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ABSTRACT 

In the third paper of this series on cardinal spline interpolation [4] Lipow and 

Schoenberg study the problem of Hermite interpolation 

S(v) = Y”. s’(v) = yv’,. ., S(r-l)(v) = y,(+‘) for all Y. 

The B-splints are there conspicuous by their absence, although they were found 

very useful for the case r = 1 of ordinary (or Lagrange) interpolation (see [5-lo]). 

The purpose of the present paper is to investigate the B-splines for the case of Hermite 

interpolation (Y > 1). In this sense the present paper is a supplement to [4] and is 

based on its results. This is done in Part I. Part II is devoted to the special case 

when we want to solve the problem 

S(v) = y”, S’(v) = yv’ for all v (1) 

by quintic spline functions of the class C”‘( - co, w). This is the simplest nontrivial 

example for the g 
?n 

era1 theory. In Part II we derive an explicit solution for the 

problem (l), where v = 0, 1,. . , n. 

INTRODUCTION 

Let m and Y be natural numbers and let 

n = 2m- 1, Y < m. (1) 

Let, furthermore, S,,, denote the class of cardinal spline functions of the 

odd degree n = 2m - 1 and having all the integers as knots of multiplicity 

Y. This last requirement means that 

* Sponsored by the United States Army under Contract No.: DA-31.124-ARO- 

D-462. 
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d = 2m - 2~. (12) 

Also that this subspace is spanned by d elements 

S,(x), S&r), . . . > &m-&)1 (13) 

that are solutions of the functional equations 

S& + 1) = AjSj(x) (j = 1,. . ., 2m - 2~). (14) 

The functions (13) are called the eigensplines of S,,, and are determined 

only up to a multiplicative factor. The corresponding 1, are called eigen- 

v&ties. They are the simple zeros of a reciprocal manic polynomial 

17n,&) = C_(,_,) + c-(,_,)+1x + * * * + COXrn_-’ 

+ c1@n-7+1 + . . . + ~m_~X2m-2r (15) 

called the characteristic polynomial of S,,,. Its coefficients are integers 

and 

c,>o, c_y=cy, c,_r= &I. (IS) 

We also know [4] that (15) can be expressed in terms of the Pascal 

triangle by the determinant 

L?&x) = (- I)m(r-i) x 

n--Y ( 1 1 

Ii ) 

.*. (“;‘) . . . (+_I) I--x 

n---r+1 
1 . . . 

1 (” ,I:‘) 

n 
1 0 . . . 

1 

n ( ) n--Y 

I 

(17) 
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Its zeros 
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are all simple, real, and have the sign of (- l)T. We arrange them so that 

0 < I&( < (12( <. *. < (A2n_2T(. w 

In [4, Sec. 71 it was also shown how the fundamental functions (7) can 

be constructed in terms of one half of the set of eigensplines (13). The 

zeros (18) being reciprocal in pairs, and d = 2m - 2r being an even 

number, we may make (19) more precise by writing 

0 < /Ai/ < * 3 * < pm-,/ < 1 < lLr+1l < * * * < j&m-%I. (20) 

The eigensplines 

S,(x), $.&), . . > .L&), (21) 

correspond to the eigenvalues that are in absolute value below 1, and the 

relations (14) show that they have the property 

lim S,(X) = 0 (Y = 1,. . ., m - Y). (22) 
.Z-++CC 

We may describe them as the “decreasing” eigensplines. 

From the construction of the L,(x) as given in [4, Sec. 71 we retain 

only the following result to be used below. 

LEMMA 1. In the interval [l, + co) the fundamental functions (7) may be 

exgwessed as 

m--r 
qx) = 2 aj,,.sj(x) cs = o,...,~ - 1, 1 < x < g, (23) 

j=l 

with a@ropriate constant coefficied ails. 

The case of Lagrange interpolation, when q = 1, was discussed in- 

dependently by several authors (see [12], [6], [l], [8], listing the papers 

in the order of their appearance in print). In [6] and [7] extensive use is 

made of the so-called B-splines. They seem particularly well suited for 

utilizing fully the fact that the concept of a cardinal spline function is 

invariant with respect to the group of translations by integers. Having 

bounded supports, the B-splines lead to finite recurrence relations. They 
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also made possible the explicit solutions of the corresponding fin& inter- 

polation problems (see [9-l 11). 

The purpose of the present paper is to investigate the B-splines for 

the case of Hermite interpolation (Y > 1). In this sense the present paper 

is a supplement to [4] on which it is based. The main result is Theorem 3 

of Sec. 5. Unfortunately, the property of the B-splines there described is 

made to depend on a deep number-theoretic problem: The irreducibility 

in the rational field of the characteristic polynomial (17) for odd values 

of n = 2nz - 1. This, however, is surely not in the nature of the problem. 

Rather, Assumption (5.1) of Theorem 3 should be removed altogether and 

the matter should be settled by showing that a certain determinant does 

not vanish. Part I contains the general discussion. Part II deals with 

the special case when 

n% = 3, Y = 2. 

For this case of Hermite interpolation by quintic splines we show how 

to obtain explicit solutions for the interpolation problems in a finite set 

of equidistant nodes. Since 2~n - 2~ = 2 we have only two eigensplines 

and the problem is about as easy as for the case of interpolation by cubic 

splines (see [9], [lo]). 

The Hermite interpolation problems here considered can be described 

(in a notation due to Paul Turan) as problems of type (0, 1,. . . , Y - 1). 

Using the same Turin notation, one could consider other interpolation 

problems such as (0, 2), which are not of the Hermite type. The method 

here developed can be adapted to furnish the solution of such problems, 

for the cardinal as well as the finite case. However, such problems require 

a corresponding set of B-splines, appropriate to the problem. 

I. THE GENERAL THEORY 

1. The B-S@m for Cardinal Hermite Spline Interpolation 

We retain the notations of the Introduction. 

DEFINITION 1. We define the Y elements of S,,,, 

by naeans of the relations 

(1.1) 



6 I. J. SCHOENBERG AND A. SHARMA 

??I--* 

N,(x) = c c,L,(x - Y), (s = 0,. . .I y - 1). (1.2) 
Y= -(m-r) 

We call them the B-sjlines of the class S,,,. 

That they deserve this name will follow from their properties described 

here and in Sec. 3 (Corollary 1) and Sec. 5 (Theorem 3). 

Let us for the moment consider the case Y = 1 and show that 

where 

No(x) = Pm - 1) !M2,,(x), (1.3) 

M2m(X) = (2m L l)! i=. 
5 (- lii(“:“) (x - i + m)+2m-1 (1.4) 

is the ordinary (central) B-spline of degree 2m - 1 (see 5, Sec. 3.13). To 

see this we observe that (10) reduces to the Lagrange formula 

S(x) = 5 fWO(X - 4 
-cc 

which is exact for bounded elements of S2m_l,l. But then we have the 

identity 

m-1 

while 

~27&) = 2 M2m(GO(X - 4, (1.5) 
u= -(m-l) 

c, = (2m - 1) !M,,(Y) (Y=-(m-l),...,m-I) 

are precisely the coefficients of the Euler-Frobenius polynomialZ7z,_1,1 (x) = 

fla,+r(x) of 181. Now (1.5) is seen to be identical to (1.2), except for the 
factor (2m - l)!, if y = 1. 

