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Lorentz invariance without trans-Planckian physics?
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We explore the possibility that, in a quantum field theory with Planck scale cutoff Λ � mp, observable
quantities for low-energy processes respect the Lorentz symmetry. In particular, we compute the one-loop
radiative correction Π to the self-energy of a scalar field with λφ4 interaction, using a modified (non-
invariant) propagator which vanishes in the trans-Planckian regime, as expected in the “classicalisation”
scenario. We then show that, by imposing the result does not depend on Λ (in the limit Λ → mp), an
explicit (albeit not unique) expression for Π can be derived, which is similar to the one simply obtained
with the standard Feynman propagator and a cutoff Λ = mp.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

It is usually believed that quantum gravitational effects should
become relevant at energy scales of the order of the Planck mass,
mp � 1016 TeV, or higher. This conclusion is easily reached by
considering that the Einstein–Hilbert action is proportional to the
Newton constant GN = �p/mp,1 and gravitational perturbations on
a given background therefore couple to matter sources with a
strength proportional to �p/mp � m−2

p . The strength of the matter–
gravity coupling can also be seen directly in the semiclassical Ein-
stein field equations,

Rμν − 1

2
Rgμν = 8πGN〈T̂μν〉, (1.1)

where the expectation value 〈T̂μν〉 of the energy-momentum (op-
erator) tensor on a given quantum state of matter has replaced its
classical counterpart Tμν .

A clear exception is given by purely classical vacuum solu-
tions of Eq. (1.1), for which 〈T̂μν〉 � Tμν = 0, so that GN ap-
parently drops from the calculation. In fact, GN can re-enter as
part of an integration constant proportional to the mass m of a
spin-less point-like source, and turns it into a length, namely the
Schwarzschild radius

R M = 2GNm ≡ 2M. (1.2)
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On the other hand, for such a particle, quantum mechanics intro-
duces an uncertainty in spatial localisation, typically of the order
of the Compton (de Broglie) length,

λM � �pmp

m
= �2

p

M
. (1.3)

Given that quantum physics is a more refined description of reality
than classical physics, the clash of the two lengths, Rm and λm , im-
plies that the former only makes sense provided it is significantly
larger than the latter,

R M � λM ⇒ m � mp, (1.4)

or M � �p. Note that this argument employs the flat space Comp-
ton length (1.3), and it is likely that the particle’s self-gravity
will affect it. However, it is still reasonable to assume the con-
dition (1.4) holds as a rough, order of magnitude, estimate. In fact,
one can alternatively consider the “mean energy density” inside
the Schwarzschild radius,

EH � m

R3
H

= m3
p

�3
pm2

, (1.5)

and require that it does not exceed the Planck scale,

EH � �−3
p mp, (1.6)

which again leads to Eq. (1.4).
Overall, the above-mentioned consideration that quantum grav-

ity effects become relevant for m of order mp or higher now ap-
pears questionable, since the condition (1.4) implies that such a
system should be fairly well described in classical terms. This is
indeed at the core of the recent ideas of UV self-completeness of
gravity and “classicalisation” [1], as well as it had previously in-
spired Generalised Uncertainty Principles (GUPs) [2]. More or less
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implicitly, such scenarios require the existence of a preferred (in-
ertial) reference frame in which the components of four-momenta
reach Planck size, thus breaking Lorentz covariance at face value.2

Our main aim in this work will be precisely to investigate the pos-
sibility that Lorentz symmetry at low-energy and “classicalisation”
– or, more precisely, a total suppression of trans-Planckian quan-
tum modes, can be effectively reconciled.

