganisations}
Since attributes like 1ocatedIn refer to properties of a concept, we obtain a further triple:
{_r} ltw:locatedIn {_qg}

The property locatedIn connects instances of the main concept Organisations via the root variable _r
with the queried information. The queried information is bound to a new question variable _g that will be returned. It
is marked by the SELECT clause in a SeRQL query:

SELECT {_qg}
FROM {_r} rdf:type {ltw:0Organisations},
{_r} ltw:locatedIn {_qg}...

In Fig. 10 we give an overview of the main principles of the transformation from proto queries to SeRQL queries.
In order to illustrate the transformation principles, let us consider the question “Who is working in the Quetal
project?”, with its (simplified) proto query that contains a SELECT and a single WHERE condition:

<PROTO-QUERY>

<SELECT-COND rel="Active_Person" attr=""/>

<WHERE-COND rel="Active_Project" attr="projectName" val="Quetal"/>
</PROTO-QUERY>

Given this proto query the following SeRQL query is generated:

SELECT DISTINCT _g0
FROM {_rl} rdf:type {ltw:Active_Person},
{_r2} rdf:type {ltw:Active_Project},
{_rl} ltw:name {_go},
{_r2} ltw:projectName {_13},
[ {_rl} _p4 {_r2} 1,
[ {_r2} _p5 {_rl1} ]
WHERE (NOT (_p4 = NULL) AND (_p5 = NULL)) AND (_13 LIKE "Quetal™")

Query construction comprises three main aspects. First, information that is requested must be encoded by variables
following the starting SELECT clause. We make use of the keyword DISTINCT to rule out duplicate occurrences in
case no OP-COND condition is specified in the proto query. Howeyver, if an operator condition is present, DISTINCT
should not be added because duplicates must be taken into account for arithmetic operations in quantificational ques-
tions (for instance in “Who led most projects in Information Extraction?”).

Second, RDF triples are collected in the FROM clause, separated by commas, which implicitly express logical
conjunction. A restricted form of disjunction is available at this point due to the optionality operator [ ] which
expresses information that need not be matched.
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(1) for each SELECT-COND and WHERE-COND
— each relation denotes a concept
— each attribute denotes a property
— each unique relation introduces a new root variable
(2) each SELECT-COND introduces a new query variable
(3) each WHERE-COND introduces a new local variable
(4) guarantee that the RDF triples form a connected graph
— if path constraints are specified, link the root variables
— otherwise, introduce new property variables linking the roots
(5) finally apply OP-COND to the result table (if needed)

Fig. 10. Principles for transformation of proto queries to SeRQL-Queries.

<SELECT ...rel=... attr=... path=../>

<WHERE ...rel=... attr=... val=... path=../> ‘
<WHERE ...rel=... attr=... val=... path=../>

Fig. 11. Given a proto query, a set of partial graphs is determined. In a final step, missing links are added to make the set a connected graph. These

links are either added by the proto query transformation process in case path constraints are specified (see Section 4.4) or computed by Sesame
through database inspection.

Additional restrictions on variables can be formulated in the WHERE clause, including equality (=), inequality (! =)
and string matching (LIKE). These restrictions can be combined using the Boolean connectives AND, OR, and NOT.

Returning to the example above, according to principle (1) of Fig. 10, two root variables _r1 and _r2 are in-
troduced and linked to concepts Active_Person and Active_Project via rdf:type. Principle (2) leads
to the query variable _g0 which is linked to _r1 via the property name, the default property in case the attribute
value in a SELECT-COND is empty (= " "). From (3), we get a variable _ 13 which binds the value of attribute val
("Quetal") in the proto query above. The value itself is specified in the WHERE clause of the SeRQL query.