We return to the general case and begin with 

LEMMA 2. The B-splines N,(x) (s = 0,. . . , Y - 1) have their support 

in the interval 

hence 

I = (- (m - 7 + l), m - Y + I), (1.6) 

N&)=0 if x<-m+r-1, or x>m--r+l. (1.7) 
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Proof. Let 

x>m--r+l, (1.8) 

hence 

x-_y>l if v=-(m-r),-(m-r)+1 ,..., m-y. 

This shows that we can apply the representation (23) of Lemma 1 to all 

terms of the right side of (1.2) to obtain 

??--I m--r 

N,(x) = c c,L,(x - v) = 2 c, 2 ~j.sS,(x - v) 
v=-(m-r) Y j=l 

m--r 

The vanishing of N,(x), for x satisfying (1.8), will follow as soon as 

we establish that 

m--r 

2 CySj(X - V) = 0 for all real X. 
-(m-v) 

(1.9) 

From the functional equations (14) we find that 

Sj(X - v) = ilj_“Sj(X) 

and substituting this into the left side of (1.9) we find that 

M--r m--r 

2 C,Sj(X - V) = 2 Cvilj-“Sj(X) = Sj(X)_~_~;lj-', 

-(m-r) Y 

and the last sum vanishes, because ilj is a zero of the reciprocal polynomial 

(15). This establishes the second half of (1.7). 

The proof of Lemma 2 will be complete as soon as we establish the 

symmetry relations 

N,( - x) = (- l)“N,(x) (s = O,...,r - 1). (1.10) 

These are shown as follows. From (1.2) 

NJ-- 4 = 2 4A- x - v) = (- 1)s c c,L,(x + v) 
Y Y 
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= (- 1)” 2 c_,L,(x - Y) = (- 1)” 2 c,.L(x - V) 
Y Y 

= (- l)“N,(X). n 

2. A Construction of the B-Splines N,(x) 

From their definition (1.2) we see that the N,(x) have the properties 

NS(s)(~~) = c, if - (m - Y) < Y < m - Y, (2.1) 

No =O if -(m-Y)<Y<m--- and pfs, and O<p<r-I. 

However, by using the relations (1 .lO), it is clear that it suffices to construct 

N,(x) for x 3 0. Cutting down the relations (2.1) and (2.2) we obtain 

Ns’“‘(v) = c, for v = 0, 1,. . ., m - Y, (2.3) 

NstP)(v) = 0 for v = 0, 1,. . ., m - Y, p # s. (2.4) 

It is interesting that these last relations allow us to obtain the N,(x), 

explicitly. Indeed, if we realize that N,(x) is a spline function of degree 

2m - 1 and has r-fold knots we see that it must have the form 

= ai,r(i - ++-l+ a2,i(2 - ~)+~m-i + . . . + ar_m+l,l(m - y + 1 - 4++l 

+~,,2(i-~)2~-2+a2,2(2-~)+2~-2+~~~+~r_m+~,2(~-~+~-~)+2n2~2 

+al,,(i-~x)2~-~+~2,,(2-~)+2~-~+~~~+ur_7n+l,~(m-~+1--X)+2m-’~ 

if x&O. (2.5) 

The computation of the coefficients ai,j, which all turn out to be rationals, 

is extremely simple, if we go about the right way. Using the relations 

(2.3) and (2.4) for Y = m - Y and substituting into (2.5) the value 

x = m - Y we see that all terms vanish, except the Y terms in the last 

column. This gives 

4---nz+l,v (v = l,...,Y). 
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These being known, we now substitute x = m - Y - 1 and obtain the 

column 

ar--n,v (V = 1,. . .) r). 

Finally substituting x = 0 gives us the first column 

al,, (v = 1,. ., Y). 

As examples we work out the B-splines for the 

m = 3, Y = 2, 

and 

m = 4, Y = 2. 

To begin with, we need the coefficients of the 

acteristic polynomials. These are 

121-X 0 

following two cases : 

(2.6) 

(2.7) 

corresponding char- 

13 3 l--x 
fls,&) = - = -G’+Bx-I], 

14 6 4 
(2.8) 

121--x 0 0 0 

zz 354 - 72x3 + 

respectively. Applying the general 
the following: 

If m = 3, y = 2 then 

I 
l--x 0 0 

4 l--x 0 

10 5 l-x 

20 15 6 

35 35 21 

262x2 - 72x + I, 

(2.9) 

method just described we easily find 

No(x) = 
8(1 - x)+~ + 4(2 - x)+~ 

- 50(1 - x)+4 - 5(2 - X)+4 if X > 0, 

No(x) = N,(- x) if x,(0, (2.10) 
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and 
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ivr(x) = 
lO(1 - x)+” + (2 - x)+5 

26(1 - x)+” - (2 - x)+” if x 3 0, 

N,(x) = - N,(- %) if x<o. (2.11) 

If m = 4, Y = 2 then 

i 

- 90(1 - x)+’ - 144(2 - x)+’ - 6(3 - x)+’ 

No(x) = + 1715(1 - X)+” + 392(2 - x)+6 + 7(3 - x)+6 if x 3 0, 

No(x) = No(- x) if x<o; 

(2.12) 

and 

c - 245(1 - x)+’ - 56(2 - x),’ - (3 - x),’ 

N1(x) = + 1191(1 - x)+6 + 120(2 - x),” + (3 - x)+” if x 3 0, 

N,(x) = - N,(- x) if x<o. 

(2.13) 

As a check on our computation we mention the following. 

1. For the case m = 3, Y = 2, the functions (2.10) and (2.11) must 

satisfy the condition 

No”‘(O) = 0 

because N,(x) E C”‘(- co, co), and 

N,“(O) = 0 

for the same reason. 

2. For the case m = 4, Y = 2, the functions (2.12) and (2.13) must 

satisfy 

N,“‘(O) = 0, No’s’(o) = 0, 

because N,(x) E C5(- 00, a), and 

N,“(O) = 0, N,(J)(O) = 0, 

for the same reason. These six conditions are actually satisfied. 
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3. Expressing the L,(x) in Terms of the N,(x) 

This is a simple matter that is useful. Let 

F(x) = 11 *&*“, (3.1) 
, -(m-C 

and observe that in view of the inequalities (20), F(x) is regular in an open 

ring containing the unit circumference 1x1 = 1. We expand it there in a 

Laurent series 

I;(X) = 5 o”xy if 1x1 = 1. (3.2) 
--m 

From the symmetry relations (16) we conclude that 

Lo-” = W” for all v. 

It is also clear that 

0” -+ 0 exponentially, as v - f a. 

