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Abstract

We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising 
quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quan-
tum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are 
N = 16 and N = 12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge 
fields we find OSp(16|2) and SU(1, 1|6) quantum mechanics from the reduced systems. The curved Rie-
mann surface is taken as a holomorphic curve in a Calabi–Yau space to preserve supersymmetry and we 
present a prescription of the topological twisting. We find the N = 8 superconformal gauged quantum 
mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

M2-brane appears to be a fundamental object in M-theory in the sense that it can be identi-
fied with the fundamental string after the compactification of M-theory to type IIA string theory 
[1]. In the past decade some progress has been made in finding the low-energy world-volume 
descriptions for multiple M2-branes. Inspired by the work in [2] and [3], Bagger, Lambert and 
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Gustavsson discovered the three-dimensional N = 8 superconformal Chern–Simons-matter the-
ory, the so-called BLG-model [4–8]. Subsequently Aharony, Bergman, Jafferis and Maldacena 
constructed the three-dimensional N = 6 superconformal Chern–Simons-matter theory, the so-
called ABJM-model [9]. Since then, the BLG-model and the ABJM-model have been proposed 
as the low-energy effective world-volume theories of multiple planar M2-branes.

In this paper we study more general M2-branes wrapping a compact Riemann surface Σg of 
genus g. For g �= 1 the world-volume of the M2-branes is curved and the Riemann surface has 
to be taken as a holomorphic curve in a Calabi–Yau manifold to preserve supersymmetry. The 
construction of such world-volume theories on the wrapped branes can be implemented as topo-
logically twisted theories [10]. For the world-volume descriptions of wrapped M2-branes, we can 
take the further limit where the energy scale is much smaller than the inverse size of the Riemann 
surface. This implies that the Riemann surface shrinks to zero and thus the three-dimensional 
world-volume theories reduce to a one-dimensional field theories, i.e. quantum mechanics. The 
purpose of the present paper is to derive and study the emerging IR quantum mechanics by re-
ducing the BLG-model and the ABJM-model.

It has been argued in [11] that there exist IR fixed points with AdS2 factors in d = 11 su-
pergravity solutions describing the M2-branes wrapping Σg which are gravity dual to supercon-
formal quantum mechanics (SCQM). Quite interestingly we show that our low-energy effective 
quantum mechanics possesses a one-dimensional superconformal symmetry. Generally super-
conformal quantum mechanics is characterized by a supergroup that contains a one-dimensional 
conformal group SL(2, R) and an R-symmetry group as factored bosonic subgroups. The first 
detailed analysis for a simple conformal quantum mechanical model, the so-called DFF-model 
is found in [12] and there has been a number of attempts to construct superconformal mechanics 
since the earliest work of [13,14]. One of the most powerful way to build such superconformal 
quantum mechanics is to resort to superspace and superfield formalism. However, it is unreason-
able and unsuccessful for highly supersymmetric cases with N > 8 supersymmetry because it is 
extremely difficult to pick up irreducible supermultiplets by imposing the appropriate constraints 
on the superfields [15]. Remarkably we find that such highly extended superconformal quantum 
mechanical models arise from the M2-branes wrapping a torus and that our reduced quantum 
mechanical actions agree with the predicted form for N > 4 SCQM in [16–18].

This paper is organized as follows. In Section 2 we review the BLG-model [4–8] and the 
ABJM model [9]. In Section 3 we study the multiple M2-branes wrapped around a torus. From 
the BLG-model we find that the low-energy dynamics is described by N = 16 superconformal 
gauged quantum mechanics. Furthermore, we show that OSp(16|2) superconformal quantum 
mechanics appears from the reduced system after integrating out the auxiliary gauge field. Sim-
ilarly from the ABJM-model N = 12 superconformal gauged quantum mechanics makes an 
entrance at low-energy and we find the reduced quantum mechanics with SU(1, 1|6) symmetry. 
In Section 4 we clarify the description for curved M2-branes wrapping a holomorphic curve in 
a Calabi–Yau manifold. We discuss the amount of preserved supersymmetries and establish a 
prescription for the topological twisting. In Section 5 we examine the two M2-branes wrapped 
on a Riemann surface of genus g > 1 embedded in a K3 surface in detail. Finally in Section 6
we conclude and discuss some directions for future research.
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2. World-volume theories of M2-branes

2.1. BLG-model

The BLG-model is a three-dimensional N = 8 superconformal Chern–Simons-matter theory 
proposed as a low energy world-volume theory of multiple M2-branes [4–8]. It is based on a 
3-algebra A, which is an N -dimensional vector space endowed with a trilinear skew-symmetric 
product [A, B, C] satisfying[

A,B, [C,D,E]] = [[A,B,C],D,E
] + [

C, [A,B,D],E] + [
C,D, [A,B,E]]. (2.1)

This is called the fundamental identity and extends the Jacobi identity of Lie algebras to the 
3-algebras. If we let T a , a = 1, . . . , N be a basis of the algebra, the 3-algebra is specified by the 
structure constants f abc

d[
T a,T b, T c

] = f abc
dT d . (2.2)

With the structure constant, the fundamental identity (2.1) can be expressed as

f abg
hf

cde
g = f abc

gf
gde

h + f abd
gf

cge
h + f abe

gf
cdg

h (2.3)

Classification of the 3-algebras A requires finding the solutions to the fundamental identity (2.3)
for the structure constants f abc

d .
In order to derive the equations of motion of the BLG-model from a Lagrangian description, 

a bi-invariant non-degenerate metric hab on the 3-algebra A is needed. Bi-invariance requires 
the metric to satisfy f abc

eh
ed + f bcd

eh
ae = 0. This implies that the tensor f abcd ≡ f abc

eh
ed

is totally anti-symmetric. The metric hab arises by postulating a non-degenerate, bilinear scalar 
product Tr( , ) on the algebra A:

hab = Tr
(
T a,T b

)
. (2.4)

The Lagrangian of the BLG-model is specified by the structure constant f abc
d and the bi-

invariant metric hab.
The field content of the BLG-model is eight real scalar fields XI = XI

aT a , I = 1, . . . , 8, 
fermionic fields ΨȦa = ΨȦaT

a , Ȧ = 1, . . . , 8, and non-propagating gauge fields Aμab ,
μ = 0,1,2. The bosonic scalar fields XI and the fermionic fields ΨȦ are 8v and 8c of an SO(8)

R-symmetry respectively. Also they are the fundamental representations of the 3-algebra. Gauge 
fields Aμab are the 3-algebra valued world-volume vector fields. They are anti-symmetric under 
two indices a, b of the 3-algebra Aμab = −Aμba .

ΨȦa is defined as an SO(1, 10) Majorana fermion and its conjugate is given by

Ψ := Ψ T C (2.5)

where C is the SO(1, 10) charge conjugation matrix satisfying

CT = −C, CΓ MC−1 = −(
Γ M

)T
. (2.6)

Gamma matrix Γ M is the representation of the SO(1, 10) Clifford algebra{
Γ M,Γ N

} = 2ηMN, Γ 10 := Γ 0···9 (2.7)
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where ηMN = diag(−1, +1, +1, . . . , +1). Γ M can be decomposed as{
Γ μ = γ μ ⊗ Γ̃ 9, μ = 0,1,2

Γ I = I2 ⊗ Γ̃ I−2, I = 3, . . . ,10
(2.8)

where

γ 0 =
(

0 1
−1 0

)
= iσ2, γ 1 =

(
0 1
1 0

)
= σ1, γ 2 =

(
1 0
0 −1

)
= σ3 (2.9)

and Γ̃ I is the SO(8) 16 × 16 gamma matrix whose chirality matrix is defined as Γ̃ 9 := Γ̃ 1···8. 
Correspondingly the charge conjugation matrix can be expanded as

C = γ 0 ⊗ C̃ (2.10)

where C̃ denotes the SO(8) charge conjugation matrix satisfying

C̃T = C̃, C̃Γ̃ I C̃−1 = −(
Γ̃ I

)T
. (2.11)

