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Abstract

Within the set of schemes defined by generalized, manifestly gauge invariant exact renormalization groups for QED, it is argued that the S-
function in the four-dimensional massless theory cannot possess any nonperturbative power corrections. Consequently, the perturbative expression
for the S-function must be resummable. This argument cannot be extended to flows of the other couplings or to the anomalous dimension of the
fermions and so perturbation theory does not define a unique trajectory in the critical surface of the Gaussian fixed point. Thus, resummability of
the B-function is not inconsistent with the expectation that a non-trivial fixed point does not exist.

© 2008 Elsevier B.V. Open access under CC BY license,

PACS: 11.10.Gh; 11.10.Hi

The resummability,1 or otherwise, of the perturbative se-
ries for the B-functions and anomalous dimension(s) in some
quantum field theory (QFT) is intimately related to the non-
perturbative question of renormalizability. This is beautifully
explained in [1] (see also [2]), and we here recall the main
points. The formalism best suited to understanding such issues
is the Exact Renormalization Group (ERG), which is essentially
the continuous version of Wilson’s RG [3,4]. A fundamental in-
gredient of this approach is the implementation of a momentum
cutoff, such that all modes above the cutoff scale are regu-
larized. For the following discussion, we consider two cutoff
scales. First, there is the bare scale, A, which provides an over-
all cutoff to the theory. As we shall see, for nonperturbatively
renormalizable theories, this scale is an artificial construction,
and it is misleading to identify the action at this scale as a
boundary condition that can be chosen, arbitrarily. (The same
is not true for nonrenormalizable theories.) We now integrate
out degrees of freedom between the bare scale and a lower,
‘effective’ scale, A. As we perform this procedure, the bare ac-
tion evolves into the Wilsonian effective action, S4, in such a
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1 Throughout this Letter we have in mind Borel resummability, though our
conclusions should not depend on this choice.
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way that the partition function stays the same. The Wilsonian
effective action can be thought of as parametrizing the interac-
tions relevant to the effective scale. The ERG equation states
how the Wilsonian effective action changes with the effective
scale.

One of the most important uses of the ERG equation is to
find QFTs which are nonperturbatively renormalizable, in other
words theories for which Ay can be send to infinity (this is
called taking the continuum limit). Scale independent renor-
malizable theories follow immediately from fixed points of
the ERG equation. To see this, suppose that we rescale all di-
mensionful quantities to dimensionless ones, by dividing by A
raised to the appropriate scaling dimension. Now, fixed points
of the ERG can be immediately identified with renormalizable
theories: as a consequence of our rescalings, independence of A
implies independence of all scales; independence of all scales
trivially implies independence of Ao, and so obviously we can
send Ag to infinity!

Scale dependent renormalizable theories can be constructed
by considering flows out of any of the fixed points, along the as-
sociated relevant/marginally relevant directions. The Wilsonian
effective actions lying on these ‘Renormalized Trajectories’
(RTs) [3] are self-similar, meaning that all dependence on A
appears only through the renormalized relevant/marginally rel-
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evant couplings and anomalous dimension(s).> Self-similarity
implies renormalizability, since there is no explicit dependence
on A/Ag. Note that, along an RT, the theory is completely spec-
ified by the choice of fixed point, and the integration constants
or ‘rates’ associated with the relevant/marginally relevant di-
rections. In the limit A — oo, the theory sinks back into the
appropriate fixed point. Thus, if we wish to consider the action
at some arbitrarily high ‘bare’ scale, we must compute it using
the flow equation, given our aforementioned choices. Indeed,
the ‘bare action’ in this context is the perfect action [5] in the
vicinity of the ultraviolet (UV) fixed point. This is in contrast
to a nonrenormalizable trajectory, where we can simply chose
some bare action, and use it as the boundary condition for the
flow.