The relations (3.1) and (3.2) imply that 

THEOREM 2. We can invert the relations (1.2) to obtain 

L,(x) = 2 o~,,N,(x - v). 
--m 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Proof. For using (1.2) we have 

2 CO,N,(,% - V) = 2 WV C CjL,y(X - V - i) 
Y Y i 

= c W” 2 ci-“-w - i) 
Y j 

The functions L,(x) and N,(x), for a particular value of s, are elements 

of a subclass of S,,, which we now define by 
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S'"' = {S(x);S(x)ES n.r n Tr .V(Y) = 0 for all v if p # s} (s = 0, 1,. . ,r - 1). 

COROLLARY 1. I/ 

and 

S@)E Q-*" 

S(x) = O((xly) as x + f co, /or some y >, 0, 

then S(x) admits a unique representation of the form 

S(x) = 2 a&V& - j). 
--oo 

Proof. The assumption (3.9) implies that also 

S(~)(x) = O((xIy) as x + + co (p = 0, 1,. . ., Y - 1). 

(3.7) 

(3.3) 

(3.9) 

(3.10) 

(3.11) 

We may therefore apply to S(x) the Lagrange-Hermite expansion (10) 

(Theorem 1) and obtain the expansion 

S(x) = i; sqj)L,&X - i). (3.12) 
--co 

Indeed, by (3.7) we see that all other terms of (10) vanish. Using the 

expansion (3.6), (3.12) gives 

S(x) = 2 P’(i) 2 wN,(x - i - 4 
i Y 

= 2 P(j) 2 f3”_Jr,(X - v) 

= ; iv& -l) 7 .syj)WY_j, 
Y 

and finally 

(3.13) 

where 
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a, = 5 w,_jsyj) 
j= -_m 

(3.14) 

Observe that these series converge by (3.4) and (3.11). 

The existence of the expansion (3.10) is thereby established. However, 

we have also established its zuzicity, for if S(x) were = 0 for all x, then 

(3.11) surely holds, hence (3.13) and (3.14) are valid, while (3.14) 

shows that all a, vanish. 

REMARK. Corollary 1 already justifies the name of B-splines for the 

N,?(x). However, it is clear that S(X), defined by (3.10), is an element 

of .S$, no matter what the values of the coefficients a3 may be. We would 

very much like to Yemove the assumption (3.9) and show that every 

S(x) ES8; 

may be represented in the form (3.10). 

(3.15) 

This we shall actually establish below under the following additional 

ASSUMPTION 1. The polynomial 

~‘L%rL-Lr(4 

defivaed by (17) is irreducible in the rational field. 

(3.16) 

REMARK. The statement that the polynomial (3.16) is irreducible over 

the rationals is most certainly true and also certainly a deep theorem. 

The polynomials (2.8), (2.9), and 

177,3(x) 

are easily shown to be irreducible. 

4. A Few Lemmas 

Let N(x) = N,(x) be any one of the Y B-splines having support in 

I = (- (m - Y + I), m - Y + 1). (4.1) 

It has 2m - 2r + 2 components, by which we mean the polynomials 

representing N(x) in the 2m - 2r + 2 consecutive unit intervals that 

make up I. If we confine x to 
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- (m - Y -1 1) < x < - (m - r), (4.2) 

then these component polynomials may be represented by 

N,(x), N,(x + 1)). . .> N,(x + 2m - 2r + 1). (4.3) 

LEMMA 3. The 2m - 2r + 2 polynomials (4.3), for x satisfying 

(4.2) aye linearly independent if and only if there is no nontrivial element of 

$,l having its support composed of only 2m - 2r + 1 consecutive unit 

intervals. 

1. The condition is sufficient. Assume that it holds, i.e., that the 

support of N,(x) is the shortest possible and let us show that the poly- 

nomials (4.3) are independent. For suppose that they are not and that 

we have a linear relation 

adJ&) + alN,(x + 1) + * * * + a ‘&&++JV& + 2m - 2r + 1) = 0 (4.4) 

for x in (4.2) 

with coefficients a, that do not all vanish. 

We consider the spline function 

zm--2rf1 

S(x) = 2 a$V,(x + V) for all real x. 
Y=O 

It is surely an element of St:. Notice that 

N,(x)=0 if xc--(m--+1) or x>m--+I. 

It follows that 

if x is such that 

S(x) = 0 

x>m--r+l. 

Similarly 

x<-3m+3r-2 

(4.5) 

(4.6) 

implies that, if 0 < v < 2m - 2r + 1, then 
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x+v<-m+r-1 

of that again S(x) = 0 by Eq. (4.5) and Lemma 2. 

This means that the support of S(x) is confined to the interval 

-3m+3r-2<<<<-Y++. (4.7) 
. 

On the other hand, the identity (4.4) shows that 

S(x) = 0 if - (97% - Y + 1) < x < - (nz - Y + 1) + 1. (4.8) 

Now the interval of (4.8) is exactly in the middle of (4.7). Hence, (4.8) 

shows that the support of S(x) is confined to the nonabutting intervals 

(- 3m + 3r - 2, - (m - Y + 1)) and (- m + r, m - Y + 1) (4.9) 

both of which aye of the same length 2m - 2r + 1. 

In one of these intervals S(x) is not identically zero. Reason: S(x) 

satisfies assumptions of Corollary 1. 

Let I, be that interval (or one of them) among (4.9) where S(x) $0. 

Let 

This, however, is an element of St! of support 2m - 2r + 1, or less. 

2. The condition is Izecessary. For suppose that it is violated and that 

S(x) E s;,; is nontrivial and has its support in 

I, = (0, 2m - 2r + 1). 

To fix the ideas and notations, let 

m = 3, r = 2, 

when the support of N,(x) is in (- 2, 2) and the support of S(X) is in 

I, = (0, 3). 

To S(x) we can surely apply Corollary 1, since all assumptions of 

Corollary 1 are satisfied and obtain the unique representation 

S(x) = 5 a&V& - j) for all x, (not all aj = 0). (4.10) 
--m 
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in (- 1,O) (4.10) reduces to i ajNs(x - i) = 0; (4.11) 
-2 

in (3, 4) it reduces to i a+V(x - j) = 0. (4.12) 
2 

Moreover in (Y, Y + 1) (4.10) reduces to 

v+2 

p; W(x - i) in (Y, v + 1). (4.13) 

By assumption we know that S(x) $ 0 in some one of the three intervals 

(v,v$-1) (v=O,l,2). 

This means that among the three sets of coefficients 

(a-1, ao, a,, a2), (aoF aI, a2, +,I, and (a,, a2, a,, 4, 

at least one set is not entirely composed of zero elements. This implies 

that at least one of the coefficients 

a-1, aa> a,, a2> a37 % is # 0. 

But this surely implies that at least one of the sums (4.11) and (4.12) is not 

trivial. Suppose it is the first, hence 

a_JV,(x + 2) + a_rN(x + 1) + aoN + arN(x - 1) = 0, in (- 1,O). 

Equivalently, setting x = t + 1 we find that 

a,N(t) + aoN(t + 1) + a_,N(t + 2) + a_JV(t + 3) = 0 in 0 < t < 1. 

This is what we wanted to prove. n 

The proof obviously generalizes. 