The fermionic field Ψ is the real 1
2 · 2[ 11

2 ] = 32-component Majorana spinor of eleven-
dimensional space–time obeying the chirality condition

Γ 012Ψ = −Ψ. (2.12)

Although at this stage Ψ has sixteen independent real components, they are reduced to eight 
when we treat it on-shell. From (2.8) it follows that

Γ 012 = Γ 34···10 = I2 ⊗ Γ̃ 9 (2.13)

and

Γ 34···10Ψ = −Ψ. (2.14)

This implies that Ψ is the conjugate spinor representation 8c of the SO(8)R R-symmetry group.
The Lagrangian of the BLG-model is

LBLG = −1

2
DμXIaDμXI

a + i

2
Ψ a

Ȧ
Γ

μ

ȦḂ
DμΨḂa

+ i

4
Ψ ȦbΓ

IJ

ȦḂ
XI

c XJ
d ΨḂaf

abcd − V (X) +LTCS (2.15)

where

V (X) = 1

12
f abcdf efg

dXI
aXJ

b XK
c XI

e XJ
f XK

g (2.16)

LTCS = 1

2
εμνλ

(
f abcdAμab∂νAλcd + 2

3
f cda

gf
efgbAμabAνcdAλef

)
. (2.17)

The covariant derivative is defined as

DμXa := ∂μXa − Ãb
μaXb (2.18)

where Ãa
μb := f cda

bAμcd . Although the kinetic term of the gauge fields is similar to the con-
ventional Chern–Simons term, it is twisted by the structure constant of the 3-algebra. The gauge 
fields are non-propagating since they have at most first order derivative terms.
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The supersymmetry transformations of the BLG-model are

δXI
a = iεAΓ I

AḂ
ΨḂa (2.19)

δΨȦa = DμXI
aΓ μΓ I

ȦB
εB − 1

6
XI

bXJ
c XK

d f bcd
aΓ

IJK

ȦB
εB (2.20)

δÃb
μa = iεAΓμΓ I

AḂ
XI

c ΨḂdf cdb
a (2.21)

where ε is the unbroken supersymmetry parameter obeying the chirality condition

Γ 012ε = Γ 34···10ε = ε. (2.22)

This means that ε transforms as the spinor representation 2 of the SL(2, R) and transforms as 
the spinor representation 8s of the SO(8)R R-symmetry. The action (2.15) is invariant under the 
supersymmetry transformations (2.19)–(2.21) up to a surface term.

If we assume that (i) the metric hab of the 3-algebra A is positive-definite so that the kinetic 
term and the potential term are all positive, and that (ii) the dimension N of the 3-algebra A is 
finite, then non-trivial 3-algebra A is uniquely determined as [19,20]

f abcd = 2π

k
εabcd =: f εabcd (2.23)

hab = δab (2.24)

where the gauge indices a, b, . . . run from 1 to 4 and k is the integer valued Chern–Simons level. 
This is called the A4 algebra. For the A4 algebra one can realize two gauge groups, SO(4) =
SU(2) × SU(2)/Z2 and Spin(4) = SU(2) × SU(2) [21]. The moduli space for A4 BLG-model 
with level k is identified with [21]

Mk =
⎧⎨
⎩

R
8×R

8

D2k
for SO(4)

R
8×R

8

D4k
for Spin(4).

(2.25)

The limitation on the rank of the gauge algebra may only allow the BLG-model to describe two 
M2-branes in analogy with D-branes.1

2.2. ABJM-model

The ABJM-model is a three-dimensional N = 6 superconformal U(N)k × Û (N)−k Chern–
Simons-matter theory proposed as a generalization of the BLG-model in that it may describe 
the dynamics of an arbitrary number of coincident M2-branes [9]. The theory has manifestly 
only N = 6 supersymmetry and the corresponding SU(4)R R-symmetry at the classical level. It 
has been discussed that [9,22,23] at k = 1 and k = 2 these symmetries are enhanced to N = 8
supersymmetry and SO(8)R R-symmetry as a quantum effect.

The theory contains four complex scalar fields YA, four complex spinors ψA and two different 
types of gauge fields Aμ and Âμ. Here the upper and lower indices A, B, . . . = 1, 2, 3, 4 denote 
4 and 4 of the SU(4)R respectively. The matter fields are N × N matrices so that YA and ψA

transform as (N ,N) bi-fundamental representations of U(N)k × Û (N)−k gauge group, while 

1 In this paper we will focus on the A4 algebra, however, the Nambu–Poisson 3-algebra and the Lorentzian 3-algebra 
have been proposed as the escapes from the restriction by relaxing the condition on dimensionality and the requirement 
of a positive-definitemetric respectively.
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Y
†
A and ψ†A do as (N, N). Aμ is a Chern–Simons U(N) gauge field of level +k and Âμ is that 

of level −k. Also in the theory there is a U(1)B flavor symmetry and the corresponding baryonic 
charges are assigned +1 for bi-fundamental fields, −1 for anti-bi-fundamental fields and 0 for 
gauge fields.

The Lagrangian of the ABJM-model is given by [24]

LABJM = −Tr
(
DμY

†
ADμYA

) − i Tr
(
ψ†Aγ μDμψA

) − Vferm − Vbos

+ k

4π
εμνλ Tr

[
Aμ∂νAλ + 2i

3
AμAνAλ − Âμ∂νÂλ − 2i

3
ÂμÂνÂλ

]
(2.26)

where

Vferm = −2πi

k
Tr

(
Y

†
AYAψ†BψB − ψ†BYAY

†
AψB − 2Y

†
AYBψ†AψB + 2YAY

†
BψAψ†B

− εABCDY
†
AψBY

†
CψD + εABCDYAψ†BYCψ†D

)
(2.27)

Vbos = −4π2

3k2
Tr

(
YAY

†
AYBY

†
BYCY

†
C + Y

†
AYAY

†
BYBY

†
CYC

+ 4YAY
†
BYCY

†
AYBY

†
C − 6YAY

†
BYBY

†
AYCY

†
C

)
. (2.28)

Here we use the Dirac matrix (γ μ)α
β = (iσ2, σ1, σ3). The spinor indices are raised, θα = εαβθβ , 

and lowered, θα = εαβθβ with ε12 = −ε12 = 1. Note that this makes the Dirac matrix γ μ
αβ :=

(γ μ)α
γ εβγ = (−I2, −σ3, σ1) symmetric and guarantees the Hermiticity of the fermionic kinetic 

term. The covariant derivatives are defined by

DμYA = ∂μYA + iAμYA − iYAÂμ, DμψA = ∂μψA + iAμψA − iψAÂμ

DμY
†
A = ∂μY

†
A − iAμY

†
A + iY

†
AÂμ, Dμψ†A = ∂μψ†A − iAμψ†A + iψ†AÂμ.

(2.29)

The supersymmetry transformation laws are

δYA = iωABψB (2.30)

δY
†
A = iψ†BωAB (2.31)

δψA = −γ μωABDμYB + 2π

k

[−ωAB

(
YCY

†
CYB − YBY

†
CYC

) + 2ωCDYCY
†
AYD

]
(2.32)

δψ†A = DμY
†
BωABγ μ + 2π

k

[−(
YBYCY

†
C − Y

†
CYCY

†
B

)
ωAB + 2Y

†
DYAY

†
CωCD

]
(2.33)

δAμ = π

k

(−YAψ†BγμωAB + ωABγμψAY
†
B

)
(2.34)

δÂμ = π

k

(−ψ†AYBγμωAB + ωABγμY
†
AψB

)
. (2.35)

The parameter ωAB is defined by

ωAB := εi

(
Γ i

)
AB

, ωAB := εi

(
Γ i∗)AB (2.36)

where the SL(2, R) spinor εi , i = 1, . . . , 6, transforms as the representation 6 under the SU(4)R
and Γ i is the six-dimensional 4 × 4 matrix satisfying
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(
Γ i

)
AB

= −(
Γ i

)
BA

(2.37)

1

2
εABCD

(
Γ i

)
CD

= −(
Γ i†)AB = (

Γ i∗)AB (2.38){
Γ i,Γ j

} = 2δij . (2.39)

Note that the supersymmetry parameter ωAB obeys

ωAB = ω∗
AB = 1

2
εABCDωCD. (2.40)

The moduli space of the U(N)k × Û (N)−k ABJM-model is [9]

MN,k = (C4/Zk)
N

SN

= SymN
(
C

4/Zk

)
. (2.41)

This can be identified with the moduli space of N indistinguishable M2-branes moving in C4/Zk

transverse space. Therefore the ABJM-model is expected to describe the low-energy world-
volume theory of N coincident M2-branes probing an orbifold C4/Zk . The four complex scalar 
fields YA represent the positions of the membranes in C4.