One of the benefits of viewing renormalization in this way
is that, along RTs, we can compute directly in terms of renor-
malized quantities, without any mention of the bare scale or
the bare action. To do this, we employ renormalization condi-
tions for the relevant and marginally relevant couplings and the
anomalous dimension(s) directly at the effective scale, A. So, if
a non-trivial RT were to exist in QED (we are not claiming that
one does in four dimensions, where the gauge coupling is mar-
ginally irrelevant, but one does in three dimensions) then we
would define the gauge coupling—which we denote by g and
not e to avoid later confusion—simply by writing the gauge ki-
netic term as

1 D
2 d7x FuyFuy,

at all scales. Note that we have scaled the coupling out of the
gauge field. In the manifestly gauge invariant approach that we
will later adopt, this will have the pleasant effect of guaran-
teeing that the gauge field does not suffer from field strength
renormalization [6]. Throughout this Letter we work in Euclid-
ean space, so there is no distinction between upper and lower
indices.

Let us now consider a massless theory, about which it is sup-
posed that all we know is that its ERG trajectory lies in the
critical surface of some fixed point. Since this trajectory is flow-
ing into a fixed point, and we have not specified whether or
not the trajectory happens to have emanated from some other
fixed point in the UV, we do not know, a priori, whether the
theory is renormalizable or not. To be concrete, we will sup-
pose that this infrared fixed point is the Gaussian one, that this
fixed point possesses a single marginally irrelevant coupling, g,
and that there is a single anomalous dimension (just as there
is in our manifestly gauge invariant approach to QED in four
dimensions).

Let us now do perturbation theory in the vicinity of the
Gaussian fixed point, within the critical surface. For reasons
that will become apparent, we will attempt to write the action
in self-similar form. Consequently, our renormalization con-
ditions involve conditions for only the coupling, g, and the
anomalous dimension, y, specified at the scale A. We have
assumed, temporarily, that no reference to the bare scale/bare

2 Any masses are included in our definition of couplings.

action is necessary. Computing the full perturbative solution
to the theory, we find that everything can be written in renor-
malized terms [6], defining an apparently unique, self-similar
trajectory in the critical surface of the Gaussian fixed point.
Were it really the case that this trajectory were both self-similar
and unique, then this would suggest the existence of a UV fixed
point, out of which an RT can be constructed that flows into
the Gaussian fixed point. However, as emphasised in [1], this
picture is generally false. In the specific case of scalar field the-
ory in four dimensions, the perturbative series for the flows of
the n-point couplings (the B-functions) of the theory are not
resummable, and so do not unambiguously define functions.
The reason for this is UV renormalons? (see [7] for a review
of renormalons): perturbation theory by itself is not well de-
fined, but must be supplemented by exponentially small terms
which, in QED, take the form

i Ne—1/2}31g2(/\)+,_,’ 1)
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where B is the one-loop B-function and the ellipsis denotes
higher order corrections (‘the’ B-function refers to the flow
of g). The left-hand side of this expression makes it immedi-
ately clear that self-similarity of our trajectory is violated: there
is explicit dependence on Ay. We can always write such power
corrections in terms of g, as we have done on the right-hand
side, but the prefactor will, of course, depend on Ag. Within
perturbation theory, we can blithely take the limit Ag — oo,
but at some point have to face up to the fact that this procedure
is not well defined, if we hope to draw reliable nonperturbative
conclusions.

In light of this discussion, the main result of this Letter is
rather unexpected: it will be demonstrated, in massless QED in
four dimensions that, given a particular definition of the cou-
pling, the perturbative series for the B-function cannot be sup-
plemented by terms of type (1) and its generalizations. Since
our ERG equation is perfectly well defined, and since we can
choose a perfectly well defined boundary condition (bare ac-
tion) we deduce that the perturbative S-function must be re-
summable. Nevertheless, our earlier conclusions are still intact,
since our argument does not apply to the other couplings of the
theory or to the anomalous dimension of the fermions. Con-
sequently, perturbation theory still does not specify a unique,
self-similar trajectory within the critical surface of the Gaussian
fixed point, and so there is no suggestion that a UV fixed point
exists.

