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We study duality and local symmetries of closed bosonic string from the perspectives of worldsheet
approach in the phase space path integral formalism. It is shown that the Ward identities reflecting
the local symmetries associated with massless excitations such as graviton and antisymmetric tensor
can be cast in a duality covariant form. It is shown how the manifestly O (d,d) invariant Hamiltonian
can be obtained in the Hassan–Sen toroidal compactification scheme, d being the number of compact
dimensions. It is proposed that massive excited states possess a T-duality symmetry for constant (tensor)
backgrounds. This conjecture is verified for the first massive level.
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One of the marvels of the string theory is its rich symmetry
contents and notable among these are the dualities. The underly-
ing string dynamics in diverse dimensions is primarily understood
through the web of dualities which unravel intimate connections
between different string theories. It is recognized that target space
duality, the T-duality, can be tested in perturbation theory. When
we consider evolution of a string in the background of its massless
excitation in the first quantized approach, the worldsheet action
is expressed as a 2-dimensional σ -model action and the mass-
less backgrounds play the role of coupling constants. The vanishing
of the corresponding β-functions leads to the “equations of mo-
tion” of those backgrounds. The string effective actions have played
very important role in understanding of string theory from sev-
eral perspectives. Moreover, if we adopt toroidal compactification
and require that the backgrounds do not depend on these com-
pact coordinates, then the reduced effective action manifests the
associated T-duality symmetry. The target space duality is also
understood from the worldsheet point of view. In this approach,
we associate a dual coordinate for every compact direction of the
string coordinate and derive equations of motion for each of the
set. Furthermore, with suitable combination of the two sets, equa-
tions of motion can be expressed in a manifestly duality covariant
form.

The string effective action is known to be invariant under target
space local symmetries such as general coordinate transformation,
associated with the graviton, vector gauge transformation, associ-
ated with the two-form antisymmetric field and nonabelian gauge
transformations in the presence of nonabelian massless gauge
fields which appear in certain compactified theories. There is a
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proposal to unravel these local symmetries from the worldsheet
view point.

The purpose of this Letter is two-fold. It is argued that, at
least for closed bosonic string, the Hamiltonian description man-
ifestly exhibits the duality symmetries. Furthermore, we derive
Ward identities intimately related to the symmetries of the afore
mentioned massless states of the string which are covariant un-
der duality transformations. We adopt the phase space Hamilto-
nian formalism to derive these results. These will be stated more
precisely in sequel. Furthermore, we present some evidence that
excited massive string states also exhibit duality symmetry. These
are similar to R ↔ 1

R duality symmetry. At this stage, we can verify
our conjecture when the higher dimensional backgrounds (tensors)
are constant.

Let us consider a closed bosonic string in the background of its
massless excitation graviton, GMN , and antisymmetric tensor BMN ,
where target spacetime indices, M, N = 1,2, . . . , D.

S = 1

2

∫
dσ dτ

(
γ ab

√−γ GMN(X)∂a X M∂b X N

+ εab BMN(X)∂a X M∂b X N)
(1)

Here X M(σ , τ ) are string coordinates and γ ab is the worldsheet
metric. The classical action is invariant under worldsheet coor-
dinate reparametrization. A simple example of worldsheet du-
ality symmetry is to consider flat target space metric and set
BMN = 0. The spectrum is invariant under σ ↔ τ which amounts
to P M ↔ X ′ M , P M being the canonical momenta, prime and ‘over-
dot’, denote derivatives with respect to σ and τ respectively. More-
over, if one compactifies a spatial coordinate of a closed string on
S1 with radius R , the perturbative spectrum matches with that
of another string if the corresponding coordinate is compactified
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on a circle of radius 1
R when we interchange the Kaluza–Klein