2. Gravitational renormalisation

There are many reasons to indulge in the possibility that the
gravitational interaction causes Quantum Field Theory (QFT) prop-
agators to depart from their flat-space expressions at high energy.
Whatever the reason, we then need an explicit implementation in
order to compute physical predictions. Classicalisation induced by
black hole formation and the GUPs are proposals we have already
mentioned above. Alternatively, a set of “diagrammatic rules” was
presented in Ref. [4] to effectively (and non-perturbatively) include
(self-)gravity in the standard perturbative QFT of matter and other
interactions. Since such rules will not be explicitly needed here,
we will just recall the basic idea: in Feynman diagrams, each flat-
space Feynman propagator of momentum p, should be replaced by
the propagator in the curved space–time sourced by all the other
(real or virtual) particles (say, with total momentum q) in the same
diagram, to wit

G(p) → Gq(p;mp), (2.1)

where we also allowed for an explicit dependence on the Planck
scale mp, as a reminder that (self-)gravity is to be included. These
propagators could, in principle, be obtained perturbatively, by sum-
ming over infinitely many graviton exchange diagrams or, non-
perturbatively – but perhaps, equivalently, by solving the semiclas-
sical equations (1.1), although this task is likely unattainable with-
out some other approximation. For example, in Ref. [4], a modified
scalar propagator was derived, under the working assumption that
the Schwarzschild metric can be approximated by a conformally
flat metric for (short-lived) virtual processes. The one-loop correc-
tion to the four-point correlation function for the scalar field with
λφ4 interaction was then shown to contain no Ultra-Violet (UV)
divergences.

In the following, we shall assume that classicalisation works,
with no quantum degree of freedom propagating above the Planck-
ian scale, and just focus on the requirements the propagator must
consequently satisfy to build a theory consistent with low-energy
Lorentz symmetry. To this purpose, we shall not (totally) spec-
ify the modified propagator in Eq. (2.1), but assume that when
any component kμ of the internal momenta reaches the Planck
scale [so that condition (1.4) is roughly satisfied], a classical con-
figuration forms, whose contribution as a radiative correction is
negligible. This assumption can be effectively formalised by intro-
ducing a UV cutoff Λ in the integrals over components of the
virtual momenta at the Planck scale, say Λ � mp. This rule also
seems to require a preferred reference frame. For example, one
may consider the rest frame of the (virtual) forming black hole, in
which the spatial components of its four-momentum vanish, that
is kμ = (E,0,0,0), and apply a continuous change of frame while
performing the integration over virtual momenta.3 We shall here
opt for a simpler picture, we are now going to illustrate with an
example.

2 For a recent approach that employs a Lorentz covariant cutoff, see [3] and ref-
erences therein.

3 This possibility is currently being investigated, but appears technically very in-
volved.
Fig. 1. One-loop correction to the mass from λφ4.

3. Gravitationally renormalised self-energy

We wish to test the above rule on the self-energy of a scalar
field with λφ4 interaction. We shall first assume, for the sake of
simplicity, that there exists a global inertial frame in which the
cutoff is isotropic, and then estimate the possible corrections in-
duced by local fluctuations of the cutoff itself.

3.1. Global isotropic cutoff

We shall here assume there exists a global inertial reference
frame where the momentum cutoff is given by the isotropic four-
vector

Λα = (Λ,Λ,Λ,Λ). (3.1)

The one-loop contribution is therefore represented by the tadpole
diagram (see Fig. 1), and reads

ΠΛ

(
P 2) = λ

(
3∏

μ=0

+Λ∫
−Λ

dkμ

)
G P (k;mp), (3.2)

where Pμ is the (on-shell) four-momentum of the scalar particle,
with P 2 ≡ Pμ Pμ = m2

0, and G P (k;mp) is the modified propagator
from Eq. (2.1). In a different inertial frame, the cutoff four-vector
will be Λ̄α = Lα

βΛβ (where L is a Lorentz matrix), and we must
likewise have

ΠΛ̄

(
P 2) = λ

(
3∏

μ=0

+Λ̄μ∫
−Λ̄μ

dkμ

)
G P (k;mp), (3.3)

where P̄α = Lα
β Pβ is the boosted external momentum, again with

P̄ 2 = m2
0. If the result has to be invariant under (small) changes of

the cutoff, ΠΛ(P 2) = ΠΛ̄(P 2) for Λ � Λ̄ ∼ mp, at least when the
components |Pμ| 
 mp, we must then have