Note, though, that matters could be much more interesting in
the Wess—Zumino model. First, we note that all couplings be-
longing to the superpotential are protected from flowing by the
nonrenormalization theorem. Secondly, it seems as though we
can apply the arguments of this Letter to show that the pertur-
bative series for the anomalous dimension is resummable. (By
scaling the field strength renormalization out of the two-point

3 Throughout this Letter, we will loosely refer to a renormalon as any singu-
larity of the Borel transform, rather than using the strict definition [7], which
defines renormalons as those singularities related to large or small loop mo-
mentum behaviour.
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vertex, we can induce a flow of the superpotential and so relate
the B-function of the three-point coupling to the anomalous di-
mension. It looks like the arguments applying to the S-function
in this Letter go through similarly in the Wess—Zumino model.)
Finally, following [8], we can demonstrate that the flow of the
dressed, exact n-point vertices can be written in terms of the ap-
parently resummable anomalous dimension [for an example of
a dressed two-point function, see (6), below]. Moreover, the re-
lationship between the dressed vertices and the Wilsonian effec-
tive action vertices can be straightforwardly inverted [8]. This
suggests the existence of a (well-defined) self-similar trajectory
in the critical surface, which would indicate the presence of a
UV fixed point. Work on this is underway [9].

That terms of the type (1) are precluded comes about as fol-
lows. The key is to express the B-function as a ratio of two other
functions [see (10), below]. Now, there is no reason to suppose
that each of these two functions cannot, separately, possess con-
tributions of the form (1). However, for reasons that we will
precisely spell out later, any such contributions must exactly
cancel each other.

The definition of our QED coupling is defined through our
choice of ERG. In this Letter, we use the framework of gener-
alized ERGs [10,11], which can be used to furnish a manifestly
gauge invariant formulation of QED [6] and even non-Abelian
gauge theories [11-15]. The essence of this approach is as fol-
lows. As stated already, a necessary ingredient of the ERG
equation is that the partition function is invariant under the flow.
Consequently, given some set of fields, ¢, we can define the
family of ERGs to which Polchinski’s equation [16] belongs
according to [10]

)
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where the A derivative is performed at constant ¢, any Lorentz
indices, etc. have been suppressed and we have written S, as
just S. It is the total derivative on the right-hand side ensures
that the partition function Z = [ Dye~S is invariant under the
flow.

The functional, ¥, parametrizes a general Kadanoff block-
ing [17] in the continuum, for which we take the following
form [11]:

W= A, )} ()

2 Se(y)

where it is understood that we sum over all the elements of
the set of fields ¢. Whilst we will leave the blocking procedure
largely unspecified, there are certain general requirements that
must be satisfied. Crucially, blocking must take place only over
a localized patch, ensuring that each infinitesimal RG step is
free of IR divergences.

We now describe each of the components on the right-hand
side of (3). First, there are the ERG kernels, A%?, which are
generally different for each of the elements of ¢. Each kernel
incorporates a cutoff function which provides UV regulariza-
tion. The notation {A} denotes a covariantization of the kernel
which may be necessary, depending on the symmetries of the
theory. Indeed, it is apparent from (2) and (3) that the kernel

essentially ties together two functional derivatives at points x
and y; in gauge theory, we can covariantize this statement by
using e.g. straight Wilson lines between these two points. In
practice, we leave any necessary covariantization unspecified,
demanding only that it satisfies general requirements [11-13].
The remaining ingredient in (3) is X' = S — 28, where $ is the
seed action [6,11,13,18,19]. Whereas we solve the flow equa-
tion for the Wilsonian effective action, the seed action serves as
an input and, given our choice (3) and a choice of cutoff func-
tion(s), parametrizes the remaining freedom in how modes are
integrated out along the flow.

The constraint that ¥ corresponds to a local blocking trans-
formation translates into the requirement that the seed action
leads to convergent momentum integrals and that the seed ac-
tion and (covariantized) cutoff functions have all orders deriv-
ative expansions. In turn, this guarantees that the Wilsonian
effective action vertices have a derivative expansion, also, this
being a property that we will exploit, later.