The most interesting aspect in the query construction process is how to account for partially connected concepts
(remember principle (4); for illustration, see Fig. 11). In our example, two relations/concepts _r1 and _r2 are in-
troduced in the proto query. Since we want to retrieve information related to _r1 (via _g0), it is important that
_rl and _r2 are connected. Otherwise the information from _r2 (through rdf : type and 1tw:projectName)
can not be incorporated into the search of the RDF database. Put differently, if we did not account for connecting
concepts/properties between _r1 and _r2, the above SeRQL query would simply retrieve all instances of concept
Active_Person.

It is the last two clauses of the FROM condition and the first WHERE clause that account for this problem. Since
_r1 and _r2 are not connected and no information is given regarding a connecting property and the direction of such
a connecting property (from _r1 to _r2, or vice versa?), we let Sesame “guess” this information. Firstly, in order to
guess the property, we use property variables in the predicate position of an RDF triple. Secondly, in order to guess
the direction, we need some kind of disjunction on the FROM level. Here the optionality operator comes into play.
Notice that there may be several different properties, connecting _r1 and _r2, even properties from _r1 to _xr2 and
from _r2 to _r1 at the same time. In order not to rule out both optionality statements, we have to formulate further
constraints, specifying that the two property variables should not be NULL at the same time.

Looking at this from a graph-theoretical perspective, we are interested in constraints, characterising directed min-
imum spanning trees [29, p. 130]. The nodes in such a tree are exactly the root nodes representing the concepts, and
the edges which connect the nodes represent the missing properties. The missing edges are either specified via path
expressions, or represented by property variables which need to be instantiated by Sesame through a DB search. The
basic idea is illustrated in Fig. 11. Specifying path constraints and adding them as further constraints to the WHERE
clause of the SeRQL query is clearly superior in terms of run time performance against a pure DB search, where
concrete properties are replaced by property variables. The elimination of a single property variable by a concrete
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property speeds up query performance by more than a factor of 100. Eliminating several property values then results
in a multiplication of the single speedup factors.>?

To see how path constraints can simplify a SeRQL query, consider the following three relations Act ive_Person,
Active_Project, and Active_Company, so that we obtain three root variables overall. Three minimum span-
ning trees (MSTs) are possible here (actually six, if we take directedness into account), plus, of course, a graph where
each node is linked to every other node. In order to characterise the MSTs in a SeRQL query, we introduce two prop-
erty variables for each pair of root variables. The constraints specified in the WHERE clause of the SeRQL query then
guarantee that the resulting graphs are at least minimum spanning trees, meaning that they are connected. Considering
the three relations above, we see that such a query becomes quite complicated:

SELECT DISTINCT _gO0
FROM {_rl} rdf:type {ltw:Active_Person},
{_r2} rdf:type {ltw:Active_Project},
{_r3} rdf:type {ltw:Active_Company},
[{_r3} _p6 {_rl}], [{_rl} _p7 {_r3}],
[{_r3} _p8 {_r2}], [{_r2} _p9 {_r3}],
[{_rl} _pl0 {_r2}], [{_r2} _pll {_ri}]l,...
WHERE (((NOT (_pl0 = NULL AND _pll = NULL)) AND
(NOT (_p8 = NULL AND _p9 = NULL))) OR
((NOT (_pl0 = NULL AND _pll = NULL)) AND
(NOT (_p6 = NULL AND _p7 = NULL))) OR
((NOT (_p6 = NULL AND _p7 = NULL)) AND
(NOT (_p8 = NULL AND _p9 = NULL))))...

Clearly, the existence of path constraints is extremely important here in order to reduce the DB search space.
That is, in cases where we extract concept-relating paths from the frame-semantic representation of the question (see
Section 4.4), we can use these path constraints as additional constraints in the SeRQL query. If we assume that at least
one WHERE condition in the proto query specifies a non-empty path constraint, for example,

<WHERE-COND gid="..." rel="Active_Project" attr="..." val="..."
path="[’'Active_Person’, 'participatedIn’, 'Active_Project’']"/>

the complexity of the above SeRQL query is considerably reduced:

SELECT DISTINCT _gO0

FROM {_rl} rdf:type {ltw:Active_Person},
{_r2} rdf:type {ltw:Active_Project},
{_r3} rdf:type {ltw:Active_Company},
{_rl} ltw:participatedIn {_r2},
[{_r3} _p6 {_rl}l, [{_rl} _p7 {_r3}],
[{_r3} _p8 {_r2}], [{_r2} _p9 {_r3}],...