∂ΠΛ(P 2)

∂Λ

∣∣∣∣
Λ=mp

= 0, (3.4)

which can be more explicitly written as

3∑
μ=0

[( ∏
ν �=μ

+mp∫
−mp

dkν

)
G P (k;mp)

]
kμ=±mp

= 0. (3.5)

Clearly, Eq. (3.5) would hold if the modified propagator G P (k;mp)

vanished when the components kμ = ±mp, and does not hold with
the usual Feynman propagator.4 Further, since we are interested in

4 The proposed propagator in Ref. [4] looks marginally better, due to the suppres-
sion weight ρΛ(k), as does the exponentially suppressed propagator obtained from
non-commutativity in Ref. [5]. The latter has also the clear advantage of being ex-
plicitly covariant in form, albeit in the Euclidean formulation (after a Wick rotation
that maps time to imaginary values).



R. Casadio / Physics Letters B 724 (2013) 351–354 353
the low-energy regime for the external particles, all the compo-
nents |Pμ| 
 mp, and in Eq. (3.5) we can approximate

G P (k;mp) � G P=0(k;mp) ≡ G
(
kμ;mp

)
, (3.6)

where Greek indices run from 0 to 3 (Latin indices i = 1,2,3 and
a = 1,2), and obtain

3∑
μ=0

[( ∏
ν �=μ

+mp∫
−mp

dkν

)
G
(
kα;mp

)]
kμ=±mp

= 0. (3.7)

Since the “preferred” direction Pμ was dropped, we can now em-
ploy homogeneity of Minkowski space–time in order to write the
above as

0 � 2

+mp∫
−mp

dk1 dk2 dk3 G
(
kμ;mp

)∣∣∣∣∣
k0=mp

+ 6

+mp∫
−mp

dk0 dk1 dk2 G
(
kμ;mp

)∣∣∣∣∣
k3=mp

= 8π

mp∫
0

p2 dp G
(
mp, pi;mp

)

+ 12π

mp∫
0

dE

mp∫
0

q dq G
(

E,qa,mp;mp
)

≡ I1 + I2. (3.8)

We further assume

G
(
kμ;mp

) = g(E, p;mp)

E2 − p2 − m2
0

, (3.9)

where the function g(E � mp, p � mp;mp) � 1, in order to re-
cover the standard Feynman propagator at low momenta. The
only non-vanishing contribution to the right hand side of Eq. (3.8)
then comes from values of the integrands around Λ ∼ mp, namely
E � p � mp. In fact,

I1(g = 1) = 8π

Λ∫
0

p2 dp

m2
p − p2 − m2

0

� 8π

[
mp arctanh

(
Λ

mp

)
− Λ

]

� 4πmp ln

(
mp

mp − Λ

)
+O(mp − Λ), (3.10)

for Λ → m−
p , and neglecting the bare mass m0 
 mp. Likewise,

I2(g = 1) = 12π

Λ∫
0

dE

Λ∫
0

q dq

E2 − q2 − m2
p − m2

0

� 12πmp arctanh

(
Λ

mp

)

− 12π

√
m2

p + Λ2 arctanh

(
Λ√

m2
p + Λ2

)

+ 12πΛ ln

(
m2

p − Λ2

m2

)

p

� 12πmp
[
ln(2) − √

2 arccoth(
√

2)
]

+O(mp − Λ). (3.11)

Since Eq. (3.10) diverges for Λ → mp, the function g must be at
least of order (mp − Λ), for p ∼ q ∼ E ∼ Λ, in order to cure the
divergence and satisfy (3.8).