The final point to make about (2) is a subtle one: it might be
necessary to include some unphysical fields in the set ¢, in or-
der to properly implement a UV cutoff. Indeed, this is precisely
the case in the manifestly gauge invariant ERG formulation of
QED that we employ, where covariantization of the cutoff func-
tions is not sufficient to completely regularize the theory: it is
necessary to include Pauli—Villars (PV) partners for the fermi-
ons. (This is due to the well-known result that covariant higher
derivatives fail to regularize a set of one loop divergences.) Con-
sequently, the field content for our manifestly gauge invariant
ERG for QED comprises the gauge field, A, a fermion field,
¥, and an unphysical commuting spinor field, x, which is given
a mass at the effective scale (it is obviously trivial to generalize
to extra flavours). To be completely clear: when we loosely re-
fer to QED, we strictly mean regularized theories of an Abelian
vector field, coupled to fermions, whose effective action in the
vicinity of the Gaussian fixed point is that of QED, to excellent
approximation.

The precise details of the set-up can be found in [6], but
we will not need them here. Rather, for our purposes, we need
only consider the flow equation for the various vertex coeffi-
cient functions (i.e. all fields and symmetry factors having been
stripped off), which has a generic diagrammatic form, largely
independent of the details of the set-up and even the precise
field theory being considered [6,14,19].

Given the aforementioned field content, we substitute (3)
and (2), perform the A-derivative on the left-hand side and
identify terms with the same numbers of fields [6,11-14,20].
Before doing this, we scale the coupling out of the covariant
derivative, for reasons mentioned earlier. The rescaling causes
S — §/g? and, in contrast to some previous works [11,13,
14,21], we choose to similarly redefine the seed action. Thus,
defining ¥, = g% (S — 28), the diagrammatic flow equation for
the vertex coefficient functions is shown in Fig. 1 [6].

The first term on the left-hand side represents the flow of
all independent Wilsonian effective action vertex coefficient
functions corresponding to the set of fields, { f}. Since the A-
derivative strikes just a vertex coefficient function—all fields
having been stripped off—we need not write this as a par-
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Fig. 1. The diagrammatic form of the QED flow equation for vertices of the
Wilsonian effective action.

tial derivative with fields held constant [cf. (2)]. The term
» delf) ¥ @ explicitly takes account of the anomalous dimen-
sions of the fields which suffer field strength renormalization.
The field ¢ belongs to the set of fields { f} and the notation y ()
just stands for the anomalous dimension of the field ¢ (which,
we recall, is zero for the gauge field, as a consequence of the
manifest gauge invariance).

The lobes on the right-hand side of the flow equation are ver-
tex coefficient functions of § and X,. These lobes are joined
together by the ERG kernels, ———, which are covariantized,
as appropriate. In QED it is necessary to covariantize only the
kernels of the fermions and their PV partners, meaning that
these kernels can be decorated by gauge fields. The rule for dec-
orating the diagrams on the right-hand side is simple: the set of
fields, { f}, are distributed in all allowed, independent ways be-
tween the component objects of each diagram. For the details,
the reader is referred to [6].

The understanding and efficient application of the diagram-
matic flow equation has been tremendously enhanced through
a diagrammatic calculus, proposed in [13], refined in [6,11,18—
20,22-25] and completed in [21]. The central ingredient of this
calculus is the ‘effective propagator relation’. The recent under-
standing of this relation [8,21] is as follows. Starting with the
kernels, A, introduce the integrated kernels, A, such that

d .
—A—A=A.
dA

The integrated kernels are what we refer to as the effective prop-
agators. Next, define a set of two-point vertices, AL that are
essentially the inverses of the effective propagators. Indeed, in
the fermion and PV sectors, these vertices are precisely the in-
verses of the corresponding effective propagators, but in the
gauge sector things are more subtle. As the name suggests, ef-
fective propagators are somewhat like usual propagators. In the
fermion and PV sectors, they can be taken to be precisely UV
regularized propagators [6]. In the gauge sector, however, it is
clear that we cannot interpret the integrated kernel simply as
a regularized propagator, since we have not fixed the gauge
and so cannot define a propagator in the usual sense! Never-
theless, there is nothing to stop us from defining ERG kernels
and integrating them with respect to the effective scale. Now,
when we come to contract the gauge sector effective propaga-
tor into the (A1) wv (p) vertex, we should get the identity plus
a remainder term, where this remainder is forced upon us by
gauge invariance. (This is all explained more fully in [6,13,21].)
Specifically, the gauge sector effective propagator is the inverse
of the appropriate two-point vertex, in the transverse space:

(A7), (P AN () =8y — 5 4)

To give a specific example, let us introduce the UV cutoff func-
tion, c(p), which satisfies ¢(0) = 1 and dies off sufficiently fast
as p?/A% — oo. We could now choose to identify (A_l),w (p)
with the regularized classical two-point vertex, eI p)Ouw(p)
and take AAA(p) = c(p)/pz, which clearly satisfies (4) (we
have defined O, (p) = p?8,0 — Pupv)-

The reason that the effective propagator relation is so useful
is that it allows the simplification of a certain class of dia-
grams, which then allows the cancellation of other diagrams
generated in a typical calculation (see, particularly, [22]). In the
fermion and regulator sectors, this is the end of the story. In the
gauge sector, we are left over with the remainders. However, it
turns out that these can be processed diagrammatically, using
the Ward identities [6,22], and the whole procedure of apply-
ing the effective propagator relation and cancelling terms can
be iterated. As we shall see shortly, one result of these cancel-
lations is that the B-function possesses no explicit dependence
on either the seed action or the details of the covariantization
of the cutoff. Looking at Fig. 1, this is really rather remarkable.
Given all these cancellations, what is it that the S-function de-
pends on? The answer is simply the exact n-point vertices, with
all instances of A~! having been extracted, joined together by
effective propagators. Indeed, since instances of A~! are re-
moved via application of the effective propagator relation, it is
useful to define reduced vertices according to:

@"-[®-3@s.] o

where n ¢ is the number of fields in the set { f}. If we chose to
identify the A~! vertices with the canonical classical, two-point
vertices, then the reduced vertices are simply the vertices of the
interaction part of the Wilsonian effective action.

Our aim, now, is to use the diagrammatic form of the flow
equation to compute the flow of a special combination of di-
agrams. Following [8,21-23], consider the following diagram-
matic expression, which basically constitutes all connected di-
agrams, possessing two external gauge fields, and built from
exact n-point vertices:

A AL (p)Au(—p)

Dy (p) = i § T, H @ H ©6)

5=0 j=1

where, for non-negative integers a and b,

_ (_1)b+1 1\¢

We understand the notation of (6) as follows. The right-hand
side stands for all independent, connected diagrams which can
be created from j reduced Wilsonian effective action vertices,
s internal lines (i.e. effective propagators) and which are deco-
rated by two external gauge fields, carrying momenta p and —p
into the vertex. (It is the constraint of connectedness which re-
stricts the sum over j.) The combinatorics for generating fully
fleshed out diagrams is simple and intuitive and is described
in [8] (see also [22,24]). To gain a feeling for the structure
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Fig. 2. The first few terms contributing to D, (p) (Lorentz indices and mo-
menta on the external lines have been suppressed). The flavours of the internal
fields are essentially summed over; for the precise statement of the Feynman
rules, see [6]. Since reduction of the vertices only affects two-point vertices, we
have removed the superscript ‘R’ from all vertices with more than two legs.

of (6), the first few terms represented by the right-hand side
are shown in Fig. 2.

Note that the diagrams of Fig. 2 have certain similarities
to standard Feynman diagrams; indeed, were we to shrink the
lobes to points, they would look the same. However, despite this
similarity, our diagrams are related to the ERG flows of vertices
of exact Wilsonian effective action and not (directly) to pertur-
bative scattering amplitudes. Whilst physics can most certainly
be extracted from the Wilsonian effective action vertices, in the
current case this must be done in a manifestly gauge invariant
way [23].

Using the diagrammatic calculus it is straightforward, but
somewhat tedious, to demonstrate that:

28 d
?u,w(p) +0(p*) = A= Du(p), (8)
where
d
B = Ad—j. ©)

(An explicit demonstration of many of the steps pertinent to
this calculation are shown in the simpler case of scalar field
theory in [8]. See also [22].) Note that, as claimed earlier, the
B-function has been written in a form where there is no explicit
dependence on either the seed action or the details of the co-
variantization of the cutoff.