LEMMA 4. If m and Y are such that Assumption 1 is satisfied, then, for 

every s = 0, 1,. . , y - 1, the 2m - 2r $ 

independent. 

2 components (4.3) are linearly 

Proof. For suppose they were not. It follows from Lemma 3 that 

SZ-1 I , contains a nontrivial element S(x) with support in 
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11 = (0, 2m - 2r + 1). 

We claim : At least one of the quantities 

S(J)(l), S’“‘(2), , , S”)(2m - 2r), 

is # 0. 

(4.14) 

Proof. We realize that S(x), besides having support 

properties 

in Ii, has the 

.s’~‘(l) = W(2) = . . * = W(2m - 2r) = 0, (4.15) 

p=O,l,..., s-l,S_tl)...) r-l 

Suppose that P)(l) = 0. It follows that 

S(0) = S’(0) = *. . = y-y-J) = . . . = .p-‘-l(O) = 0 

and 

(because S E C2m--T--I) 

S(1) = S’(1) = . f. = S(‘-l)(l) = 0. 

But then the polynomial component P(x) of S(x) in (0, 1) has at x = 0 

a zero of order 2m - Y, and at x = 1 a zero of order Y, thus a total of 

(2m - Y) + r = 2m. 

This is one zero too many for its degree 2m - 1 and we conclude that 

P(x) E 0. Now if S(“)(2) = 0, we similarly conclude that S(x) s 0 in (1, 2), 

and so on. 

We claim: We may assume the quantities (4.14) to be rationals OY even 

integers. 

Proof. We may assume S(x) to be of the form 

=a 1.0x+ 
2m--1 + a,,,(% - 1)+2m-1 + . . * + al,sm_sr+i(X - 2m + 2r - 1)+2”-1 

+ @2,0X+ 
2m-2 + az,l(z - 1)+2”-2 + . * . 

+a rsOx+2m--’ + a,*,(x - 1)+2m--r + . . * + ar,2m_2r+l(x - 2m + 2r- l)+2m--r, 
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for all real x. This linear form in the aij satisfies numerous linear homoge- 

neous equations, namely Eqs. (4.15) and also 

.V(Zm - 2r + 1) = 0 for Y = 0, 1,. . . , 2m - r - 1 

This homogeneous system does have a nontrivial solution because the 

quantities (4.14) do not all vanish. The existence of a nontrivial solution 

means that the rank of the system is less than the number of unknowns. 

Moreover, all coefficients of the system are integers. It follows that the 

system has also a rational solution that is as close to the nontrivial one as 

we wish. Multiplying it by an appropriate integer we obtain a solution 

such that the quantities (4.14) aye all integers, not all = 0. 

Let us now consider the function 

qx; t) = 5 ttqx - i), (t # O), 
-cc 

(4.16) 

which satisfies 

@(x + 1; t) = qx, t). (4.17) 

This means that if 

P(O; t(J = 0, (4.18) 

then 

!W(V; to) = 0 for all integers Y. 

Thus @(x; to) is an eigenspline of S2m_1,r for the eigenvalue to and this 

because it satisfies 

@(x + 1; to) = t&qx; to). 

However (4.18) is equivalent to 

5 t,W”)(- i) = S (s)(l)t,-1 + W(2)t,-2 + * . . 
-cc 

+ S@)($jm - 2y)t0-(2m--2r) = 0, 

or 

S(s)(l)t02m--2+r + S(n)(2)t02m--2+-2 + . . . + S(d(2m - 2~) = 0. (4.19) 



CARDINAL SPLINE INTERPOLATION, V 19 

Therefore 

P(x) = .P(l)X‘Jm--2r-r + * * * + .s”)(Zm - 2Y) (4.20) 

is a nontrivial polynomial of degree < 2m - 2r, all of whose zeros are 

also zeros of 

~?l,&). 

Therefore P(x) is a factor of n,,,(x) with integer coefficients. This contra- 

dicts Assumption 1 and proves the lemma. n 

5. The Main Result 

We can now prove 

THEOREM 3. If m and Y are such that 

fl27r-L&) is irreducible ovey the rationals, (5.1) 

then every S(x) E S~$_,,y admits a unique representation of the form 

S(x) = 5 a&V& - i). (54 
-cc 

Proof. By Lemma 4 we know that the components of (4.3), in (4.2), 

are linearly independent. But then the proof runs along familiar lines that 

were used before: 

1. Let S(x) = 0 if x < 0. Observe that if we set 

q=m-Yfl 

then N,(x - q) = Q(x) also vanishes for x < 0 since 

Q(x) has support in (0, 2m - 2r + 2) 

and its components are linearly independent. But then 

has property ~~(~‘(1) = 0 and therefore pr(x) = 0 in (0, 1) by a previous 

argument. Continuing in like manner we see that 

S(x) = 5 ajQ(x - j) 
j=o 

(5.3) 

with coefficients ai that are uniquely determined. 
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2. Let S(x) E .S$. Let 0 < x < 1. Since 

Q(X), Q(x + I),..., Q(x + 2m - 5% + 1) (0 <x < 1) 

are linearly independent in (0, 1) we can determine aj so that 

(5.4) 

S(x) = 5 ajQ(x - j) in O<x<l. 
-(zm--2r+l) 

(5.5) 

This requires some explanation : The component of S(X) in (0, 1) is a 

polynomial z:gm_l satisfying 

P)(O) = W)(l) = 0 if p = 0,. . ., s - 1, s + 1,. . ., y - 1, 

this is a set of 2r - 2 homogeneous conditions. Such polynomials form 
a linear space of dimension 2m - 2r + 2. Since the (5.4) are linearly 

independent, they must span this space and (5.5) follows. 

Now 

S,,(x) = S(x) - 2 ajQ(x - i) 
-(W-!z*+l) 

vanishes in 0 < x < 1. Let 

I0 if x>O 

“(*) = \S,(x) if x < 0. 

By the first case 1 of the proof we know that 

S(x) = 5 a&2(x - i) 
1 

and 

-(2m--2r+2) 

S2(4 = C ajQ@ - i)- 
-cc 

Since 

S,(X) = S,(x) + S2(x) for all x, 

(5.6) 

we conclude from (5.6) that 
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$4 = Sz(x) + 5 a&(x - j) + Sl(x) = 2 ajQ(x - j). n 
-_(zm--2Yfl) -cc 

REMARK. It would be interesting to establish Theorem 3 without 

the Assumption (5.1), as undoubtedly is true. The matter hinges on 

showing the nonvanishing of a certain determinant. 

6. The Use of B-Splines in Cardinal Spline Interpolation 

We know that the interpolation problem (4) is solved by the expansion 

S(x) = c y,L,(x - Y) + 2 Y”‘L,(X - Y) + * . . + c y"(T-l)Lr-l(x - Y). 
Y Y Y 

(6.1) 

This can be given a more advantageous form if we use the expansions 

(3.6) of Theorem 2. Indeed we find that 

c yv(S)Ls(x - v) = 2 Cj(S)N,(Y - j), 
Y i 

where 

cp = 5 y"(%&._", (s = 0,. . .) Y - 1). 
Y= --io 

We record this as 

(6.2) 

COROLLARY 2. The solution S(x) of the probleln (4) can be expressed 

in the form 

S(x) = 5 Cj’O’N,(X - i) + 2 Cj’l’N,(X -i) + . * . + k Cj(-N,_l(X - j), 
--m -cc -cc 

(6.3) 

where the cjcs) are computed from (6.2). 