modes with the winding modes and R ↔ 1
R ; subsequently this

symmetry has been studied in more general settings [1,2]. When
some of the spatial coordinates of a string are compactified on
torus, T d , d being the number of compact directions with constant
backgrounds Gαβ and Bαβ , α,β = 1,2, . . . ,d, the duality group is
O (d,d,Z), Z being integers. If the backgrounds assume only time
dependence, the string effective action is expressed in a mani-
festly O (D, D) invariant form, where D is the number of spatial
dimensions [3] which has interesting consequences in string cos-
mology [4,2]. In a more generalized setting one adopts a toroidal
compactification scheme when the target space manifold S is de-
composed to S = Sspacetime ⊗ K where D = 0,1, . . . , D − 1 is the
spatial dimensions and K = T d with D + d = D. Furthermore, if
the backgrounds gμν , bμν , μ,ν = 0,1, . . . , D − 1 and Gαβ , Bαβ ,
α,β = 1,2, . . . ,d depend only on the spacetime coordinates xμ ,
then the reduced effective action is expressed in a manifestly
O (d,d) invariant form [5]. It is worth while to recall some of the
salient features of T-duality from the worldsheet perspective. It
was shown by Duff [6], for constant backgrounds G and B , that
the evolution equations of the string coordinates can be cast in an
O (D, D) covariant form. For each string coordinate X M , he intro-
duced a dual set of coordinates Ỹ M and expressed the equations
of motion of the 2D coordinates in the duality covariant form. For
the next simplest case, if G and B assume time dependence it was
shown that the worldsheet equation of motion can be expressed
in an O (D,D) covariant form where D is the number of spatial di-
mensions [7]. On this occasion, for each spatial string coordinate,
X I , I being the spatial index, a dual coordinate Ỹ I was introduced
and combined equations were cast in manifestly ‘duality’ covariant
form.

The worldsheet approach to T-duality for toroidal compactifi-
cation was addressed by Schwarz and Maharana [5] in a general
frame work and it was demonstrated that by, introducing dual
coordinates along compact dimensions, an O (d,d) covariant world-
sheet equations of motion can be derived. Subsequently, Siegel has
advanced these ideas in another direction, introducing the two
vierbein formalism and extending them to supersymmetric theo-
ries [8].

Let us briefly recapitulate essentials of phase space Hamilto-
nian formalism and reformulate the problem in a duality invari-
ant frame work. The two constraints associated with τ and σ
reparametrization respectively are

Hc = 1

2

(
P M P N GMN + X ′ M X ′ N GMN − P M GMP BPN X ′ N

+ X ′ M BMP GPN P N − BMP GPQ BQN X ′ M X ′ N) � 0

P M X ′ M � 0 (2)

Hc is the canonical Hamiltonian derived from (1). These are pri-
mary constraints which vanish weakly, derived without any spe-
cific choice of the worldsheet metric, γ ab . In order to express them
in a duality invariant form, let us combine P M and X ′ M to define
a D-dimensional O (D, D) vector

V =
(

P M

X ′ M

)
(3)

The canonical Hamiltonian density can be re-expressed as

Hc = 1

2
V T MV (4)

in a matrix notation where M is a 2D × 2D matrix [9]

M =
(

G−1 −G−1 B
−1 −1

)
(5)
BG G − BG B
where G and B stand for backgrounds G MN (X) and BMN (X) ap-
pearing in (1). Note that the equal τ canonical Poisson–Bracket
(PB) relation
{

X M(σ ), P N
(
σ ′)}

PB = δM
N δ

(
σ − σ ′) (6)

translates to

{
V(σ ), V

(
σ ′)}

PB = η
d

dσ ′ δ
(
σ − σ ′) (7)

where η = ( 0 1
1 0

)
, the 2D ×2D matrix is the O (D, D) metric, 1 be-

ing the D × D unit matrix. Under the global O (D, D) transforma-
tions

M → ΩMΩ T , Ω T ηΩ = η, Ω ∈ O (D, D) (8)

The linear combinations of the above two constraints (2)

L± = 1

2
Hc ± 1

4
V T ηV (9)

satisfy the equal τ PB algebra

{
L(σ )±, L

(
σ ′)

±
}

PB � ±(
L(σ )± + L

(
σ ′)

±
) d

dσ
δ
(
σ − σ ′) (10)

and
{

L+(σ ), L−
(
σ ′)}

PB = 0 (11)

Therefore, L±(σ ) are a pair of first class constraints and the the-
ory is covariantly quantized adopting Fradkin–Vilkovisky Hamilto-
nian formalism [10]. In the context of closed string, in the back-
ground of its massless excitations, the Hamiltonian phase space
BRST quantization was carried out by us [11,12]. The correspond-
ing BRST charge is obtained by adopting the standard procedure