At this stage, we would do well to pause and carefully as-
sess what kind of nonperturbative conclusions we can reliably
draw from (8). The first point to make is that the entire dia-
grammatic approach relies on a weak field expansion, which
has its drawbacks. For example, searches for nonperturbative
fixed points, using such a scheme, rely on truncating the infi-
nite tower of coupled equations for the exact n-point vertices,
and this is known to give bad results [26] (but see also [27]).
However, the situation is much better in the current case, as we
now argue. First, we never perform any truncations and will
instead draw conclusions from general properties of the full
function D, (p), which we emphasise depends on the exact
n-point vertices, no perturbative expansions having been per-
formed. Secondly, we can always consider this function in the
weak coupling regime. This does not mean to say that we wish
to do perturbation theory, throwing away all nonperturbative
contributions. Rather, we simply want to consider D, (p) in a
regime where its diagrammatic expansion can be ordered with

a small parameter and could, at least in principle, be exactly
resummed since we have not thrown any contributions away.

Thus, our understanding of D,,, (p) is as follows. Formally,
it is given by its diagrammatic expansion (6) at all scales. More
rigorously, this diagrammatic expansion should be evaluated in
the regime where the coupling is small, and resummed.

With these points in mind, we will now show that there can-
not, in fact, be nonperturbative contributions to (8), implying
that the perturbative expansion of the S-function can actually
be resummed, by itself. To do this, we re-express (8) as:

/

LA O() = . (10
g 1 —¢°/20,D),,(p)

where D;w (p)Ouv(p) = Duy(p) and the partial derivative with
respect to A is performed at constant g. We now make the fol-
lowing observation: loop integrals in the diagrams comprising
D'(p) can acquire factors of In p>/A?, arising from IR diver-
gences in the limit p — 0. This is clear from analysing e.g. the
third diagram in Fig. 2, for which the component which goes
like

/ d4kl b

kp+k
in the IR (see [6] for the details) produces the desired behav-
iour after we act on the full diagram with the A-derivative and
pull out O, (p). [On dimensional grounds, we see that the in-
tegrand ~ p%/k*, at O(p?).] It is important to note that the
apparent UV divergence in In p?/A? is an artefact of us having
Taylor expanded vertices and cutoff functions in the external
momentum (as it must be: by construction, everything is UV
regularized). Indeed, as mentioned earlier, all vertices have a
derivative expansion, as do the cutoff functions. The only non-
polynomial dependence of D’(p) on the external momentum is
generated by certain loop integrals in the IR.

Furthermore, whilst individual diagrams contributing to
D' (p) + O(p?) can diverge as a logarithm to a power (which is
at most equal to the number of loops) as p — 0, all divergences
must cancel out between the numerator and denominator of (10)
since the O(p®) contribution to the left-hand side of (10) has
no additional, non-polynomial dependence on p. Consequently,
for functions Fp, F> and G, it must be that we can write:

28 (%) = F1(g®)G(g*. Inp?/A?)  Fi(g?)
3 F2(gH)G (g% Inp?/A%)  Fa(g?)
So, to begin with, let us consider perturbative contributions
in (10). Let us suppose that, at order g2*, the strongest IR di-
vergence carried by D;w( p) goes like

(1)

g2n lnm 172//12. (12)

In the numerator, the A-derivative reduces this divergence to
one of the form

g2n lnm—l p2/A2 (13)
whereas, in the denominator, a contributions of the form
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is produced. Thus, we have found that terms of the form (12)
provide a divergent contribution to the denominator which does
not seem to exist in the numerator. Of course, there is no real
problem here: all we need to do is consider diagrams with
an extra loop. In such diagrams there are contributions of the
form (12) but with n — n + 1 and m — m + 1. Terms like this
in the numerator are, after differentiation with respect to A, of
precisely the right form to cancel denominator contributions of
the type (14). This is explicitly borne out in perturbative calcu-
lations [18,19].
But now consider a contribution of the type

g2ne—a/g2 lnm p2/A2’ (15)

where again we assume that, for our choice of #n, there is no
stronger IR divergence. In the numerator this contributes terms
of the form