Of course, we have assumed here that the conditions (5) of Theorem 1 

are satisfied. The computational advantages of the representation (6.3) 

were already pointed out in [5, Appendix, p. 891 for the special case when 

r = 1. 
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II. INTERPOLATION BY QUINTIC SPLINE FUNCTIONS 

Let rn = 3, so that we deal with 5th degree spline functions. We may 

now choose the multiplicity Y such that I ,( Y < m = 3. If we choose Y = 3 

then the problem of interpolation (4)) as well as the problem of interpolation 

in a finite number of nodes, become trivial because it reduces to a succession 

of separate two-point Hermite interpolation problems (see [4, p. 321). The 

choice Y = 1 is the subject of the note [ll]. In that case 2m - 2r = 4 

and the problems depended on the few eigenvalues which are the zeros 

of the Euler-Frobenius polynomial 

Ii,,,(x) = x4 + 26x3 + 66x2 + 26x + 1. 

For the remainder of this paper we assume that Y = 2. While not trivial, 

this case is simple because it depends on the two zeros of the polynomial 

(2.8). 

7. Statement of Results 

We assume throughout that 

m = 3, Y = 2. 

We have determined explicitly the corresponding B-splines (2.10) and 

(2.11). They have the properties 

and 

N,(- 1) = - 1, N,(O) = + 6, N,(l) = - 1, 

N,‘(- 1) = 0, No’(O) = 0, N,‘(l) = 0; (7.1) 

N,(- 1) = 0, N,(O) = 0, N,(l) = 0, 

N,‘(- 1) = - 1, Ail’(O) = + 6, N,‘(l) = - 1; (7.1’) 

and sketches of their graphs are as shown in Fig. 1. 

Unlike our previous use of the letter n (when we wrote n = 2m - l), 

let now n denote any natural number. Let S5,,[0, n] denote the class of 

quintic splines defined in [0, n] and having double knots at the points 

x = 1, 2,. . ., n - 1. Likewise let 

.S(O)[O, n] = {S(x); S(x) E S5,s[0, n], S’(Y) = 0 (V = 0, 1,. . . , 92)>, 

(7.2) 
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W[O, +z] = {S(x); S(x) E&JO, n], S(Y) = 0 (v = 0, 1,. . .) Pz)}. 

(7.3) 

b 

FIG. 1 

We wish to solve the following 

PROBLEM 1. The function f(x) being in C1[O, n] we are to find an 

element of S,.,[O, n] such that 

SW = fbJ)> S’(Y) = f’(v) (Y = 0, 1,. . .) n), (7.4) 

and satisfying the boundary conditions 

S”‘(0) = 0, S”‘(n) = 0. (75) 

The boundary conditions (7.5) are sometimes referred to as “natural,” 

because the solution S(x) which they produce has the property of minimiz- 

ing 

n 

5 [S”‘(X)]2 ax 

among all functions having a square-integrable third derivatives and 

satisfying the interpolation conditions (7.4). 



24 I. J. SCHOENBERG AND A. SHARMA 

In describing our solution of Problem 1 we depart from our previous 

notation (7) and will use the symbol L,(x) for another purpose. In fact, let 

S(x) = 8 fwL(4 + i f’ww 
0 

(7.6) 

be the Lagrange-Hermite formula which describes the solution of our 

interpolation problems (7.4) and (7.5). In other words, the L,(x) and 

A,(x) are the fundamental functions of our process. They have the property 

that all quantities L,(j), L,‘(j), A,(i) and A,,‘(j) vanish, except that 

L,(Y) = 1 and A,‘(Y) = 1. (7.7) 

From these it follows that 

L”(X) E S$[O, n], A,(x) E .q[O, n] (Y = 0,. . .) n). (7.8) 

In this connection the following finite analogue of Theorem 3 is of 

relevance. 

LEMMA 5. 1. Every S(x) E S$$[O, n] admits in [0, n] a unique representa- 

tion 

nfl 

S(x) = 2 C&v& - i). (7.9) 
-1 

2. Every S(x) E S&[O, n] admits in [0, n] a unique representation 

n 4~ 1 

S(x) = 2 yP,(x - i). 
-1 

(7.10) 

In view of (7.8) and Lemma 5, we may represent the fundamental 

functions in the form 

nf1 

L,(x) = 2 Cj.YNO(X - iI1 (7.11) 
-1 

nf1 

A,(x) = c yj.YNlb - i)J (7.12) 
-1 

with coefficients cj,” and yj,” that have appropriate rational values. The 

explicit values of these coefficients are given by 
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THEOREM 4. We define 

I = 3 - 2pi-= 0.17158 (7.13) 

as the smaller root of the quadratic equation 

- 12-,,,(x) = x2 - 6x + 1 = 0. (7.14) 

In terms of i we define for every integer k two sequences of integers (a,J and 

(bk) by 

AL = a, + b,l/%. (7.15) 

We may also define them as sequences satisfying the YetuYYence relation 

x k+2 - 6x,,, + xk = 0 for all integer k, (7.16) 

with the initial values 

a0 = 1, a1 = 3 and b, = 0, b, = - 2, 

respectively. We easily find the table of values 

k -2-10 1 2 3 4 5 6 7 

ak 17 3 1 3 17 99 577 3363 19601 114243 

b, 12 2 0 -2 -12 - 70 -408 -2378 - 13860 -80782 

Observe that (ak) is an even sequence, while (b,) is odd. 

In terms of these integers, the coefficients in (7.11) and (7.12) aye exjwessed 

as follows : 

(7.17) 

1 
- 4b,aja+” if j G v, 0 -c v < n, 

Cj,V = 1 
(7.18) 

- 4b,ava+j if j 3 v, 0 < v < n. 

Moreover, we have the symmetry relations 

Cj,Y = CD-j.n.4 (7.19) 
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and therefore, in particular, 

cj,?l = cn-j.0 (7.20) 

ze~hich are given by (7.17). 

Also 

3 b,+ 
Y?,O = jjb,- tf j>O, (7.21) 

(7.22) 

Yj,Y = 

/ 

- ib- b,b,_, if j < v, O<v<n, 
12 

- 6 b,b,_, 

(7.23) 

if j 3 v, 0 < v C n. 
n 

Finally, we have 

and, in particular 

Yj,n = yn-j,ol 

z&&h aye given by (7.21) and (7.22). 