In [21] it has been discussed that if N and k are co-prime, then the vacuum moduli space of the 
U(N)k × Û (N)−k theory is equivalent to that of the SU(N) × SU(N)/ZN theory. Consequently 
there are conjectural dualities between the ABJM theory and the BLG theory

U(2)1 × Û (2)−1 ABJM theory ⇔ SO(4) BLG theory with k = 1 (2.42)

U(2)2 × Û (2)−2 ABJM theory ⇔ Spin(4) BLG theory with k = 2. (2.43)

These proposed dualities have been tested by the computations of the superconformal indices 
[25]. Hence we may regard the SO(4) BLG-model with k = 1 as the world-volume theory of two 
planar M2-branes propagating in a flat space.

3. SCQM from flat M2-branes

3.1. N = 16 superconformal mechanics

3.1.1. Derivation of quantum mechanics
We begin our discussion with the BLG-model in the case where the membranes wrap a torus 

T 2 and propagate in a transverse space with an SO(8) holonomy group. In this case the world-
volume theory of M2-branes is given by the action (2.15) defined on M3 =R × T 2.

In general a torus can be characterized by two periods in the complex plane. Such periods are 
defined as the integration of a holomorphic differential ω along two canonical homology basis 
a, b of a torus. Let us define the periods by∫

a

ω = 1,

∫
b

ω = τ (3.1)

where τ is the moduli of the torus and it should not be real.
In the following we want to consider the limit in which T 2 has vanishingly small size and 

derive the low-energy effective one-dimensional theory on R. In order to obtain such a theory we 
need to determine the configurations with the lowest energy. Since we are now considering su-
persymmetric theories, the conditions are expressed as the BPS equations. As we are interested in 
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bosonic BPS configurations, we require that the background values of the fermionic fields vanish. 
Then the bosonic fields are automatically invariant under their supersymmetry transformations. 
Therefore the BPS equations correspond to the vanishing of the supersymmetry transformations 
(2.20) for fermionic fields. Also we discard the terms which include the covariant derivatives 
with respect to time because we are now interested in the low energy dynamics as a fluctuation 
around gauge invariant static configurations. Then one finds the BPS equations

DzX
I
a = 0, DzX

I
a = 0 (3.2)[

XI ,XJ ,XK
] = 0. (3.3)

To go further we consider the SO(4) BLG-model that may describe two M2-branes. In this 
case the Higgs fields transform as fundamental representations of the SO(4) gauge group and we 
assume that these Higgs fields have non-zero values. Then the generic solution to (3.3) is given 
by XI

a = (XI
1 , XI

2 , 0, 0)T . For these solutions, the remaining BPS equations (3.2) reduce to

∂zX
I
1 + Ã1

z2X
I
2 = 0, ∂zX

I
2 − Ã1

z2X
I
1 = 0 (3.4)

Ã1
z3X

I
1 + Ã2

z3X
I
2 = 0, Ã1

z4X
I
1 + Ã2

z4X
I
2 = 0 (3.5)

and their complex conjugates. First of all, Eqs. (3.4) tell us that the sum of the squares (XI
1)2 +

(XI
2)2 for I = 1, . . . , 8 is independent of the locus of the Riemann surface. Thus we can write

XI+2
1 + iXI+2

2 = rI ei(θI +ϕ(z,z)) (3.6)

where rI , θI ∈R are constant on the torus and represent the configuration of the two membranes 
in the I -th direction while ϕ(z, z) may depend on z and z. Furthermore, Eqs. (3.4) enable us to 
write Ã1

z2 = ∂zϕ. The second set of equations (3.5) forces us to turn off four of six gauge fields; 
Ã1

z3 = Ã2
z3 = Ã1

z4 = Ã2
z4 = 0. These components of the gauge field become massive by the Higgs 

mechanism. Note that the above set of solutions automatically satisfies the integrability condition 
for (3.2) because the gauge field Ã1

z2 is flat.

One can find further restrictions by noting that the flat gauge fields Ã1
z2 on a torus have specific 

expressions. Cutting a torus along the canonical basis a and b, the sections of a flat bundle are 
described by their transition functions, i.e. constant phases around a and b. Thus they can be 
completely classified by their twists e2πiξ , e−2πiζ on the homology along cycles a, b where 
ξ and ζ are real parameters. This space is the torus C/Lτ where Lτ is the lattice generated 
by Z + τZ. It is referred to as the Jacobi variety of T 2 denoted by Jac(T 2). The twists on the 
homology can be described as a point on the Jacobi variety. Hence the flat gauge field can be 
expressed in the form [26]

Ã1
z2 = −2π

Θ

τ − τ
ω, Ã1

z2 = 2π
Θ

τ − τ
ω (3.7)

where Θ := ζ + τξ is the complex parameter representing the twists on the homology along two 
cycles. Subsequently we can write

ϕ(z, z) = 2π
Θ

τ − τ
z − 2π

Θ

τ − τ
z. (3.8)

Recalling that the angular variable ϕ(z, z) in the XI
1XI

2 -plane characterizes the ratio of two 
bosonic degrees of freedom for the two membranes, it must take same values modulo 2πZ under 
the shifts z → z + 1 and z → z + τ around two cycles. This implies that both the coordinates 
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ξ and ζ can only have integer values, namely Ã1
z2 and Ã1

z2 are quantized. Therefore the generic 
BPS solutions are given by

XI+2 =
⎛
⎜⎝

XI
A

XI
B

0
0

⎞
⎟⎠ =

⎛
⎜⎝

cos(θI + ϕ(z, z))

sin(θI + ϕ(z, z))

0
0

⎞
⎟⎠ rI

Ãz =

⎛
⎜⎜⎝

0 −2π Θ
τ−τ

ωz 0 0

2π Θ
τ−τ

ωz 0 0 0

0 0 0 Ã3
z4(z, z)

0 0 −Ã3
z4(z, z) 0

⎞
⎟⎟⎠ . (3.9)

Here Ã3
z4 and Ã3

z4 are the Abelian gauge fields associated with the preserved U(1) symmetry 
and have no constraints from the BPS conditions. Taking into account the bosonic configurations 
(3.9) and the supersymmetry transformations (2.19), we introduce fermionic partners

Ψ± =
⎛
⎜⎝

Ψ±A

Ψ±B

0
0

⎞
⎟⎠ , Ψ ± =

⎛
⎜⎝

Ψ ±
A

Ψ ±
B

0
0

⎞
⎟⎠ (3.10)

where Ψ is the conjugate spinor defined by Ψ := Ψ T C̃ in terms of the SO(8) charge conjugation 
matrix C̃. Ψ a+ and Ψ +a are the SO(2)E spinors with the positive chiralities while Ψ a− and Ψ −a

carry the negative ones. Both of them transform as 8c of the SO(8)R .
Given the above static BPS configurations (3.9) and (3.10), we now wish to consider the 

evolution of time and compactify the system on T 2. Substitution of the configurations (3.9) and 
(3.10) into the action (2.15) yields

S =
∫
R

dt

∫
T 2

d2z

[
1

2
D0X

IaD0X
I
a − i

2
Ψ αaD0Ψαa

− k

2π
Ã1

02F̃
3
zz4 − k

4π

(
Ã1

z2
˙̃
A3

z4 − Ã1
z2

˙̃
A3

z4

)]
(3.11)

where the Greek letters α = +, − denote the SO(2)E spinor indices. The terms in the first line 
of the action (3.11) come from the kinetic terms of the BLG action while those in the second 
correspond to the twisted topological Chern–Simons terms.