QBRST =
∫

dσ
[

L+η+ + L−η− + P+η+η′+ − P−η−η′−
]

(12)

Here the pair of ghosts {η+, η−} are introduced, as is the prescrip-
tion, for the two first class constraints {L+, L−} which depend on
V and the backgrounds, M. {P+, P−} are conjugate ghost mo-
menta. The gauge fixed Hamiltonian density Hζ = {ζ, QBRST}PB . For
choice of orthonormal gauge: ζ = P+ + P− and

HON = L+ + L− + 2P+η′+ + P ′+η+ − 2P−η′− − P ′−η− (13)

This was the starting point to derive Ward Identities (WI) associ-
ated with the massless states of the closed string. As alluded to
above, we intend to obtain similar WI in a duality covariant man-
ner. The first step is to introduce the Hamiltonian action

S H =
∫

dσ dτ
[

P M Ẋ M − HON
]

(14)

In order to unravel the symmetry encoded due to general coordi-
nate transformation invariance which is intimately related to the
presence of graviton, let us consider a generating functional

QG =
∫

dσ P Mξ M(
X(σ )

)
(15)

responsible for an infinitesimal transformation, ξ M(X) being the
parameter. The variations of phase space variables, ghosts and the
O (D, D) vectors are obtained by evaluating their PB with QG , i.e.

δQG V = {V, QG}PB, δQG η± = 0, δQG P± = 0 (16)

and in particular δX M = ξ M(X); indeed QG induces general coor-
dinate transformations. Since the arguments of GMN and BMN are
shifted their variations under (15) are
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δQG GMN(X) = GMN,P (X)ξ P (X)

δQG GMN(X) = GMN,P (X)ξ P (X)

δQG BMN(X) = BMN,P (X)ξ P (X) (17)

comma stands for the ordinary derivative here and everywhere.
Thus the components, MMN, MM

N and MMN , of the M-matrix
being functions of X also transform according to the above pre-
scriptions. The variation of the action is

δQG S H ∼
∫

dσ

[
1

2
δQG V T MV + 1

2
V T δQG MV + 1

2
V T MδQG V

]

(18)

It is a straightforward and tedious calculation to check that

δQG S H = −δGCT S H (19)

The r.h.s. of the above equation is to be interpreted as follows.
The Hamiltonian action, S H depends on M, expressed in terms
of GMN , GMN , and BMN . These tensors transform according to the
rules given below [13]

δGCT GMN = −GMPξ
P ,N − GPNξ P ,M − GMN,P ξ P

δGCT BMN = −BMPξ
P ,N − BPNξ P ,M − BMN,P ξ P (20)

The next step is to define the Fradkin–Tseytlin generating func-
tional, Σ , in the phase space Hamiltonian path integral formalism
[14]

Σ[M] =
∫

D P D X Dη±D P ±eiS H [P ,X ′,η±,P±,M] (21)

Notice that under canonical transformations, the phase space mea-
sure is invariant, at least classically. The issue of noninvariance
of this measure, which might lead to anomalies, will be touched
upon briefly later. Moreover, if we implement the canonical trans-
formation (15) on Σ[M] and the variation of S H under (15) is
compensated through (19), as was argued in [11,12]. Then we ar-
rive at

δGCTΣ[M] =
〈∫

dD x
δS H

δM(x)
δM(x)

〉
M

= 0 (22)

In the above equation 〈· · ·〉 is to be understood as the functional
integral weighed with exp(−i S H ). Note that the functional deriva-
tive of the action, S H , with respect to the background is the corre-
sponding vertex operator. Therefore, (22) translates to〈∫

d2σ δ
(
x − X(σ )

)
V PN

M

× (
MPRξ

R ,N +MRNξ R ,P +MPN,R ξ R)〉
M

= 0 (23)

where V PN
M = δS H

δMPN
. It is understood that M has contravariant,

covariant and mixed indices. Therefore, rules for GCT should be
adopted accordingly [13]. In order to verify that the M derivative
of S H reproduces the vertex operator; one explicit check is that,
for a simple case when we have GMN as the only background and
set it to the flat space metric after taking the functional derivatives
of S H with respect to GMN . Then we reproduce the graviton vertex
operator.