We shall therefore replace all the UV cutoffs at mp with a gen-
eral m2

p � Λ2  P 2, assume

g
(

E, pi;mp
) = 1

α

[
m2

p − p2

m2
p

+ (α − 1)
m2

p − E2

m2
p

]

= 1 + k2 − αE2

αm2
p

+O
(

k3

m3
p

)
, (3.12)

and take the limit Λ → m−
p at the end of the calculation. From this

ansatz, we obtain

I1

4π
= m2

0

αm2
p

√
m2

p − m2
0 arctanh

(
Λ√

m2
p + m2

0

)

+ Λ

3αm2
p

(
Λ2 − 3m0

)

= Λ3

3αm2
p

+O
(

m2
0

m2
p

)
, (3.13)

and

I2

π
= Λ

m2
p

[
3 − 2α

α
Λ2 + (

Λ2 − 3m2
p

)
ln

(
m2

p − Λ2

m2
p

)]

+ 2(Λ2 − 2m2
p)

m2
p

√
m2

p + Λ2 arctanh

(
Λ√

m2
p + Λ2

)

+ 4mp arctanh

(
Λ

mp

)
+O

(
m2

0

m2
p

)
. (3.14)

Taking the limit Λ → m−
p and substituting I1 and I2 into Eq. (3.8)

therefore yields an equation for the parameter α, which can be
easily solved, that is

α = 13

6[1 + √
2 arccoth(

√
2) − 2 ln 2] � 2.5, (3.15)

or

g
(

E, pi;mp
) � 0.4

(
m2

p − E2

m2
p

+ 1.5
m2

p − p2

m2
p

)

� 1 + 0.4
k2 − 2.5E2

m2
p

. (3.16)

Note that the function g does not only depend on the Lorentz
scalar k2 = E2 − p2, but also on the energy E . The propagator
G P (k;mp) is therefore not a Lorentz scalar. This seems a necessary
price to pay in order to compensate for the Lorentz dependence of
the cutoff Λ, and perhaps not such a costly one, since the prop-
agator is not an observable per se.5 More specifically, the constant
α �= 0 signals the departure (of order E2/m2

p) of G P (k;mp) from
being a Lorentz scalar. On the other end, the function g is sin-
gular in the limit α → 0 for mp finite, and the Lorentz violating
correction does not depend on α in the low-energy limit. One may

5 Strictly speaking, the self-energy is hardly observable either, however we chose
this quantity as a reasonably simple toy case to test our line of reasoning.
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therefore argue that fixing the UV scale will bring down necessary
modifications to the low energy regime (a form of IR–UV mixing).

With the condition (3.8) satisfied, we can finally estimate the
mass correction, namely

Πmp

(
m2

0

) = λ lim
Λ→mp

Λ∫
0

d4k
g(kμ;mp)

k2 − m2
0

= 2
π

3

(
2

α
− 3

)
λm2

p

[
1 +O

(
m2

0

m2
p

)]

� −4.6λm2
p

[
1 +O

(
m2

0

m2
p

)]
, (3.17)

where the Planck mass mp must here be viewed as a universal
constant. The result is therefore a (low-energy, m0 
 mp) Lorentz
scalar, like we wanted. Of course, one might argue that the chosen
form of the weight function g in Eq. (3.12) is hardly the unique
solution for the constraint (3.8), and the final expression (3.17) re-
mains consequently ambiguous. However, if we compare with the
result derived by using the standard Feynman propagator (g = 1),

ΠΛ

(
m2

0

) = λ

Λ∫
0

d4k

k2 − m2
0

= −2πλΛ2
[

1 +O
(

m2
0

Λ2

)]
, (3.18)

and set Λ = mp, we see that we obtained a correction of the same
form. The fact that our result (3.17) closely resembles (3.18) is sug-
gestive that, perhaps, any reasonably behaved modified propagator
G P (k;mp) which solves (3.8) would lead to the same kind of mass
correction. Eq. (3.17) also implies that |Πmp | ∼ m2

p  m2
0, unless

λ ∼ m−2
p , and one must still apply the usual subtraction at the

renormalisation point in order to set the mass μ2 � m2
0 − Π to

the “observed value”.