Firstly since the gauge fields Ã1
z2 and Ã1

z2 are quantized and their time derivatives do not 
appear in the action, these fields are just auxiliary fields. Exploiting the equations of motion 

they can be excluded and we find the constraints ˙̃
A3

z4 = ˙̃
A3

z4 = 0. Hence the corresponding field 
strength F̃ 3

zz4 has no time dependence. In order to dimensionally reduce the theory on the torus, 
we rescale the fields as

XI ′ = R2XI , Ψ ′
αa = R2Ψαa, Ψ αa ′ = R2Ψ αa (3.12)

where R is the circumference of the torus. Note that they get the canonical dimensions in the 
reduced theory; the bosonic variable XI ′

has mass dimension −1/2 and the fermionic variable 
Ψ ′ acquires mass dimension 0.
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Performing the integration on the torus by means of the Kaluza–Klein ansatz for Ã12
0 and 

dropping the primes on the fields, one finds the effective action

S =
∫
R

dt

[
1

2
D0X

IaD0X
I
a − i

2
Ψ αaD0Ψαa − kC1(E)Ã1

02

]
. (3.13)

Here

C1(E) =
∫
T 2

c1(E) := 1

2π

∫
T 2

d2zF̃ 3
zz4 (3.14)

is the Chern number resulting from the integration of the first Chern class c1(E) of the U(1)

principal bundle E → T 2 over the torus, which is associated with the preserved U(1) gauge field 
Ã3

z4.
The action (3.13) is invariant under the one-dimensional conformal transformations

δt = f (t) = a + bt + ct2, δ∂0 = −ḟ ∂0 (3.15)

δXI
a = 1

2
ḟ XI

a, δÃ1
02 = −ḟ Ã1

02 (3.16)

δΨαa = 0, δΨ αa = 0 (3.17)

where f (t) is a quadratic function of time with real infinitesimal parameters a, b and c.
Besides, the action (3.13) is invariant under the N = 16 supersymmetry transformations

δXI
a = iε+Γ̃ IΨ−a − iε−Γ̃ IΨ+a, δÃ1

02 = 0 (3.18)

δΨ+a = −D0X
I
aΓ̃ I ε−, δΨ−a = D0X

I
aΓ̃ I ε+. (3.19)

Therefore the resulting effective theory (3.13) takes the form of N = 16 superconformal gauged 
quantum mechanics with a Fayet–Iliopoulos (FI) term.

3.1.2. Reduced system with inverse-square interaction
Since the gauged mechanical action (3.13) is quadratic in the U(1) gauge field Ã1

02 and does 
not involve the time derivative of it, Ã1

02 is identified with an auxiliary field and has no contribu-
tion to the Hamiltonian. Hence the Hamiltonian is invariant under the action of the corresponding 
U(1) gauge group on the phase space M. This means that the corresponding moment map 
μ : M → u(1)∗ is the integral of motion [27] and one can reduce the given phase space M to a 
smaller one Mc = μ−1(c) with fewer degrees of freedom by fixing the inverse of the moment 
map at a point c ∈ u(1)∗.2

In fact it is known that one-dimensional gauged matrix models give rise to the alternative 
descriptions of the Calogero model and its generalizations as the reduced systems [28–30]. In 
order to obtain our reduced system, we shall eliminate the auxiliary field Ã1

02 in two steps; first 
we choose a specific gauge and then impose the Gauss law constraint to ensure the consistency 
of the gauge fixing. Let us choose the temporal gauge Ã0 = 0. Together with the solutions

Ã1
02 = kC1(E) + ∑

I (r
I )2θ̇ I + iΨ α

AΨαB∑
I (r

I )2
(3.20)

Ã1
03 = Ã1

04 = Ã2
03 = Ã2

04 = 0 (3.21)

2 The components of the moment map form a system being in involution since the gauge group is Abelian. So we do 
not need to divide by the non-trivial coadjoint isotropy subgroup to obtain the reduced phase space.
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to the equations of motion for Ã0, we can read off the Gauss law constraint

φ0 := kC1(E) +
∑
I

(
rI

)2
θ̇ I + iΨ α

AΨαB = 0. (3.22)

This equation is the moment map condition. To see the physical meaning of this constraint, we 
observe that (rI )2θ̇ I represents the “angular momentum”, the SO(2)-charge corresponding to the 
rotation in the XI

1XI
2 -plane while the fermionic bilinear term iΨ α

AΨαB produces the charge of 
the SO(2) rotational group of the two types of fermionic variables ΨA and ΨB . Accordingly the 
equation (3.22) says that the total SO(2) charge which rotates the internal degrees of freedom for 
the two M2-branes is fixed by the Chern–Simons level k and the Chern number C1(E).

With the constraint function φ0, one can write a new Lagrangian by adding λφ0 where λ is 
the Lagrange multiplier. The resulting action is

S =
∫
R

dt

[
1

2

∑
I

(
ṙ I

)2 + 1

2

∑
I

(
rI θ̇ I

)2 − i

2
Ψ αaΨ̇αa

+ λ

(
kC1(E) +

∑
I

(
rI

)2
θ̇ I + iΨ α

AΨαB

)]
. (3.23)

The absence of the variables θI ’s in the action (3.23) immediately implies that they are cyclic 
coordinates and their canonical momenta pθI = (rI )2θ̇ I are just the integrals of motion.

In what follows we reduce the theory through the Routh reduction (see for example [31]). It 
should be emphasized that although the Hamiltonian reduction3 may be a more familiar method 
to eliminate variables with symmetries, in our case the Routh reduction provides us a simpler and 
more direct path to obtain the explicit action or the Lagrangian of the superconformal mechanics 
with N > 8 supersymmetry unavailable so far. It is possible to eliminate cyclic coordinates from 
the Lagrangian by constructing a new Lagrangian, the so-called Routhian [32]. The Routhian 
is a hybrid between the Lagrangian and the Hamiltonian, defined by performing a Legendre 
transformation on the cyclic coordinates

R
(
rI , ṙI , hI ,Ψ

) := L
(
rI , ṙI , θ̇ I ,Ψ

) −
∑
I

θ̇ I pθI . (3.24)

Due to the partial Legendre transformation, the variables rI and Ψ still follow the Euler–
Lagrange equations while the ignorable coordinates θI and their momenta hI := pθI obey the 
Hamilton equations. However, the latter set of equations results in trivial statements; the constant 
property of hI (i.e. ḣI = 0) and the definition of hI (i.e. θ̇ I = hI

(rI )2 ). So classically the Routhian 

is not really R(rI , ̇rI , hI , Ψ ) but rather R(rI , ̇rI , Ψ ) along with the integrals of motion hI ’s. 
Hence we can rewrite (3.23) as

S =
∫
R

dt

[
1

2

∑
I

(
ṙ I

)2 − 1

2

∑
I

(hI )2

(rI )2
− i

2
Ψ αaΨ̇αa + λ

(
kC1(E) +

∑
I

hI + iΨ α
AΨαB

)]
.

(3.25)

3 The same result can be obtained from the Hamiltonian reduction by rewriting the Hamiltonian in terms of the con-
served charges.
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Integrating out λ, we finally obtain the reduced effective action

S = 1

2

∫
R

dt

[
q̇2 +

∑
I �=K

(
ṙ I

)2 − iΨ αaΨ̇αa

−
[
kC1(E) + ∑

I �=K hI + iΨ α
AΨαB

]2

q2
−

∑
I �=K

(hI )2

(rI )2

]
. (3.26)

Here we have defined q := rK where K denotes the specific direction in which hK is auto-
matically determined by other conserved quantities hI ’s. Note that the terms appearing in the 
numerator of the potential are the integrals of motion, namely they commute with the Hamilto-
nian.