g2ne—a/g2 lnm_l p2/A2 (16)
and in the denominator it yields terms of the form
g2ne—a/g2 lnm [)2/A2+, (17)

where the ellipsis denotes terms higher order in g2. Crucially,
(16) and (17) are the same order in gz. Since, by assumption,

there are no terms in D’(p) which are of order g2"e~%/ ¢ but
which have a stronger IR divergence than (15), there is no way
that the denominator contribution (15) can ever be cancelled.
From (11), we therefore conclude that terms of the type (15)
must be absent from (11), unless m = 0. But it is easy to see
that m = 0 terms can appear only in G (g2, In p?>/A?) and not
in F1(g?) or F»(g?): for if this condition is violated, then we
necessarily produce contributions of the form (15), when we ex-
pand out Fj(g>)G (g2, In p>/A?). In conclusion, the only con-
tributions to the B-function of the form (15) that are allowed—
namely those with m = 0—cancel out!

It is now straightforward to generalize this argument to show
that only the perturbative contributions to the B-function sur-
vive. First, we note that the above argument is not affected if
we consider terms which include e~%/ g4, e~/ gﬁ, etc., or prod-
ucts of such terms. Secondly, we can allow additional functions
of g to come along for the ride, so long as they do not spoil
the requirement that the ERG trajectory sinks into the Gaussian
fixed point as A — 0.

Thus, we have demonstrated that the S-function is free of
nonperturbative power corrections and, therefore, must be re-
summable, at least in the massless theory. In the presence of
a fermion mass, p, there would be no good reason to exclude
surviving contributions to the B-function which go like

“_Ze—a/g2

A2 '

since the mass now regularizes terms which previously diverged
as p — 0. Note, though, that as emphasised in [7], the presence
of exponentially small terms does not, by itself, necessarily im-
ply that perturbation theory cannot be resummed (though it is
suggestive). In other words, it is at least possible that a (non-
analytic) function comprises a resummable perturbative series

plus additional exponentially small terms. Of course, were this
scenario to be realized in the massive case, one would certainly
have to provide an argument as to why the perturbative series
was free of renormalons.

Returning to the massless theory, the resummability of the
B-function is valid in the infinite number of schemes implicit to
our approach; these different schemes corresponding to all the
legal choices of the seed action and covariantization of the cut-
off. There is no reason to expect that this conclusion is true for
unrelated schemes, such as M S. It is important to add that no
expression as neat as (8) exists for the flow of the other cou-
plings or for the anomalous dimension, y (see [6,8,22] for the
tools necessary to compute these expressions). Consequently,
there is no way to argue that the perturbative series for these
functions, also, are resummable. Indeed, we expect precisely
the opposite to be true, since we do not expect self-similar tra-
jectories to exist within the critical surface of the Gaussian fixed
point. Nevertheless, it would doubtless be interesting to com-
pute the S-function to some high order in perturbation theory
and resum it, not least from the point of view of understanding
the fate of the Landau pole in the massless theory. Perhaps more
interesting still would be to try to get some handle on what hap-
pens in the massive case, particularly given the work already
done on ERG flows in QED [28].

Finally, we should note that one can attempt to repeat the
above analysis for other field theories. In QCD, the expres-
sion for the B-function possesses additional terms, which can
spoil the above arguments (the basic structure is apparent at the
perturbative level [22]). Nevertheless, for this to happen, there
must be some delicate relationships between the various terms
contributing to the B-function, which merits further investiga-
tion [9]. In scalar field theory the S-function has a sufficiently
complicated form to spoil the above arguments, as expected [1,
29]. The most interesting case to look at, as mentioned earlier, is
the Wess—Zumino model, where the above resummability argu-
ment seems to apply to the anomalous dimension (equivalently
the B-function if we induce a flow of the superpotential by us-
ing the field strength renormalization to rescale the field). This
is exciting because, unlike in QED, there are arguments to sug-
gest that resummability of the anomalous dimension implies
resummability of the entire perturbative expansion of the the-
ory. If true, this would be highly suggestive of the existence of
a UV fixed point [9].
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