(7.24) 

(7.25) 

Writing 

C, = I(c~,ll and r, = Ilv~~lI~ (7.26) 

where i indicates the row and v the column, for these (n + 3) x (n + 1) 

matrices of coefficients, we find as an example that 

! 99 594 102 18 3 

577 198 34 6 1 

99 594 102 18 3 

c’4 = &4 17 102 578 102 17 9 

3 18 102 594 99 

I 1 6 34 198 577 

3 18 102 594 99 

(7.27) 
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- 987(3/B) - 140 - 24 

204(3/g) 0 0 

35(3/8) 140 24 

6(3/8) 24 144 

1(3/8) 4 24 

0 0 0 

-1(3/8) -4 - 24 

8. Semicardinal Interpolation 

From (7.15) we obtain that 

a, = +(A” + A-“), 6,; = __ l_ (Al; _ 1-k). 
2v2 

-4 

0 

4 

24 

140 

0 

140 - 

- 1(3/8) 

0 

1(3/8) 

6(3/8) 

35(3/8) 

204(3i8) 

987 (3/8) 

From these we obtain the relations 

for all j. 

(7.28) 

(8.1) 

(8.2) 

These relations show that the computation of the cj,, and yj,” as given 

by Theorem 4 never presents any difficulty or loss of accuracy no matter 

how large n may be. In fact the situation is as follows. If we write cj,, = 

cr,? and yj,y = $J to indicate the dependence of these coefficients on n, 

and use the formulas (7.17), (7.18), (7.21)-(7.23), and (8.2) we find that 

ifn -+cc 

lim c(F) = ,t = 
l,V 

I” i 

~‘F4-1aj?Lu if j < Y, v > 0, 

J&4-‘a ilj 
(8.4) 

” if j 3 v, v > 0, 

lim y?),,, = ?:I,0 = - 1 + (3/32)2-l, (8.5) 

lim ~$4 = yTO = (3/32)iij if j > 0, (8.6) 

(8.7) 
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It follows that the fundamental functions (7.11) and (7.12) converge to the 

spline functions 

L,+(x) = 5 cit,N,(x - i), 
-1 

w3) 

and 

(8.9) 

respectively, where the coefficients have the values as given by Eqs. (8.3)- 

(8.7). 

We may state without proving it here the following 

THEOREM 5. If the data f(v), f’(v) (v = 0, 1,. .) are such that 

f(y) = O(Y~), f’(y) = O(Y~) as Y + co, for some y 3 0 (8.10) 

then th,ere is a unique S(x) E S5,2[0, co) satisfying the conditions 

S(x) = O(xy) as x --, ~0, (8.11) 

S(Y) = f(V), S’(Y) = f’(V) (Y = 0, 1, 2,. . .), (8.12) 

S”‘(0) = 0. (8.13) 

This unique solution is given by the expansion 

S(k) = 5 f(V)L+(X) + $ f’(44+(4. 
0 0 

(8.14) 

9. Interpretation of Results of Sec. 7 in Terms of Matrix Inversions 

Let us consider the (n + 3) x (n + 1) matrices C, and r, defined by 

(7.26) and define two new (n + 1) x (n + 1) matrices C,* 

obtained from C, and I’,, respectively, and obtained from 

deleting their first and last rows. Thus 

C * = l(cj,,(l, r,* = jIyjIyI1 n (i, v = 0, 1,. ., n). 

We define the following (n + 1) x (n + 1) square matrices 

and r,* 

them by 

(9.1) 
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P, = 

+ 6 - 2 0 0 

-1 +6 -1 6 

0 --I +6 -1 

and 

0 . . . 

~ 32/3 0 

I-I 6 -1 

O-l 6 

Qn = /i . 

-1 6 -11 

0 0 0 32/3 ) 

. . . 0 

t6 -1 

-1 +6 -1 

0 -2 +6 

29 

(9.2) 

(9.3) 

Both matrices are what they seem to look like: Toeplitz matrices with 

rows 0, 0, - 1, 6, - 1, 0,. , except that the first and last rows are 

modified. 

THEOREM 6. The following vvtatrix relations hold 

C,” = P,-1, (9.4) 

ad 

r,* = en-l. (94 

Proof. 1. Let us attack directly the interpolation problems (7.4) and 

(7.5) by means of our B-splines N,(x) and N,(x) of Fig. 1. The problem 

as it stands depends on solving a linear system of (roughly) 2n unknowns. 

The peculiar properties of the LZ-splines allow to reduce this problem to 

the solution of two systems each in n unknowns. Indeed, consider the 

spline function 

n+1 

U(x) = 2 A&v& - i) 
-1 

(9.6) 

which if restricted to [0, n] becomes an element of S,,,[O, n]. Automatically 

it has the property 
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U’(Y) = 0 (v = 

whatever the constant coefficients A, 

such that 

and 
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0, 1,. . -, fi), (9.7) 

may be. Let us determine these 

= 0,. . , 92) (9.8) 

U”‘(0) = 0, U”‘(n) = 0. 

If we substitute (9.6) into (9.8) we get the equations 

-A_,+6A,-AA, 

-A,,+6Ai-AAz 

(9.9) 

= f(O) 

= f(l) 

- A,_, + BA,_, - A, = f(n - 1) 

-A,-, + BA, - A,+1 = f(n). 

(9.10) 

N,(x) being an even function, we conclude that N,,“‘(O) = 0 while N,,“‘( - 1) 

and No”‘(l) aye equal and of opjbosite sign. In fact they have the values 

l 120, but that is unimportant, because (9.9) leads to the two 

equations 

A-, = Al, An-1 = A,+I. (9.11) 

Eliminating A_, and A,+1 between Eqs. (9.10) and (9.11) we obtain the 

square system 

+ GA, - 2Ai = f(0) 

- A, + 6Ai - A2 = f(l) 

- A,_, + 6A,_, - A, = f(fi - 1) 

- 2A,_, + 6A, = f(4 
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whose matrix is P,. Solving the system, we obtain 

((A,, Al,. . ., A(IT = p,-l* I[/(%. . ‘I f(qy. 

31 

(9.12) 

On the other hand, from Eqs. (7.6) and (7.11) we find that 

Comparing with Eq. (9.6) and using the z&city of the representation (9.6), 

we conclude that 

Aj = 2 Cj,“f(Y) (I = - 1, 0,. . ., 7% + 1). (9.13) 
v-0 

Leaving out the first and the last equation, we obtain 

A j = i cj,“f(r) for j = 0, 1,. . . , n, 
Y=O 

or 

ljAO> A,,.’ .> 4p = c,*llf(OL.~ ., f(4ll’. 