Let us study the classical properties of the theory (3.26). The action (3.26) leads to the classical 
equations of motion

q̈ =
[
kC1(E) + ∑

I �=K hI + iΨ α
AΨαB

]2

q3
(3.27)

r̈ I = (hI )2

(rI )3
(3.28)

Ψ̇αA = −
[
kC1(E) + ∑

I �=K hI + iΨ α
AΨαB

]
q2

ΨαB (3.29)

Ψ̇αB =
[
kC1(E) + ∑

I �=K hI + iΨ α
AΨαB

]
q2

ΨαA. (3.30)

Making use of the equations of motion (3.29) and (3.30), one can check that the differentiation of 
the Gauss law constraint (3.22) with respect to time t vanishes. In other words, φ0 is the constant 
of motion.

The canonical momenta are

p := ∂L

∂q̇
= q̇, pI := ∂L

∂ṙI
= ṙ I (3.31)

παa := 
∂L

∂Ψ̇αa

= i

2
Ψ αa, παa := 
∂L

∂Ψ̇
αa = i

2
Ψαa. (3.32)

The fermionic momenta παa and παa do not depend on the velocities but on the fermionic 
degrees of freedom themselves. Hence one can read second-class constraints

φαa
1 := παa − i

2
Ψ αa = 0, φ2αa := παa − i

2
Ψαa = 0. (3.33)

Under the constraints, we get the Dirac brackets

[q,p]DB = 1,
[
rI ,pJ

]
DB

= δI
J (3.34)[

ΨαaȦ,πβbḂ
]
DB

= −1

2
δαβδabδȦḂ ,

[
ΨαaȦ,Ψ βbḂ

]
DB

= iδαβδabδȦḂ . (3.35)

The action (3.26) is invariant under the following one-dimensional conformal transformations
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δt = f (t) = a + bt + ct2, δ∂0 = −ḟ ∂0 (3.36)

δq = 1

2
ḟ q, δrI = 1

2
ḟ rI (3.37)

δΨαa = 0, δΨ αa = 0. (3.38)

Here the constant parameters a, b and c are infinitesimal parameters of translation, dilatation 
and conformal boost respectively. The corresponding Noether charges, the Hamiltonian H , the 
dilatation operator D and the conformal boost operator K are found to be

H = 1

2

[
p2 +

(
kC1(E) + ∑

I �=K hI + iΨ α
AΨαB

)2

q2
+

∑
I �=K

(
p2

I + (hI )2

(rI )2

)]
(3.39)

D = tH − 1

4

[
(qp + pq) +

∑
I �=K

(
rIpI + pI r

I
)]

(3.40)

K = t2H − 1

2
t

[
(qp + pq) +

∑
I �=K

(
rIpI + pI r

I
)] + 1

2

[
q2 +

∑
I �=K

(
rI

)2
]
. (3.41)

The operators D and K are the constants of motion in the sense that

∂D

∂t
+ [H,D]DB = 0,

∂K

∂t
+ [H,K]DB = 0. (3.42)

Note that the explicit time dependence of D and K can be absorbed into the similarity transfor-
mations

D = eitH D0e
−itH , K = eitH K0e

−itH (3.43)

where

D0 := −1

4

[
(qp + pq) +

∑
I �=K

(
rIpI + pI r

I
)]

(3.44)

K0 := 1

2

[
q2 +

∑
I �=K

(
rI

)2
]

(3.45)

are time independent parts of D and K respectively. So we will use the time independent parts 
as the explicit expressions for D and K and drop off the subscripts.

The action (3.26) is invariant under the following fermionic transformations

δq = i√
2

(
ε−Ψ−A − ε+Ψ+A

) + i√
2

(
ε−Ψ−B − ε+Ψ+B

)
(3.46)

δrI = i cos θI
(
ε+Γ̃ IΨ−A − ε−Γ̃ IΨ+A

) + i sin θI
(
ε+Γ̃ IΨ−B − ε−Γ̃ IΨ+B

)
(3.47)

δΨ+AȦ = − 1√
2

(
q̇ − hK

q

)
ε+Ȧ − i√

2

l

q
Ψ+BȦ −

∑
I �=K

(
ṙ I cos θI − sin θI hI

rI

)
Γ̃ I ε−Ȧ

(3.48)

δΨ−AȦ = 1√
2

(
q̇ − hK

q

)
ε−Ȧ − i√

2

l

q
Ψ−BȦ +

∑
I �=K

(
ṙ I cos θI − sin θI hI

rI

)
Γ̃ I ε+Ȧ

(3.49)
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δΨ+BȦ = − 1√
2

(
q̇ + hK

q

)
ε+Ȧ + i√

2

l

q
Ψ+AȦ −

∑
I �=K

(
ṙ I sin θI + cos θI hI

rI

)
Γ̃ I ε−Ȧ

(3.50)

δΨ−BȦ = 1√
2

(
q̇ + hK

q

)
ε−Ȧ + i√

2

l

q
Ψ−AȦ +

∑
I �=K

(
ṙ I sin θI + cos θI hI

rI

)
Γ̃ I ε+Ȧ

(3.51)

where we have defined

θI (t) = hI

t∫
dt ′

(rI (t ′))2
(3.52)

l = (
Ψ +Aε+ − Ψ −Aε−

) − (
Ψ +Bε+ − Ψ −Bε−

)
. (3.53)

We should note that the supersymmetry is generically non-local in the sense that the transfor-
mations contain the integrals of the function of the non-local variables rI ’s with respect to time. 
The non-locality is the consequence of the Routh reduction. Hence the infinite number of the 
associated conserved charges may exist and things may become much more exotic. However, 
as seen from the (3.39), the motion in the K-th direction endowed with the local supersym-
metry and others with non-local ones are essentially decoupled because their Hamiltonians 
commute with each other. Thus we can treat them separately. This indicates that the theory 
possesses the local conserved supercurrents and the non-local supercurrents which are in in-
volution.

3.1.3. OSp(16|2) superconformal mechanics
Now we want to study the K-th motion associated with the local charges and shed light on 

the algebraic structure of the symmetry group in the quantum mechanics. For simplicity let us 
consider the case where the all independent conserved charges hI ’s are zeros. This is realized 
when the internal degrees of freedom for two M2-branes are unbiased.4

The dynamics in the K-th direction is given by the action

S = 1

2

∫
R

dt

[
q̇2 − iΨ αaΨ̇αa − (kC1(E) + iΨ α

AΨαB)2

q2

]
. (3.54)

The notable feature is that our reduced action (3.54) has the predicted form for N > 4 supercon-
formal mechanical action discussed in [16–18].

The action (3.54) is invariant under the following N = 16 supersymmetry transformation laws

δq = i√
2

(
ε−Ψ−A − ε+Ψ+A

) + i√
2

(
ε−Ψ−B − ε+Ψ+B

)
(3.55)

δΨ+AȦ = − 1√
2

(
q̇ + g

q

)
ε+Ȧ − i√

2

l

q
Ψ+BȦ (3.56)

δΨ−AȦ = 1√
2

(
q̇ + g

q

)
ε−Ȧ − i√

2

l

q
Ψ−BȦ (3.57)

4 This specific charge assignment does not affect the following discussion for the K-th motion since non-vanishing 
hI ’s can only give rise to a constant shift in the numerator of the potential.
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δΨ+BȦ = − 1√
2

(
q̇ − g

q

)
ε+Ȧ + i√

2

l

q
Ψ+AȦ (3.58)

δΨ−BȦ = 1√
2

(
q̇ − g

q

)
ε−Ȧ + i√

2

l

g
Ψ−AȦ (3.59)

where

g = kC1(E) + iΨ α
AΨαB. (3.60)

These supersymmetry transformations are local and we therefore can apply the conventional 
Noether’s procedure. By means of the Noether’s method, the corresponding supercharges are 
calculated to be

Q+Ȧ = i√
2

(
p + g

q

)
Ψ+AȦ + i√

2

(
p − g

q

)
Ψ+BȦ (3.61)

Q−Ȧ = − i√
2

(
p + g

q

)
Ψ−AȦ − i√

2

(
p − g

q

)
Ψ−BȦ. (3.62)

Since the action (3.54) is invariant under the conformal transformations δt = f (t), δq = 1
2 ḟ q

and δΨαa = 0, three generators, the Hamiltonian H , the dilatation generator D and the conformal 
boost generator K are explicitly expressed as