Now we are ready to derive the WI. Note that the infinitesi-
mal parameter ξ M(X) is arbitrary. Therefore, we may functionally
differentiate (23) with respect to ξ M(X) and then set ξ M = 0.
Subsequently, let us take functional derivatives of the resulting ex-
pression with respect to the backgrounds M Pi Q i (yi), {yi} are the
spacetime coordinates, and examine the consequences
n∏
i=1

δ

δM Pi Q i

〈∫
d2σ V PN

M
[

MPQ∂Nδ(x − X) + MQN∂P δ(x − X)

+ MPN,Q δ(x − X)
]〉

M
= 0 (24)

It is understood that at the end of the operations the back-
grounds are to set the required configurations which is the mean-
ing of 〈· · ·〉M in Eqs. (22)–(24). These are desired WI which
involve the massless states. Let us analyze (24) more carefully.
The M-derivatives act in three ways: (i) When it operates on
〈· · ·〉 action of each derivative brings down a vertex operator∫

d2σ V Pi Q i
M δ(yi − X(σ )) due to the presence of the measure e−i S H

in the definition of 〈· · ·〉. Thus we have eventually (n + 1)-vertex
operators after n-operations. (ii) When a derivative acts on the ver-
tex operator, V PN

M(X(σ )) it will kill any M-dependence in the ver-
tex operator and a corresponding δ-function will appear. (iii) The
derivatives also act on the M-terms appearing in (24) in the
square bracket with the δ-functions and their derivatives. Recall
that M is an O (d,d) matrix and it must be kept in mind while
taking functional derivatives.

In order to make it more transparent, if we consider the above
expression in the momentum representation, we notice that (n +
1)-point function contracted with momentum can be expressed in
terms of linear combination of lower point functions (with contact
terms due to the presence of δ-functions). Notice that the WI is
O (D, D) covariant. Moreover, adopting the canonical transforma-
tion introduced in [12], the gauge symmetry associated with the 2-
form field BMN can be revealed, if we choose QΛ = ∫

dσ X ′ MΛM .
Indeed, as has been noted by Siegel [8], if we define

W =
(

ξ M

ΛM

)
(25)

as an O (D, D) vector then we can construct charges (generating
functionals for canonical transformations) as follows:

QG + Q B =
∫

dσ W T V (26)

One can check that operation QG + Q B on S H gives us a relation

(δQ G + δQ B )S H = −δGCT S H − δGauge S H (27)

where the second transformation on the r.h.s. is interpreted to be
gauge variation of background BMN in M-matrix as

δGauge BMN = ∂MΛN − ∂NΛM (28)

ΛM(X) being the vector gauge parameter associated with BMN .
Thus, we can derive combined WI, starting from Σ(M) and use
(25), which in its full form will be manifestly duality covariant.

We now consider compactification of the closed string on d-
torii, T d , when the backgrounds along compact directions are in-
dependent of those coordinates, depend only on noncompact coor-
dinates, Xμ(στ ), μ = 1,2, . . . , D − 1 and the compact coordinates
are Y α(στ ), α = 1,2, . . . ,d with D +d = D. We adopt the Hassan–
Sen [15,8] compactification scheme where the backgrounds, GMN

and BMN , are decomposed into following block diagonal forms

GMN(X) =
(

gμν(X(σ )) 0

0 Gαβ(X(σ ))

)

BMN =
(

bμν(X(σ )) 0

0 Bαβ(X(σ ))

)
(29)

Thus the action (1) can be decomposed into two parts as evident
from (29). The corresponding canonical Hamiltonian density is
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Hc = 1

2

(
V T

1 MV1 + V T
2 M̃V2

)
(30)

which can be written as Hc = H1 + H2, the first term being H1
and H2 is the second one (Eq. (30)); the two vectors being

V1 =
(

Pμ

X ′μ

)
V2 =

(
P̃α

Y ′α

)
(31)

The matrices M and M̃ are defined to be

M =
(

gμν −gμρbρν

bμρ gρν gμν − bμρ gρλbλν

)

M̃ =
(

Gαβ −Gαγ Bγ β

Bαγ Gγ β Gαβ − Bαγ Gγ δ Bδβ

)
(32)