WHERE (((NOT (_p6 = NULL AND _p7 = NULL)) AND
(NOT (_p8 = NULL AND _p9 = NULL))))...

Assuming further that another WHERE condition comes with the path constraint

path="[’'Active_Company’, 'hasOrganized’, 'Active_Project’]"

22 A further argument why property guessing can only be the fallback position is that it is in principle possible that there exists more than one
property connecting two roots. Guessing would apply all properties, leading to wrong results (too many candidate answers). Fortunately, we have
not encountered such a behaviour.
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the SeRQL query collapses to

SELECT DISTINCT _g0

FROM {_rl} rdf:type {ltw:Active_Person},
{_r2} rdf:type {ltw:Active_Project},
{_r3} rdf:type {ltw:Active_Company},
{_rl} ltw:participatedIn {_r2},
{_r3} ltw:hasOrganized {_r2},...

WHERE. . .

Our implementation handles all these cases, along with further optimisations.
5.3. Answer preparation

The answers returned by both MySQL and Sesame are grouped in a result table. Since certain queries require post-
processing by arithmetic operations (“How many people are working at 1SI?”) and since communication between the
different components are realised via XML, we do not directly return the result table. Instead, the answers are encoded
in a structured answer object, similar to the query object that embodies the original proto query (Fig. 2).

An answer object refers to the query id of the query object and distinguishes between potential conflicting answers
(several VALUES tags) and list-based answers (a single result, consisting of several pieces; several VALUE tags).
Similar to question objects, the answer objects serve as XML exchange structures in the QA architecture. That is, the
same type of structure is returned by MySQL for the Nobel prize domain and Sesame in the LT WORLD domain.

As an example, the (simplified) answer object to the question “Who is working in the Quetal project?” is

<AOBJ 1d="id18" msg="answer" query-id="Q01" lang="EN">
<ANSWER type="complex" score="1.0">
<VALUES> <VALUE>Bogdan Sacaleanu</VALUE>
<VALUE>GUnter Neumann</VALUE>...</VALUES>
</ANSWER>
</AOBJ>

With respect to natural language answer generation, we are currently exploring two alternative approaches: template-
based shallow generation using TG2 (Busemann, 1996) as well as MRS-based HPSG surface generation. While a
template-based system should appear more than sufficient to provide natural language output for restricted domains,
it will certainly require considerable duplication of language engineering efforts. It therefore makes perfect sense to
exploit the reversability of the German and English HPSG grammars for multilingual answer generation. The required
MRS input for the generator can then be partially derived from the MRSs obtained in question analysis, with requested
information being filled in from the answer objects.

6. Evaluation

We have performed an initial evaluation of our prototype system for domain-restricted QA from structured knowl-
edge sources. A system-internal evaluation assesses the quality and efficiency of question interpretation and answer
extraction. In addition we performed a comparative evaluation of our domain-restricted system to the web-based
open-domain textual QA system AnswerBus [57]. This, in conjunction with a detailed classification of question types,
allows us to assess the added value of a specialized, domain-restricted QA component in a hybrid system architec-
ture.??

23 The textual QA system of QUETAL obtained the best results in the 2004 cross-lingual CLEF task [44]. However, it is not yet extended to
web-based QA. Since we do not yet have access to appropriately large document bases for our two domains, it seemed most appropriate to choose
an independent open-source web-based QA system and to perform the comparative evaluation in the Nobel prize domain, for which enough
information can be found on the Web.
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question type in % expected answer type in %
factual 58 time 13
list 15 person, organisation 54
definition 2 currency 3
cardinality (how many) 22 prize area 14
quantificational (most) 24 nation 12
event quantification 2 achievement 1
embedded questions 17

Fig. 12. Distribution of question types and expected answer types.