H = 1

2
p2 + [kC1(E) + iΨ α

AΨαB ]2

2q2
(3.63)

D = −1

4
{q,p} (3.64)

K = 1

2
q2 (3.65)

where { , } represents an anti-commutator.
In order to quantize the theory, we impose the (anti)commutation relations for the canonical 

variables obtained from the Dirac brackets (3.34) and (3.35)

[q,p] = i,
{
ΨαaȦ,Ψ βbḂ

} = −δαβδabδȦḂ . (3.66)

The presence of the conformal symmetry and the supersymmetry leads to that of a supercon-
formal symmetry. Let us define the superconformal boost generators

S+Ȧ = i√
2
q(Ψ+AȦ + Ψ+BȦ) (3.67)

S−Ȧ = − i√
2
q(Ψ−AȦ + Ψ−BȦ). (3.68)

Additionally the theory has the internal R-symmetry which rotates the fermionic charges. We 
define the R-symmetry generators by

(Jαβ)ȦḂ = (Jαβ)
(1)

ȦḂ
+ (Jαβ)

(2)

ȦḂ
(3.69)

where

(Jαβ)
(1)

ȦḂ
= iΨαaȦΨ βaḂ , (Jαβ)

(2)

ȦḂ
= iΨ αaȦΨβaḂ . (3.70)

Notice that the R-symmetry generators satisfy the relations
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(J++)ȦḂ = −(J++)ḂȦ (3.71)

(J−−)ȦḂ = −(J−−)ḂȦ (3.72)

(J+−)ȦḂ = −(J−+)ḂȦ (3.73)

and therefore the matrices J++, J−− and J−+ contain 28, 28 and 64 independent entries re-
spectively while J−+ yields no independent ones because of the relations (3.73). Therefore the 
R-symmetry matrix totally carries 28 + 28 + 64 = 120 elements.

Using the canonical (anti)commutation relations (3.66), one can find the complete set of 
(anti)commutators among the generators

[H,D] = iH, [K,D] = −iK, [H,K] = 2iD (3.74)[
(Jαβ)ȦḂ ,H

] = 0,
[
(Jαβ)ȦḂ ,D

] = 0,
[
(Jαβ)ȦḂ ,K

] = 0 (3.75)[
(Jαβ)ȦḂ , (Jγ δ)ĊḊ

] = i(Jγβ)ĊḂδαδδȦḊ − i(Jαδ)ȦḊδβγ δḂĊ

+ i(Jδβ)ḊḂδαγ δȦĊ − i(Jαγ )ȦĊδβδδḂḊ (3.76)

[H,QαȦ] = 0, [D,QαȦ] = − i

2
QαȦ, [K,QαȦ] = iSαȦ[

H,QαȦ
] = 0,

[
D,QαȦ

] = − i

2
QαȦ,

[
K,QαȦ

] = iSαȦ (3.77)

[H,SαȦ] = −iQαȦ, [D,SαȦ] = i

2
SαȦ, [K,SαȦ] = 0

[
H,SαȦ

] = −iQαȦ
[
D,SαȦ

] = i

2
SαȦ,

[
K,SαȦ

] = 0 (3.78){
QαȦ,QβḂ

} = 2HδαβδȦḂ{
SαȦ, SβḂ

} = 2KδαβδȦḂ{
QαȦ, SβḂ

} = −2DδαβδȦḂ + (Jαβ)
(1)

ȦḂ
(δαβ − δα−β) − i

2
δαβδȦḂ{

QαȦ,SβḂ

} = −2DδαβδȦḂ + (Jαβ)
(2)

ȦḂ
(δαβ − δα−β) − i

2
δαβδȦḂ (3.79)[

(Jαβ)ȦḂ ,Qγ Ċ

] = i(QβḂδαγ δȦĊ − QαȦδβγ δḂĊ)[
(Jαβ)ȦḂ , Sγ Ċ

] = i(SβḂδαγ δȦĊ − SαȦδβγ δḂĊ)[
(Jαβ)ȦḂ ,Qγ Ċ

] = −i
(
QβḂδαγ δȦĊ − QαȦδβγ δḂĊ

)
[
(Jαβ)ȦḂ , Sγ Ċ

] = −i
(
SβḂδαγ δȦĊ − SαȦδβγ δḂĊ

)
. (3.80)

The Hamiltonian H , the dilatation generator D and the conformal boost generator K satisfy 
the one-dimensional conformal algebra (3.74). By defining

T0 = 1

2

(
K

a
+ aH

)
(3.81)

T1 = D (3.82)

T2 = 1

2

(
K

a
− aH

)
(3.83)

with a being a constant with dimension of length, one finds the explicit representation of the 
so(1, 2) algebra
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[Ti, Tj ] = iεijkT
k (3.84)

where εijk is a three-index anti-symmetric tensor with ε012 = 1 and gij = diag(1, −1, −1).
Alternatively, if we introduce

L0 = 1

2

(
aH + K

a

)
(3.85)

L± = 1

2

(
aH − K

a
± 2iD

)
, (3.86)

then we get the explicit representation of the sl(2, R) algebra in the Virasoro form

[Lm,Ln] = (m − n)Lm+n (3.87)

with m, n = 0, ±1.
As the superpartners of the conformal generators there are sixteen supercharges QαȦ and as 

many superconformal generators SαȦ. As seen from (3.75) and (3.80), the R-symmetry genera-
tors (Jαβ)ȦḂ commute with the bosonic generators H , D and K while they yield the rotations of 
the fermionic generators QαȦ and SαȦ. The commutation relation (3.76) implies that (Jαβ)ȦḂ

obey the so(16) algebra. Therefore we can conclude that the theory (3.54) is the OSp(16|2)

invariant N = 16 superconformal mechanics. Indeed this fits in the list of the possible simple 
supergroup for superconformal quantum mechanics [33,34].

We see that the R-symmetry is now enhanced in our quantum mechanics. Interestingly a sim-
ilar phenomenon has been already observed in d = 11 supergravity. In d = 11 supergravity the 
original tangent space symmetry SO(1, 10) can break down into the subgroup SO(1, 2) × SO(8)

through a partial choice of gauge for the elfbein. However, it has been pointed out in [35–37]
that one can find the enhanced SO(1, 2) × SO(16) tangent space symmetry by introducing new 
gauge degrees of freedom. It would be intriguing to inquire whether the enlarged R-symmetry of 
our quantum mechanics reflects that of d = 11 supergravity.

3.2. N = 12 superconformal mechanics

3.2.1. Derivation of quantum mechanics
Let us consider the U(N)k × Û (N)−k ABJM-model on R × T 2. The theory may describe 

the dynamics of N coincident M2-branes with the world-volume M3 = R × T 2 moving in a 
transverse space with an SU(4) holonomy. We now want to derive the low-energy effective theory 
describing the dynamics around static BPS configurations. Such BPS configurations obey the 
BPS equations. From the supersymmetry transformations (2.32), (2.33) for fermions we find the 
following set of BPS equations:

DzY
A = 0, DzY

A = 0 (3.88)

YCY
†
CYB − YBY

†
CYC = 0 (3.89)

YCY
†
AYD = 0. (3.90)

To satisfy the algebraic equations (3.89) and (3.90), the bosonic Higgs fields YA and Y †
A should 

take the diagonal form

YA = diag
(
yA, . . . , yA

)
, Y

† = diag(yA1, . . . , yAN) (3.91)
1 N A
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where yA
a is a complex scalar field. For the above diagonal configurations, all the off-diagonal 

elements are massive and the gauge group U(N) × Û(N) is spontaneously broken to U(1)N [9]. 
Let us define

A+
μa := Aμaa + Âμaa, A−

μa := Aμaa − Âμaa (3.92)

where the indices a = 1, . . . , N characterize the gauge degrees of freedom, i.e. the internal de-
grees of freedom of the multiple M2-branes. Note that all the couplings involve the gauge fields 
A−