3.2. Fluctuating cutoff

One might question the existence of a global reference frame in
which the momentum cutoff takes the isotropic form in Eq. (3.1).
For example, there are models in which the space–time appears
as a foam (of virtual black holes) at the microscopic level,6 and it
is therefore reasonable to consider a stochastic dependence of the
cutoff four-vector on position and time.

Previous results should then be corrected, for example, by tak-
ing an “ensemble average” over the stochastic distribution of cutoff
around the Planck mass. This means that Eq. (3.4) should be re-
placed by〈
∂ΠΛ(P 2)

∂Λ

〉
≡

∫
dm Fmp(m)

∂ΠΛ(P 2)

∂Λ

∣∣∣∣
Λ=m

= 0, (3.19)

where Fmp is a distribution peaked around the Planck scale
m ∼ mp that could be specified given a microscopic model of
the space–time, and after integration on the angular variables (to
restore local isotropy). It is then easy to see that the final re-
sult (3.17) becomes, at least to leading order in m0/mp,

Πmp

(
m2

0

) � −4.6λ

[
1 +O

(
m2

0

m2
p

)]∫
dm Fmp(m)m2

6 The literature on this subject is rather extensive (see, for instance, Ref. [6]).
� −βλm2
p

[
1 +O

(
m2

0

m2
p

)]
, (3.20)

where β is just a numerical coefficient (of order one) that depends
on the details of the stochastic distribution Fmp .

To conclude, it is rather unlikely that the form of Fmp is such
that subtle cancellations occur in Eq. (3.4), so as to drastically
change the final result, and we do not expect any significant mod-
ifications from the (more realistic) picture of a space–time depen-
dent cutoff.

4. Final remarks

We have shown that, in the simple case of a (massive) scalar
field, the self-energy correction Π can be computed in a QFT with
a cutoff at the Planck scale mp, and still obtain a Lorentz invari-
ant result by modifying the propagator: the two non-invariances
(of the cutoff and of the propagator) compensate each other and
give rise to a (low-energy) frame-independent Π . Such a quantity
naturally depends on mp, which must be viewed as a universal
(frame-independent) constant. Also, the correction differs just by
numerical coefficients from the Π obtained from the usual Feyn-
man propagator, which suggests that, if modifications to the propa-
gator can be related to the scalar field self-gravitational interaction,
the effect of the latter should be mild in this context. And that
quantum gravitational effects might indeed have an almost irrel-
evant phenomenological impact on Standard Model predictions to
all scales.

Of course, the above result is far from sufficient to prove that
the question raised in the title of this Letter can be answered posi-
tively. For that purpose, one should generalise the above procedure
and require Lorentz invariance of all quantities we can observe in
particle physics (such as scattering cross-sections, etc.). In order to
achieve this, it will be necessary that the deforming weight g in
the propagator (3.9) contains enough degrees of freedom (or pa-
rameters, like α in the example above) to satisfy the equivalent of
Eq. (3.8). This should not be difficult to accommodate in the spirit
of the GUPs or of the rules of Ref. [4], since in diagrams with N
internal lines, each corresponding propagators should depend (at
least) on the N − 1 other virtual particles in the graph (and ex-
ternal real particles), and one expects to have at least N − 1 such
parameters.

Finally, but not less important, there remains to see if gauge in-
variances and other symmetries of the Standard Model can be pre-
served as well, after imposing the low-energy Lorentz invariance of
observable quantities. Addressing these crucial issues requires in-
vestigating more realistic gauge QFTs, rather than toy model scalar
fields, and, unless one can find a systematic procedure, it will also
involve a significant amount of work.
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