The comparative evaluation to AnswerBus restricts us to questions in English; we further chose the Nobel prize
domain, as information about this domain is appropriately covered by the WWW. We compiled a set of 100 English
questions about the Nobel prize domain, in part adapted or inspired from the FAQ sections of Nobel prize web portals.

6.1. Question classification

The question types in our test set range from factual and list questions to different types of cardinality and quan-
tificational questions. Fig. 12 gives a detailed overview of the different question types and their distribution over the
sample set, along with a classification of the questions’ expected answer types, again with quantitative distribution.>*
The questions are varied in terms of paraphrases (verbal and nominal paraphrases, interrogative, non-interrogatives
or embedded questions, such as “Give me a list of...”, “Could you tell me in which year...”), and according to
different types of constraints to be used in question interpretation and answer extraction, such as (relational) temporal
constraints (in/before/since/after 1999), gender (female prize winners), prize areas, as well as countries, locations, and
affiliations.

6.2. Question processing and interpretation

For the 100 questions the average runtime (real time) per question was 3.74 seconds for full online processing
from text input to answer object output, on a Intel Xeon 2.5 GHz Linux machine. Answer extraction alone took
125 milliseconds per query object on average. For four questions the linguistic analysis failed. The question sample
contains 18 questions that instantiate two types of event quantification which are not yet accounted for by the question
interpretation module. For the qualitative evaluation we accordingly distinguish between the full question sample as
basis for evaluation, displayed in the first row of Fig. 13, while the figures in the second row are computed on the
basis of the 82 questions that can currently be considered as in-scope phenomena.

Our HPSG grammars are equipped with stochastic models for parse selection [48]. In the current set-up, the
question interpretation module applies to the three highest-ranked semantic HPSG analyses, and delivers a separate
question object for each of them. Fig. 13 gives an overview of the distribution of correct proto queries over the highest-
ranked parses (columns 2—4), as well as the overall number of correct proto queries across the three highest-ranked
analyses (columns 5-7). Of the overall set of 100 questions, 46% return the correct proto query for the highest-ranked
parse, 41% and 32%, respectively, for the second and third ranks; restricted to the in-scope phenomena, the figures
raise to 56.1%, 50% and 39%, respectively.

In many cases, question interpretation extracts a correct proto query from more than one of the three best parses: For
18% of all questions (22% of the in-scope samples) we obtain the correct proto query from all three parses considered;
24% (29.3%) return two correct proto queries; for 17% (20.7%) we obtain a single correct proto query from the three
highest-ranked analyses.

Since we are considering the three best parses, we can apply a voting scheme to determine which one of possible
alternative proto queries to send to the answer extraction module. In cases of non-conflicting multiple results, voting
is not necessary. However, we often obtain proto queries that are partial, or less specific than another proto query result
for the same question, which hence could lead to wrong answers. In those cases where the partial query is subsumed

24 The types are overlapping, so the figures do not sum up to 100%.
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correct pq in nb of correct overall proto query results

nth parse (in %) pq’s per q (in %) (with voting)

Ist 2nd  3rd 3 2 1 corr. uncert. wrong no pq
full sample 46.0 41.0 320 180 240 17.0 58.0 3.0 15.0 24.0
in-scopeonly 56.1 50.0 39.0 22.0 293 207 695 24 7.3 19.5

Fig. 13. Evaluation figures for question interpretation (pq: proto query).

correct incorrect no answer
abs. # 43 4 11
in % 74.1 6.9 19.0

Fig. 14. Evaluation figures for answer extraction (based on 58 correct proto queries).

question type in % (in-scope) expected answer type in %
factual 53.4 (64.6) time 46.2
list 40.0 (42.0) person, organisation 40.7
definition 100.0 (100.0) currency 0.0
cardinality (how many) 18.2 (22.0) prize area 42.9
quantificational (most) 25.0 (54.5) nation 58.3
event quantification 100.0 (100.0) achievement 0.0
embedded questions 47.1 (47.1)