Notice that M and M̃ are O (D, D) and O (d,d) matrices respec-
tively and depend on the noncompact coordinate X(σ ). The pair
V1 and V2 are corresponding two vectors of O (D, D) and O (d,d).
The global O (D, D) transformation is implemented by the Ω1-
matrices and Ω2 implements the O (d,d) transformation satisfying
the properties analogous to Eq. (8); their corresponding metrics are

η1 =
(

0 1
1 0

)
, η2 =

(
0 1
1 0

)
(33)

whereas η1 is a 2D × 2D matrix, η2 is a 2d × 2d matrix. Thus
the gravitational WI originating from H1 can be derived follow-
ing the procedure given above. However, there are massless scalars
(moduli), Gαβ and Bαβ which appear in H2. These depend on Xμ

and therefore, under canonical transformation (15) they transform
accordingly. The technique of [16] can be appropriately used to de-
rive the gravitational WI. Similarly, the gauge WI associated with
the 2-form field could be obtained in a straightforward manner.
Another important conclusion is that the canonical Hamiltonian
density, Hc , is invariant under global O (d,d) transformation since

M̃ → Ω2M̃Ω T
2 , V2 → Ω2 V2 (34)

leaving H2 invariant whereas H1 is inert under O (d,d) transfor-
mation. Furthermore, if we look at the Hamilton’s equations of
motion associated with the compact coordinates and their con-
jugate momenta, {Y α, Pα}, we notice that these are conservation
laws (since backgrounds Gαβ and Bαβ depend only on Xμ) and
the resulting equations of motion will be O (d,d) covariant. Thus
we find that the phase space Hamiltonian approach transparently
exposes the duality symmetry.

It is worth while to discuss a few more issues relevant to
present investigation. How can we derive the “equations of mo-
tion” of the background fields in this frame work? It can be
achieved by resorting to an elegant and efficient technique pro-
posed in [17] to obtain the background equations of motion
in Hamiltonian formalism. The quantum generators of confor-
mal transformations were constructed by introducing a generating
function technique. For the case at hand, the method of [17] can
be suitably exploited if we express the M-matrix in terms of gen-
eralized vielbeins adopted in [5]: M = VT V

V =
(

E−1 −E−1 B

0 E

)
(35)

where E , the D × D matrix, defines the metric GMN = E T E . We
mention in passing that V ∈ O (D, D) since VT ηV = η. Thus the
generators L± will be expressed in terms of P M , X ′ M and V. Now,
following [17] we can compute anomalies in the quantum alge-
bra of the generators. These will correspond to known equations
of motion as derived earlier. More importantly, when we consider
the case of compactified strings we note that the constraints ob-
tained in terms of H1 and H2 will give equations of motion for
gμν and bμν in terms of M-matrix as well as for the M̃-matrix.
The Hamiltonian being O (d,d)-invariant the equations motion as-
sociated with the moduli is expected to be O (d,d) covariant since
we know that the dimensionally reduced effective action can ex-
pressed in O (d,d) invariant form.

We have not discussed the dilaton coupling to the string so far.
We recall that the dilaton couples to the ghosts and their conjugate
momenta as was proposed in [12] adopting the arguments of [18].
Thus the full constraint algebra can be derived in the Hamiltonian
framework and therefore, we can derive the equations of motion
for all the massless background. The details of such calculations, in
the present context, will be presented in a separate publication.

Several remarks are in order in what follows. We have argued
earlier that the phase space measure in the definition of Σ[M]
is invariant under canonical transformations. However, when the
transformed measure is carefully evaluated in the quantum theory,
it might not be invariant signaling the appearance of an anomaly.
We do not have a general prescription to check the presence of
anomalies. In certain cases, the anomaly can be computed and
with specific transformation prescriptions for the backgrounds it
can be removed [19]. However, a general procedure to derive such
anomalies is lacking in this worldsheet approach.