A comparison of this with (9.12) establishes (9.4). n 

2. We establish (9.5) similarly. We consider 

n+1 

(9.14) 

(9.15) 

V(x) = c B,N,(x - i), (9.16) 
-1 

which is to satisfy 

V’(Y) = f’(v) (Y = 0,. . .) n), (9.17) 

and 

.“‘(O) = 0, V”‘(n) = 0. (9.18) 

Now we need the values of N,“’ (- l), Nr”‘(O), Nr”‘(1). Actually they are 

found to be 36, 168, 36, but the numbers 3, 14, 3 proportional to them will 

do, for now we have from (9.17) the system 
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-B-,+6Bo--1 = f’(O) 

-BB,+6B,--2 = f’(l) 

- B,_z + 6B,_, - B, = f’(?z - 1) 

- B,-1 + 6B, - B,+1 = f’(n) 

(9.19) 

while (9.18) and (9.16) lead to the two equations 

3B_, + 14B, + 3B, = 0, 3B,_, + 14B, + 3B,+, = 0. (9.20) 

Substituting 

B_, + B, = -;Bo, B,_, + Bn+l = - ; B, 

into Eqs. (9.19) we obtain the system 

YBo 

- B, + 6B, - B, 

= f’(O) 

= f’(l) 

-B n-2 + 6B,_, - B, = f'(n - 1) 

y B, = f'(n) (9.21) 

having the matrix Qn. Solving we find 

j/B,, B,,. . .> B,IIT = Qn-llif’(O)>. .> f’(fi)ll. 

On the other hand 

(9.22) 

w4 = i f’ww = i; f’b) figydl(~ - i)> 

0 Y=O j= -1 

n+1 

V(x) =jz~lwx - i) ,g Yi.“f’(d. 
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Comparing with (9.16) we find that 

Bi = i yi,vf’(4 i = - 1, 0,. . . ) 12 + 1. (9.23) 
v=O 

Retaining all of these except the first and last we have 

Bj = 2 rj,j’(y) for j = 0,. . ., n 
v-:0 

or 

A comparison with Eq. (9.22) establishes Eq. (9.5). n 

REMARKS. 1. Theorem 6 gives all elements of C, in terms of P,-l 

except the first row ~_i,~ and the last row ~%+r,~. However (9.13) 

shows that 

A-1 = i; C-l,Vf(d> A+1 
0 

and now the relations (9.11) show that 

C-1,” = c1.w Cn+l,v = cn-1.v (v = 0,. . .) n). (9.23) 

Similarly, Eqs. (9.23) and (9.20) show that 

%O." Y-1,” = - 3 - Yl 

The relations (9.23) and (9.24) 

examples (7.27) and (7.28). 

2. Explicit expressions for 

Y) Yn+l.v = - Y%-1,W 

(Y = o,.. ., n). (9.24) 

are readily seen to hold on the numerical 

the inverses of the matrices P, and Qn, 

defined by (9.2) and (9.3), would therefore furnish our results of 
Theorem 4. Such explicit inverses can be constructed by means of some 
results of Gantmacher and Krein [2, p. 951. See also [3]. This, however, 

is not the way in which we obtained Theorem 4. The remainder of this 

paper describes the way by which we derived Theorem 4. 
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10. Preparations for Deriving Theorem 4 

These fall into several parts. 

A. Proof of Lemma 5 of Sec. 7. If S(x), defined in 10, ~21, is an element 

of S&[O, n], then it is fairly clear that we can extend the definition S(x) 

to all real x so as to become an element of .Si’i. This means that there 

exists an 

S(x) E 5-Q (10.1) 

such that 

S(x) = S(x) if 0 < x < n. (10.2) 

Indeed, we can first extend S(X) to all real x by removing the knots 

at x = 0 and x = n and obtain S,(x) (- co < x < CD) such that 

S,(x) = S(x) if 0 < x < n, 

while 

S,(X) ETCH in (- co, I] and also S,(x) ETCH in rn - I, a~). 

Next we define 

S(x) = S,(x) + a,(x - n)+5 + a,+l(x - n - 1)+5 + * *. 

+ b,(x - n),” + b,,.i(x - n - l)+4 + * . a 

+ a& x)+~ + a_i( - x - 1)+5 + * * * 

+ b,(- x)+” + b_,(- x - I)+4 + . *. , 

and determine a,, b,, (this can be done in many ways) such that S’(PZ + 1) = 0. 

Next a,+,, &+I, so that S’(n + 2) = 0, a.s.o. Similarly we can achieve 

that S’( - 1) = S’(- 2) = * . . = 0. But then (10.1) surely holds. To 

S(x) we apply Theorem 3 to obtain the expansion 

S(x) = 5 c,N,(x - jq. 
-m 

Restricting x to [0, n] and using (10.2) we obtain the desired rep- 

resentation (7.9). The two lemmas of Sec. 4 imply its unicity. A similar 

proof establishes the second part of Lemma 5. 
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B. Determining the Fudamental Functions Z,,(x), 2’l(x), and the 

Eigensplines Sl(x), S,(x), of the Class S5,2. We change notation from that 

used in Theorem 1 and let us denote by 

~&) and %(x) (10.3) 

the fundamental functions of S,,,. Furthermore, let 

S,(x) and S,(x) (10.4) 

denote the eigensplines of the class S 5,2 (see [4, Sec. 21). These span the 

class 

s;,, = (S(x); S(x) E s,,s, S(Y) = S’(Y) = 0 for all v}. (10.5) 

We begin by finding the functions (10.3). By Theorem 2 we have 

20(X) = 5 W,N& - V), (10.6) 
-CC 

9,(x) = 5 WN,(x - y), (10.7) 
--m 

where the UJ, are the coefficients of the Laurent expansion 

1 
-=5 Q,XV. 

- x + 6 -x-l _-m 
(10.8) 

Using ,I, defined by (7.13), as the smaller root of (7.14), we find 

5 dljlxj 
--m 

= 1 + ax + a%? + . * . + ax-1 + ;12x-2 + . * . 

Since A2 - SL + 1 = 0 we obtain 

cc 2 2 - aljlxj 62 21-l - 6 = = 41/2 

6A - 1~ - --oa 1,x-l - x + 6 x-r - - x + 6 - x-r 

because 21-l - 6 = 2(3 + 21/F) - 6 = 4v2. Thus 

1 

- x + 6 - x-l 
(10.9) 
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which shows that 

LAivl for all Y. 

""=+ 
Finally (10.6) and (10.7) become 

S,(x) = __ l-5 
4V2 --oo 

l.lW,(x - j) 

and 

(10.10) 

(10.11) 

(10.12) 

That these functions do have the properties 

~0(0) = 1, Z,(Y) = 0 if Y # 0, S,‘(V) = 0 for all Y 

L?r’(O) = 1, _Yr’(y) = 0 if Y # 0, 9r(~) = 0 for all Y (10.13) 

is easily verified if we use the relations (7.1) and (7.1’). 

We now turn to the eigensplines (10.4). As mentioned before, these 

are determined only up to a constant factor. We claim that, with 1 = 

3 - 21/2, we may set 

S,(x) = 5 /IiN& - j), S,(x) = -g R-N&Y - j). (10.14) 
--m -Cc 

This is clear, because 

S,(x + 1) = iSI(x) for all x, 

S,‘(V) = 0 for all Y, 

while (10.14) implies also 

S,(O) = 1 - 6 + 1-1 = ;i-l(il’ - 6il + 1) = 0 

(10.15) 

(10.16) 

and therefore 

So = 0 for all Y, 

in view of the functional relation. 

(10.17) 
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Finally 

S,(X) = 2 L-W& - i) = 2 IW,(x + i) 
j j 

so that 

S,(x) = S,(- x). 