Fig. 15. Distribution of correct answers over question and expected answer types.

by both alternative analyses, or by a single alternative analysis out of two resulting proto queries, we ignore the partial
query, in favour of the more specific one. In 67,9% of all cases that involve partial queries (28 on the full corpus), this
strategy yields a correct proto query. In cases where a proto query is subsumed by only one of two alternative proto
queries, we mark the result as uncertain. This occurs in 3% (2.4%) of cases. For 24% (19.5%) of the questions, all
analyses return an empty proto query, and are thus to be regarded as out of system coverage. These cases are either
due to problems in the semantic analysis (failed or wrong parses or parse selection), or in the question interpretation
process.

As seen in Fig. 13, the overall ratio of correct proto queries that result from the voting and filtering process is 58%
(69.5%). With 15% (7.3%), we achieve a moderate error rate, opposed to a higher rate of cases where the system
signals that it is uncertain (3%/2.4%) or unable to answer the question (24% /19.5%).

Overall, then, the system features relatively high precision that is balanced against a low error rate and reduced
recall. This tendency is especially welcome for a domain-restricted QA system that is confronted with high user
expectations regarding the reliability of the answers delivered. Another outcome of the evaluation is that a high
percentage of the unanswered questions failed because the correct parse was not promoted high enough by stochastic
parse selection. This situation will be improved in future work, by retraining the stochastic disambiguation model on
typical question samples.

6.3. Answer extraction

We evaluated the answer extraction module on the basis of the 58 correct proto queries that were selected by the
voting procedure. Fig. 14 presents the results: for 74.1% of the proto queries the correct answer was returned; in 6.9%
the answer was wrong; for 19%, finally, no answer was returned. Error analysis for the 4 incorrect answers yielded a
single minor cause of error (wrong answer type identification). For missing answers we identified several causes that
need to be adjusted: mismatches of concept-database mappings, wrong table selection and out of scope phenomena.

Fig. 15 details the distribution of correct answers over different question types, with restriction to in-scope phe-
nomena in parentheses.



44 A. Frank et al. / Journal of Applied Logic 5 (2007) 20—48

correct for top n results correct for question types

Ist  2nd 3rd overall fact card quant embedded
in% 9.0 80 80 150 224 45 42 59

Fig. 16. Distribution of correct answers (AnswerBus).

6.4. Comparison to AnswerBus

In order to assess the added value of a domain-restricted QA component, we compare the results of our current
prototype system to the results delivered by the open-domain textual QA system AnswerBus [57]. We collected the
three highest-ranked answers returned by AnswerBus, and evaluated the returned answers (Fig. 16). The coverage on
our 100 question sample is rather poor: for only 15% of the questions it delivered a correct answer within the first
three ranks. Detailed analysis of the distribution of results over question types shows that AnswerBus fares moderately
well for factual questions, but shows poor performance for other question types, such as cardinality, quantificational,
or embedded questions. Of the remaining question types, none could be answered.

6.5. Discussion of results

Since our system is still at the stage of a prototype, the evaluations carried out above have to be taken with care. In
the current phase where concept lookup and frame assignment are not yet automated, it is evident that the extension
of coverage to novel types of structures has to be performed manually. However, most of the necessary adjustments
can be amended in a very short time, and the gain of coverage persists, in particular for those constructions that are
domain-independent, such as various types of (direct and indirect) question variants, or quantificational structures,
which can thus be ported to new domains without further ado. For domain-dependent concept and frame projection
we will investigate automation techniques as described in [13,14]. More work also needs to be invested in order to
reduce the current system’s error rate. Here, we will investigate heuristics to identify out-of-coverage questions, using
sortal restrictions, or generation of natural language questions (or answers) from the (answer-enriched) query objects,
to detect inconsistencies or “misinterpretations” of the question analysis.