μa while the other gauge fields A+
μa are associated with the preserved U(1) gauge group. In 

terms of the expressions (3.91) and (3.92), we can rewrite Eqs. (3.88) as

∂zy
A
a + iA−

zay
A
a = 0, ∂zyAa − iA−

zayAa = 0 (3.93)

∂zy
A
a + iA−

zay
A
a = 0, ∂zyAa − iA−

zayAa = 0 (3.94)

Azab = Âzab = Azab = Âzab = 0 for a �= b. (3.95)

The first and second lines correspond to the equations for diagonal elements and last one is for 
the off-diagonal elements. The general solutions to Eqs. (3.93) and (3.94) are given by

yA
a = rA

a ei(ϕa(z,z)+θA
a ) (3.96)

A−
za = −∂zϕa(z, z) (3.97)

where rA
a , θA

a ∈ R have no dependence on z and z while ϕa(z, z) ∈ R is a function of z and z. 
The expression (3.97) ensures the flatness of the U(1) gauge field A−

z . Hence ϕa , A−
za and A−

za

take the form [26]

ϕa(z, z) = −2π
Θa

τ − τ
z + 2π

Θa

τ − τ
z (3.98)

A−
za = 2π

Θa

τ − τ
ω, A−

za = −2π
Θa

τ − τ
ω. (3.99)

Here τ is the moduli of the torus defined in (3.1) and Θa := ζa + τξa , a = 1, . . . , N , are the 
coordinates of the product space of the N Jacobi varieties characterizing the N U(1) flat bundles. 
For the bosonic Higgs fields to describe the positions of the membranes, we should impose the 
single-valuedness of yA

a as

yA
a (z + 1, z + 1) = yA

a (z, z)

yA
a (z + τ, z + τ) = yA

a (z, z). (3.100)

These conditions require that ξa and ζa are integers, which result in the quantization of the 
variables ϕa , A−

za and A−
za . Then the resulting static BPS configurations are

YA = diag
(
yA

1 , . . . , yA
N

) = diag
(
rA

1 ei(ϕ1(z,z)+θA
1 ), . . . , rA

Nei(ϕN (z,z)+θA
N )

)
Y

†
A = diag(yA1, . . . , yAN) = diag

(
rA

1 e−i(ϕ1(z,z)+θA
1 ), . . . , rA

Ne−i(ϕN (z,z)+θA
N )

)
Az = diag(Az11, . . . ,AzNN)

Âz = Az + ∂zϕ = diag(Az11 + ∂zϕ1, . . . ,AzNN + ∂zϕN). (3.101)

By the supersymmetry the above bosonic configurations are paired with the fermionic fields

ψ±A = diag(ψ±A1, . . . ,ψ±AN), ψ
†A
± = diag

(
ψ

†A1
± , . . . ,ψ

†AN
±

)
(3.102)
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where the subscripts ± label the SO(2)E spinor representation.
Inserting the set of BPS configurations (3.101) and (3.102) into the ABJM action (2.26) one 

finds

S =
∫
R

dt

∫
T 2

d2z
∑
A

N∑
a=1

[
D0y

a
AD0y

A
a − iψ

†Aa
+ D0ψ+Aa − iψ

†Aa
− D0ψ−Aa

+ k

4π

(
A−

0aF
+
zza + 1

2
A−

zaȦ
+
za − 1

2
A−

zaȦ+
za

)]
. (3.103)

Recall that A−
z and A−

z are quantized and their time derivative terms do not show up in the 
action. Thus we can treat them as auxiliary fields and integrate out them. Consequently we get 
constraints Ȧ+

za = Ȧ+
za = 0, which imply that the gauge fields A+

za and A+
za on the Riemann 

surface have no time dependence.
Taking these constraints into account and proceeding the integration over the torus, we obtain 

the low-energy effective action

S =
∫
R

dt
[
D0y

a
AD0y

A
a − iψ† αAaD0ψαAa + kC1(Ea)A−

0a

]
. (3.104)

Here the repeated indices are summed over and α, β, . . . = +, − denote the SO(2)E spinor in-
dices. The covariant derivatives are defined by

D0y
A
a = ẏA

a + iA−
0ay

A
a , D0yAa = ẏAa − iA−

0ayAa

D0ψαAa = ψ̇αAa + iA−
0aψαAa, D0ψ

†A
αa = ψ̇†A

αa − iA−
0aψ

†A
αa (3.105)

and

C1(Ea) := 1

2π

∫
T 2

Fzzaa = 1

4π

∫
T 2

F+
zza (3.106)

is the Chern number of the a-th U(1) principal bundle Ea → T 2 over the torus associated with 
the preserved U(1) gauge fields Azaa .

The action (3.104) is invariant under the one-dimensional conformal transformations

δt = f (t) = a + bt + ct2, δ∂0 = −ḟ ∂0 (3.107)

δyA
a = 1

2
ḟ yA

a , δyAa = 1

2
ḟ yAa (3.108)

δψαAa = 0, δψ†A
αa = 0 (3.109)

δA−
0a = −ḟA−

0a (3.110)

and N = 12 supersymmetry transformations

δyA
a = iωαABψαBa, δyAa = iψ† αB

a ωαAB (3.111)

δψαAa = ωαABD0y
B
a , δψ†A

αa = −D0yBaω
AB
α (3.112)

δA−
0a = 0 (3.113)

where the supersymmetry parameters ω+AB := ε+i (Γ
i)AB and ω−AB := ε−i (Γ

i)AB transform 
as 6+ and 6− under SU(4) × SO(2)E respectively. Therefore the low-energy effective theory is 
described by the N = 12 superconformal gauged quantum mechanics (3.104).
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3.2.2. Reduced system with inverse-square interaction
The low-energy effective action (3.104) is quadratic in A−

0a and contains no time derivatives 
of A−

0a . So they are auxiliary fields and we want to integrate them out. Let us fix the gauge as 
A−

0a = 0. Then the algebraic equations of motion of A−
0a yield the Gauss law constraints, the 

moment map conditions

φ0a := kC1(Ea) + 2
∑
A

(
rA
a

)2
θ̇A
a +

∑
A

ψ† αAaψαAa = 0 (3.114)

for a = 1, . . . , N . Note that although the set of equations (3.114) has the same form as that of 
(3.22), the physical meaning of these constraints are different because the angular variable θA

a ’s 
are defined not in the abstract space of the internal degrees of freedom as in (3.22), but in the 
actual configuration space of the a-th M2-brane in the A-th complex plane.

Defining the conserved charges hA
a := 2(rA

a )2θ̇A
a , using the above constraints (3.114) and 

following the reduction procedure as in the derivation of (3.26), we can integrate out the auxiliary 
gauge fields A−

0a and find the reduced effective action with the inverse-square type interaction

S =
∫
R

dt

N∑
a=1

[
ẋ2
a − i

2

∑
A�=B

(
ψ† αAaψ̇αAa − ψ̇†AaψαAa

)

+
∑
A�=B

(
ṙA
a

)2 − i

2

(
λ† αaλ̇αa − λ̇† αaλαa

)

−
[
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa

]2

4x2
a

−
∑
A�=B

(hA
a )2

4(rA
a )2

]
.

(3.115)

Here xa := rB
a describes the motion of the a-th M2-brane in the B-th complex plane in which the 

corresponding “angular momentum” hB
a is determined by the assignment of the other preserved 

charges. We have also introduced the fermionic variable λαa := ψαBa with A = B , which turns 
out to be the superpartner of rC

a , C = 1, 2, 3, as we will see the supersymmetry transformations 
(3.140) and (3.141).

The action (3.115) leads to the following equations of motion

ẍa =
[
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa

]2

4x3
a

(3.116)

r̈A
a = (hA

a )2

4(rA
a )3

(3.117)

ψ̇αAa = i
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa

2xa

ψαAa (3.118)

ψ̇† αAa = −i
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa

2xa

ψ† αAa (3.119)

λ̇αa = i
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa

2xa

λαa (3.120)

λ̇† αa = −i
kC1(Ea) + ∑

A�=B hA
a + ∑

A�=B ψ† αAaψαAa + λ† αaλαa
λ† αa. (3.121)
2xa
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Using the fermionic equations of motion (3.118)–(3.121), we can check that the Gauss law con-
straint (3.114) has no time dependence, i.e. φ̇0a = 0.