But then 
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(10.18) 

&(x + 1) = S,(- x - 1) = a-i.s,(- X) = il-iS,(x), 

showing that Se(x) is indeed an eigenspline corresponding to the eigenvalue 

A-1 = 3 + 21/k 

However, we obtain a second set of eigensplines by proceding similarly 

by using the second B-spline N,(x). Arguments similar to the above show 

that 

S,(x) = 5 lW,(x - i), S,(x) = 5 A-Wl(X - i), (10.19) 
-02 -02 

is also an acceptable set of eigensplines for S,,, also corresponding to the 

eigenvalues 1 and 1-l, respectively. It follows that we must have 

S,(x) = C&(x), S,(x) = C,S,(x). (10.20) 

The values of the constants C, and Cs are readily determined as 

follows. Observe first that the relation between the functions (10.19) is a 

little different from the relation (10.18) because 

and therefore 

S,(- LX) = - S,(x). 

Next we record the values 

Ne”(- 1) = 20, N,“(O) = - 40, N,“(l) = 20, 

Ni”(_ 1) = - 8, N,“(O) = 0, N,“(l) = 8, 

(10.21) 

(10.22) 

(10.23) 
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that are easily obtained from the explicit expressions (2.10) and (2.11). 

From (10.14) and (10.19) we obtain 

S,“(O) = 80, S,“(O) = 321/F (10.24) 

and the first relation (10.20) becomes 

Sr(x) = 
2v2 
7 S,(x). 

But then, by (10.18) and (10.21) we find 

(10.25) 

21J2 
S,(x) = - S,(- x) = - +-,(x) 

hence 

2fi 
S&) = - ,-S,(x). (10.26) 

We note in particular the relations (lO.ll), (10.12), (10.14), (10.19), 

(10.25), and (10.26) to be used below. 

II. Determining the Fundamental Functions L,(x) in (7.6) 

Using the formulae (10.11) and (10.14) we try to determine L,(x) 

(0 < Y < n) from a representation 

Lb4 = 20(x - 4 + CJle4 + c25-2(47 (11.1) 

with coefficients cr and cs to be appropriately determined. This looks 

promising because the L,(x) defined by Eq. (11.1) for all real x, already 

satisfy the conditions that L,(j), L,,‘(i), vanish for all integer j, except 

that 

L,(v) = 1. 

The only remaining conditions to be satisfied are 

L”“‘(0) = 0, L,“‘(n) = 0, 

and these will yield the values of the constants cr and cs. 

Requiring (11.1) to satisfy (11.2) leads to the equations 

c,S,“‘(O) + c&,“‘(O) = - Za”‘(_ Y), 

cr.Sr”‘(n) + cpSZ”‘(n) = - _!?a”‘(~2 - Y). 

(11.2) 

(11.3) 
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By direct calculation we obtain from (2.10) that 

Na”‘(_ 1) = 120, No”‘(O) = 0, N,“‘(l) = - 120 (11.4) 

and the first expansion (10.14) shows that 

Sr”‘(0) = - 4801j2. (11.5) 

The functional equation (10.15) yields S,(x + n) = I:aS,(x) whence 

Sr”‘(,) = PSI”‘(O) = - 4801/2P. (11.6) 

Since Pa(x) is an even function in C”’ we have 

Zpo”‘(0) = 0. (11.7) 

For k > 0, however, we find from (10.11) and (11.4) that 

Zo”‘(k) = - 12OA”, (k > 0). (11.8) 

Therefore 

zY~“‘(12 - Y) = - 12OA”_“, (V < n), (11.9) 

and finally, again from (lO.ll), 

oEp()“‘(_ V) = - &PO”‘(Y) = 1201”. (11.10) 

Finally (10.18), (11.5) and (11.6) show that 

Sa”‘(0) = - Sr”‘(0) = 4801/2, (11.11) 

S3”‘(?z) = - S,“‘(- ?z) = 48OV2AP. (11.12) 

We now distinguish two cases. 

CASE 1: Y = 0. Using (11.5), (11.6), (ll.ll), (11.12), (11.7), and (11.8) 

for the coefficients of (11.3), we find that 

Substituting these into (11 .l) and using the expansions (10.11) and (10.14) 

we find that 

L&) = 2 Cj,On’O(X - i), (11.13) 
--m 
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~"+I + ;in-j 

4V2 Cj,g = 4"' - il" _ ~_" ' 

If i > 0, this yields 

An-’ + pL+i 
4V2 cj.o = - -;i,F J 

while if i < 0 we get 

In either of these two cases we can write 

4112 cj,o = - 
;in-ljl + ;l--n+lil 

1” - I-” . 

However, using the integers defined by (8.1), we may write 

l &L-Iii 
cj.0 = - p-t 

3 b, 

which is the desired result (7.17). 

CASE 2: 0 < Y < n. In this case we obtain from (11.3) the values 

Substituting these into (11.1) we obtain 

&$4 = 5 %“NOb - i)P 
-cc 

where 

We must again distinguish two cases. 
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CASE 1: j < v. In this case we find that 

1 
cj,, = - a, aja,-,. 

CASE 2: j > v. Then 

1 
5.U = - G, a&-j. 

These results establish (7.18). F or our purpose we need them only 

for j = - 1, 0, 1,. . . , n + 1. The symmetry relations (7.19) follow from 

the identity 

L,(X) = L,_& - %) 

in view of the fact that 

n+1 n+1 

L,_“(% - x) = c Cj,n--vN& - x - j) = 2 C,-j,a_v~O(- x + i) 
j=-1 j= -1 

n+1 

= 2 Cn-j,n-“NO@ - iI. 
-1 

12. Determining the Fundamental Functions A,(x) in (7.6) 

The main difference from Sec. 11 is that we now try to determine 

cl,(x) from a representation 

cl,(x) = dp,(x - v) + G%(x) + c&(x) (12.1) 

where all three terms on the right side by (10.12) and (10.19) are 

expressed in terms of the second B-splines N,(x - j). We are hereby 

assured that the right side of (12.1) already vanishes for all integer 

values of x. Thus 

/l,(j) = /l,‘(i) = 0 for all j, except that A,‘(v) = 1. 

The only conditions that still have to be satisfied are 

A”“‘(0) = 0, A,‘“(n) = 0, 

leading to the system 

&“‘(O) + czS2”‘(0) = - LTl”‘(- v) 

CISl”‘(?z) + c&“‘(n) = - s?l”‘(?Z - v). 

(12.2) 

(12.3) 
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Now we need the values 

N,“‘(- 1) = - 36, Nl”‘(0) = - 168, N1”‘(l) = - 36, 

to find the values 

Z1”‘(0) = 36 - 481/2, LPI”‘(k) = - 481/2;1”, (k > 0). 

The quantities s,“‘(O), .9,“‘(O) are immediately obtained from (11.5), 

(ll.ll), and the relations (10.25) and (10.26). 

The remaining calculations are so very much similar to those of 

Sec. 11 that they may be safely omitted. 
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