The comparison to AnswerBus is not to be taken as a comparison between equals: it is intended to highlight the gain
that results from more knowledge-intensive approaches, in particular in the context of a hybrid system architecture,
where questions that cannot be answered by the domain-specialized QA system can be passed on to a textual (open-
domain) QA component.?> The results from our comparison experiment strongly suggest that in those application
domains where databases and ontologies are maintained and actively used, a carefully designed QA system in a
hybrid architecture pays off when it comes to support targeted and reliable information access through the medium of
natural language.

7. Comparison to related work

The approach outlined here stays close to past and present work on natural language interfaces to databases
(NLIDB) (see overview in [3,20]). Compared to the early systems in that area, such as Lunar [55] or CO-OP [37],
not surprisingly, we build on more general and advanced resources and techniques in both linguistic and knowledge
modeling.

Like most of these systems, we make use of a modular, layered architecture that clearly separates syntactic analysis
and the construction of a semantic interpretation for the question, which is then translated to a database query, based
on a mapping from linguistic expressions and predicates to database concepts (relations, attributes and values). This
architecture ensures a high degree of portability, in that we use general-purpose linguistic analysers that are not tied
to specific domains.

Probably the closest predecessor to our approach is the CLE system [2], which is also built on sophisticated lin-
guistic components, including large-scale unification-based parsing and highly advanced semantic representations

25 In such a system, the user can be informed about the sources and techniques the hybrid system has been using, to help the user assess the
reliability of the answers.
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(QLF).2® However, our approach goes beyond this and other traditional systems, in that we introduce two further
abstraction layers, which greatly enhance the aspect of portability.

Firstly, by introducing an additional layer of lexical-conceptual frame structure, we achieve a higher degree of ab-
straction from surface-linguistic realisations and paraphrases, which reduces the number and complexity of mapping
rules to database concepts. Furthermore, due to the language-independent character of frame-semantic representa-
tions, we obtain portability across languages by projecting semantic structures obtained from language-specific HPSG
processing to a common representation (see Fig. 6). As a consequence of this, the construction mechanisms for queries
to the database or ontology can be ported to other languages without any further effort.

Secondly, the usage of an additional layer of abstract query terms (proto queries) offers an important gain in
portability across different target knowledge bases and their associated query languages (here: MySQL and SeRQL).

Finally, contrary to traditional NLIDB approaches, our architecture uses ontologies as the interface between ques-
tion analysis, answer extraction and knowledge engineering.

Newer systems also adhere to the traditional, layered architecture, but add further aspects and/or use special strate-
gies to circumvent the construction of a full-blown semantic representation as input to query construction. We briefly
discuss two systems that exhibit especially interesting features.

Aqualog is a portable QA system that exclusively relies on the chunker of the GATE platform (http://gate.ac.uk) for
linguistic analysis. The authors claim that one can do away with much of the parsed information and used a so-called
relation similarity service (RSS) to produce ontology-compliant queries. What distinguishes this system from others
is that the RSS is interactive in that it asks the user for help when it is not capable to disambiguate between, say,
two possible relations between concepts. The RSS is using WordNet synsets to map natural language expressions to
database relation names. In addition, if no relation candidate can be found by direct mapping, string matching is used
to determine the most likely candidates.

Our system shares similarities with this approach, in using lexical-semantic resources to establish the mapping to
database relations. However, by using FrameNet resources, we achieve a further abstraction level that is neutral across
languages. We could build in interaction with the user to further enhance our system in several ways: the user could
choose among distinct question interpretations, or could select the intended relations in the case of unconnected query
constraints (see Section 5.2).

The main assumption underlying the PRECISE NLIDB of [49] is that ... people are unwilling to trade reliable and
predictable user interfaces for intelligent but unreliable ones”. The authors argue that for a broad class of so-called
“semantically tractable” NL questions, PRECISE is guaranteed to find the right DB query. Semantically tractable
questions are characterized as those questions for which all semantically relevant tokens can be mapped to database
elements, and where all tokens that refer to database elements stand in appropriate syntactic relationships in the
analysis of the question, which is produced by the Charniak parser. This test for tractability is performed before query
construction, and in case of failure, the user is requested to re-phrase the question. In addition, the system deals with
ambiguities in the mapping from tokens to database elements, which is reduced to a graph-matching problem: the
input to query construction are flow networks that involve the relations, attributes and values corresponding to tokens;
disambiguation is performed by finding a maximum flow through the networks.