The Hamiltonian formalism treats the coordinates and their
conjugate momenta on equal footing in the 2D-dimensional phase
space. The duality symmetry becomes quite transparent in the
Hamiltonian descriptions from the worldsheet point of view. When
we considered the Lagrangian formulation, the equations of motion
could be cast in O (d,d) covariant form provided one introduces
dual coordinates for the compact ones and the corresponding back-
grounds are defined suitably in the dual space. In the past, it
has been suggested that doubling of the number of coordinates
might have underlying deep significance [6,20]. The mathemati-
cal formulation of this approach is unquestionable; however, the
physical significance of such theories is yet to be fully compre-
hended. Recently, some progress has been made to compute the
β-functions in such a worldsheet approach [21]. Recently interests
in the double field theory formulation have been revived due to a
formulation in the target space [22] where the tensors GMN and
BMN become functions of 2D variables and the number of indices
are also doubled. This is a consistent formulation of the new field
theory and it has not found a direct application yet. Should one
attempt a Hamiltonian formulation of the ‘worldsheet double field
theory’ [21], the phase space will have twice the number of vari-
ables contrast to the conventional formulations and one will have
to suitably define canonical variables in this frame work. It will be
worth while to examine whether such theories are endowed with
any enlarged symmetries. Note, however, that the GL(D, R) sym-
metry introduced in [5] has been found to be important in the
double field theory formulation.

It has been proposed that excited, massive stated might pos-
sess hitherto undiscovered symmetries [23–26]. Moreover, some of
the important properties of dual models, which are inherited by
string theory, crucially depend on the fact that an infinite tower
of states is exchanged in the scattering processes. Therefore, it is
worth while to seek answer to the question whether the excited
massive levels of a string exhibit any duality-like symmetry. If we
examine the issue from the worldsheet view point, in the σ -model
approach, the (massive) background coupling to the string is sup-
pressed by mass term compared to coupling of massless states
on purely-dimensional considerations. Therefore, the duality sym-
metry we encounter, in study of the σ -model action in graviton
and 2-form potential, will not be unraveled. Similarly, at the level
of string effective action, the dimensionally reduced effective ac-
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tion exhibits duality symmetry (most commonly known O (d,d))
when we assume that the backgrounds do not depend on com-
pact coordinates and thus ignore the KK modes. Thus the dualities
associated with excited massive modes are to be envisaged from
a different perspective. The evolution of string in its excited, mas-
sive backgrounds has been studied in the weak field approximation
[25,26]. One might assume, as a simple scenario, that the string is
moving in the flat target space and the massive backgrounds are
weak. Subsequently construct the vertex operators and demand
them to be conformally invariant which already imposes strong
constraints on them [23,25]. As an illustrative example, consider
a generic background coupling of closed bosonic string to its first
massive level [25,23]

F (1)
MNP∂ X M∂ X N ∂̄ ∂̄ X P ′

, F (2)

MN ′ P ′∂∂ X P ∂̄ X N ′
∂̄ X P ′

S{MN}{P ′ Q ′}∂ X M∂ X N ∂̄ X P ′
∂̄ X Q ′

(36)

The backgrounds F (1) , F (2) and F (3) depend on string coordinates,
X , and these terms will be suppressed by factor of α′ compared to
the σ -model action for massless states on dimensional arguments.
The vertex operator for the first excited massive level will be sum
of all such terms (call them vertex functions). These do not ex-
haust all possible vertex functions for the first massive level. The
backgrounds fulfill gauge condition and satisfy equations of motion
as a consequence of conformal invariance. If we require them to be
(1,1) primary these vertex functions are not independent; it is to
be borne in mind that the stress–energy tensors used to compute
the weights are taken to be T++ ∼ ∂ X∂ X and T−− ∼ ∂̄ X ∂̄ X in the
flat target space.

In order to expose the conjectured duality, we resort to Hamil-
tonian description and assume that the tensors F (i) are spacetime
independent as was first envisaged by Narain, Sarmadi and Witten
for the heterotic string in constant graviton, antisymmetric ten-
sor and gauge field backgrounds. Following pertinent points need
attentions: (i) A careful reader will notice that, when {F (i)} are
spacetime independent constant tensors, some of them or their
linear combinations might be required to vanish once we demand
that the vertex operator for the excited massive level be (1,1) pri-
mary. However, all of them will not vanish. (ii) When we study
T-duality symmetry from the worldsheet point of view in the pres-
ence of massless backgrounds, the resulting equations of motion
are expressed in duality covariant form after incorporating the dual
coordinates [5]. It was not essential for those backgrounds (i.e.
vertex operators) to be (1,1) primary when we are seeking du-
ality covariant equations of motion. Indeed, conformal invariance
lets us decide which are the admissible background configurations.
Therefore, in what follows, let us analyze how P ↔ X ′ duality
relates various (constant) tensor backgrounds. It will be obvious
in the sequel that those tensors which will vanish on imposing
(1,1) primary conditions do not mix with the surviving ones un-
der the duality transformations we are dealing with. Note that,
in flat space P M = G(0)