The most attractive feature of this system is its high precision in recognizing out-of-scope questions, by imposing
strict constraints on the mapping of question terms to database elements. Our approach is similar to PRECISE in that
only those surface terms appear in frame-concept mappings that stand in appropriate syntactic-semantic relations. In
order to detect semantic tractability in the sense of PRECISE, we could add a similar check on the completeness of
this mapping, by further checking whether all content words are mapped to frames, roles or their values, and to reject
the question (or to resort to an alternative interpretation) in case this is not fulfilled.

26 Although differences between that system and ours are subtle, there are some aspects in which modules of our system extend and improve on
the earlier system. The linguistic groundedness of the CLE effort is taken a step further by adopting a unification-oriented grammatical theory as
the basis of syntacto-semantic processing, namely HPSG. Grounding in a universal linguistic theory and semantic formalism also constitutes one
of the cornerstones of our approach to cross-linguality. In CLE, this feature had to be addressed by grammar porting, a technique which is far more
limited in scope, since it presupposes a certain degree of typological and structural uniformity of the languages. A further novel aspect is the hybrid
linguistic processing architecture, which provides seamless integration of deep and shallow components utilising a unified semantic representation
formalism.
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In our approach we have not yet encountered ambiguities in the assignment of frames, or the mapping of frames
to knowledge bases, that is, we obtain a single proto query for each HPSG parse result. To account for this type of
ambiguities, we could produce proto queries in disjunctive normal form, and apply structural disambiguation by query
subsumption checks (see Section 6.2) or further structural constraints, such as uniqueness of attribute values.?’ As in
PRECISE, remaining ambiguities could be presented to the user for disambiguation.

8. Conclusion and future work

We presented an approach for domain-restricted QA from structured knowledge sources, building on deep seman-
tic analysis of the question with a modular interface between linguistically motivated semantic representations and
domain-specific models, in terms of ontologies or domain databases. The architecture embodies a flexible interface to
various types of knowledge storage devices and their corresponding query languages.

Our system achieves a high degree of portability, by a modular, layered architecture. The large-scale grammars
we use are not tailored to a specific domain. They deliver a semantic representation (RMRS) that is uniform across
languages and is shared with shallow NE recognition grammars. The frame-semantic layer accounts for multi- and
crosslingual QA, by capturing linguistic variation and paraphrases of semantically equivalent questions.?® It offers
a modular interface for the mapping of lexical concepts to domain-dependent ontologies that can be systematically
adapted to new domains and languages. Moreover, the frame-semantic structures could be employed for textual QA
tasks, in open or restricted domains, by matching enriched question and answer candidate analyses. Answer extrac-
tion builds on the linguistic question analysis, performing query expansion and disambiguation using ontological
constraints. DB searches compute minimal spanning trees among query concepts, and efficiently integrate concept-
relating paths extracted from the question representations.

Our prototype system is still small, but has been tested on a variety of question types (wh-, yes/no-, imperative,
definition and quantificational questions). Future work will focus on adding further question types, such as relational
questions and questions involving coordination and negation, as well as research into automation techniques for con-
cept lookup.

An issue to be solved for the envisaged integration of open text unrestricted domain QA and restricted QA on
structured, semi-structured and unstructured data is the selection of the returned response in cases where the individual
searches yield different results. The strategy to be chosen might not only depend on the reliability and durability of
the knowledge sources but also on the measured relative confidence of the respective search modules. Our initial
experiments suggest that even in the absence of an empirically validated selection strategy, a mere preference for the
restricted domain response would improve overall accuracy.
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