MN Ẋ N where G(0)
MN = diag(+1,−1,−1, . . .). In

fact we express the vertex operators in terms of P M , X ′ M for our
conveniences here and could replace ∂ X , ∂̄ X by P ± X ′ in above
expressions as well. We would like to consider following vertex
functions which can be expressed as linear combination of appro-
priate F -tensors.

G(1)
MNQ X ′ M X ′ N X ′′ Q , G(2)MNQ P M P N Ṗ Q

G(3)Q
MN X ′ M X ′ N Ṗ Q , G(4)MN

Q P M P N X ′′ Q

G(5)
MNQR X ′ M X ′ N X ′ Q X ′ R , G(6)MNQR P M P N P Q P R

G(7)QR X ′ M X ′ N P Q P R (37)
MN
It is evident that one can construct more vertex functions for this
level; however, it will suffice to deal with these six for the mo-
ment. Note that X ′ M and P M have the same dimensions as it is
true for the pair X ′′ M and Ṗ M . The simplest form of T-duality is
the interchange τ ↔ σ which implies X ′ M ↔ P M and X ′′ M ↔ Ṗ M .
If we desire that the interaction Hamiltonian consisting of sum of
the six terms we have listed above, respect this duality symmetry,
then following relations should hold

G(1) ↔ G(2), G(3) ↔ G(4), G(5) ↔ G(6) (38)

and G(7) gets related to itself with appropriate shuffling of the
indices. This transformation rule generalizes the interchange be-
tween GMN, GMN and BMN for X ′ M ↔ P M where (G + B) → (G +
B)−1, alternatively the new metric G and the new 2-form B (all
constants for us) are given by

G = (
G − BG−1 B

)
, B = −G−1 B

(
G − BG−1 B

)
(39)

Notice that these duality relations (38) hold amongst the (con-
stant) background tensors of a given level. When we envisage the
second massive excited level of the closed string there will be
many more tensors; however that the vertex operator for the level
(sum of all such vertex functions) will be suppressed by a fac-
tor α′ 2 relative to the first massive level terms. One might seek
answer to the question: Are there larger duality symmetries associ-
ated with massive levels beyond the discrete P M ↔ X ′ M symmetry
considered here?

To summarize: we have argued that the WI associated with
the massless excitations of the closed string can be expressed in
a duality covariant manner. It was accomplished by introducing
generators of canonical transformations in the Hamiltonian phase
space and defining the generating functional in path integral for-
malism. Furthermore, these generators [11,12] can be combined to
express in a duality invariant manner. The underlying local sym-
metries are manifest through the Ward identities. These WI’s are
to be treated as classical expression since anomalies might creep
in; however, in certain cases it is possible to compute the anoma-
lies and provide a prescription to remove them. We outlined a
procedure to compute the quantum constraint algebra in order to
derive the equations of motion for the backgrounds, M, following
the techniques introduced earlier in [17]. In fact if one adopts the
proposal of Hohm, Hull and Zwiebach (HHZ) [22] to treat M as
another O (d,d) spacetime metric (in addition to η-matrix), then it
might facilitate the computation of β-functions efficiently. How-
ever, it is to be kept in mind that HHZ’s interpretation was in
the context of double field theory. Therefore, whether truncation
to (half) the spacetime variables will be useful or not is not obvi-
ous at this stage. We adopted Hassan–Sen compactification scheme
and argued that WI can also be obtained for the massless moduli.

We have conjectured that there might be duality symmetries
associated with each excited massive level of the closed string. We
provided an example how the constant background tensors should
transform to satisfy P ↔ X ′ interchange. It argued that this type
of duality will persist for higher excited states and the duality re-
lation is to hold for each such level.
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