The canonical momenta are given by

pa := ∂L

∂ẋa

= 2ẋa, P a
A := ∂L

∂ṙA
a

= 2ṙa
A (3.122)

παAa := 
∂L

∂ψ̇αAa

= i

2
ψ† αAa, π̃αAa := 
∂L

∂ψ̇† αAa
= i

2
ψαAa (3.123)

Παa := 
∂L

∂λ̇αa

= i

2
λ† αa, Π̃αa := 
∂L

∂λ̇† αa
= i

2
λαa. (3.124)

The fermionic canonical momenta provide the second class constraints

φαAa
1 := παAa − i

2
ψ†Aa = 0, φ2αAa := π̃αAa − i

2
ψαAa = 0 (3.125)

φαa
3 := Παa − i

2
λ† αa = 0, φ4αa := Π̃αa − i

2
λαa = 0. (3.126)

Taking account into the constraints (3.125) and (3.126), we find the Dirac brackets[
xa,p

b
]
DB

= δab,
[
rA
a ,P b

B

]
DB

= δABδab (3.127)[
ψαAa,ψ

†βBb
]
DB

= iδαβδABδab,
[
λαa,λ

†βb
]
DB

= iδαβδab. (3.128)

The action (3.115) possesses the one-dimensional conformal invariance

δt = f (t) = a + bt + ct2, δ∂0 = −ḟ ∂0 (3.129)

δxa = 1

2
ḟ xa, δrA

a = 1

2
ḟ rA

a (3.130)

δψαAa = 0, δψ† αA
a = 0 (3.131)

δλαa = 0, δλ† α
a = 0. (3.132)

Using the Noether’s procedure we find the SL(2, R) generators

H =
N∑

a=1

[
p2

a

4
+

(
kC1(Ea) + ∑

A�=B hA
a + ∑

A ψ† αAaψαAa + λ† αaλαa

)2

4x2
a

+
∑
A�=B

(
(P A

a )2

4
+ (hA

a )2

4(rA
a )2

)]
(3.133)

D = −1

4

N∑
a=1

[
{xa,pa} +

∑
A�=B

{
rA
a ,P A

a

}]
(3.134)

K =
N∑

a=1

[
x2
a +

∑
A�=B

(
rA
a

)2
]
. (3.135)

Here we have absorbed the time dependent part of D and K by similarity transformations (3.43).
Also the action (3.115) is invariant under the following fermionic transformations
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δxa = i√
2

(
εαCψαCa + ε

†
αCψ† αC

a

)
(3.136)

δrC
a = i

2

[(
ωαCDψαDa

)
e−iθC

a + (
ψ† αD

a ωαCD

)
eiθC

a − (
εαCλαa

)
e−iθC

a

− (
ε

†
αCλ† α

a

)
eiθC

a
]

(3.137)

δψαCa =
(

ṙD
a + i

hD
a

2rD
a

)
eiθD

a ωαCD

+ √
2

(
ẋa − i

kC1(Ea) + ∑
D �=B hD

a + ψ† αDaψαDa + λ† αaλαa

2xa

)
ε

†
αC

− i√
2

la

xa

ψαCa (3.138)

δψ† αC
a = −

(
ṙD
a − i

hD
a

2rD
a

)
e−iθD

a ωCD
α

+ √
2

(
ẋa + i

kC1(Ea) + ∑
D �=B hD

a + ψ† αDaψαDa + λ† αaλαa

2xa

)
εαC

+ i√
2

la

xa

ψ† αC
a (3.139)

δλαa = −ε
†
αC

(
ṙC
a + i

hC
a

2rC
a

)
eiθC

a (3.140)

δλ† α
a = −

(
ṙC
a − i

hC
a

2rC
a

)
e−iθC

a εαC (3.141)

with C, D = 1, 2, 3. Here εαC and their Hermitian conjugate ε†
αC are infinitesimal fermionic 

parameters and we have defined

θC
a (t) = hC

a

t∫
dt ′

(rC
a (t ′))2

(3.142)

la = εψa − ε†ψ†
a . (3.143)

3.2.3. SU(1, 1|6) superconformal mechanics
The fact that the transformations (3.136)–(3.141) involve the non-local quantities suggests that 

there may exist infinitely many conserved non-local charges. However, we see from (3.133) that 
the Hamiltonian describing the motion in the B-th complex plane associated with the variable 
xa and the local charges commute with the others associated with the variables rC

a ’s and the 
non-local charges. Therefore they are decoupled with one another and we thus can analyze the 
dynamics in the B-th direction separately. As in Subsection 3.1.3, it is convenient to assign 
the conserved charges hA

a and λ† αaλαa to be zeros. Then the low-energy dynamics in the B-th 
complex plane is described by the action

S =
∫

dt

N∑
a=1

[
ẋ2
a − iψ† αAaψ̇αAa − (kC1(Ea) + ψ† αAaψαAa)

2

4x2
a

]
(3.144)
R



422 T. Okazaki / Nuclear Physics B 890 (2015) 400–441
where A = 1, 2, 3 denote the R-symmetry indices. Note that the action (3.144) has the same 
structure argued in [16–18] for N > 4 superconformal quantum mechanics.

The action (3.144) has the invariance under the N = 12 supersymmetry transformation laws

δxa = i√
2

(
εαAψα

Aa + ε
†
αAψ† αA

a

)
(3.145)

δψαAa = √
2

(
ẋa − i

ga

2xa

)
ε

†
αA − i√

2

la

xa

ψαAa (3.146)

δψ† αA
a = √

2

(
ẋa + i

ga

2xa

)
εαA + i√

2

la

xa

ψ† αA
a (3.147)

where

ga = kC1(Ea) + ψ† αAaψαAa. (3.148)

The supersymmetry transformations (3.145)–(3.147) are generated by the supercharges

QαA = i√
2

(
pa − ga

xa

)
ψαAa (3.149)

Q̃αA = i√
2

(
pa + ga

xa

)
ψ† αA. (3.150)

Also the action (3.144) has the one-dimensional conformal invariance. The corresponding 
Noether charges are now expressed as

H =
N∑

a=1

[
p2

a

4
+ (kC1(Ea) + ψ† αAaψαAa)

2

4x2
a

]
(3.151)

D = −1

4

N∑
a=1

{
xa,p

a
}

(3.152)

K =
N∑

a=1

x2
a . (3.153)

According to the Dirac brackets (3.127) and (3.128), quantum operators of the canonical 
coordinates and momenta obey the quantum brackets[

xa,p
b
] = iδab,

{
ψαAa,ψ

†βBb
} = −δαβδABδab. (3.154)

Combining the supercharges and the conformal generators, we find the superconformal boost 
generators

SαA = √
2i

∑
a

xaψαAa (3.155)

S̃αA = √
2i

∑
a

xaψ
† αA
a . (3.156)

The R-symmetry generator is given by

(Jαβ)AB = i
∑

ψ†βB
a ψαAa. (3.157)
a
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Note that (3.157) is a complex 6 × 6 matrix with α, β = +, − and A, B = 1, 2, 3 and it contains 
36 complex valued elements.

Under the canonical relations (3.154), the generators form the following algebra

[H,D] = iH, [K,D] = −iK, [H,K] = 2iD (3.158)[
(Jαβ)AB,H

] = 0,
[
(Jαβ)AB,D

] = 0,
[
(Jαβ)AB,K

] = 0 (3.159)[
(Jαβ)AB, (Jγ δ)CD

] = i(Jαδ)ADδβγ δBC − i(Jγβ)CBδαδδAD (3.160)

[H,QαA] = 0, [D,QαA] = − i

2
QαA, [K,QαA] = iSαA

[
H,Q̃αA

] = 0,
[
D,Q̃αA

] = − i

2
Q̃αA,

[
K,Q̃αA

] = iS̃αA (3.161)

[H,SαA] = −iQαA, [D,SαA] = i

2
SαA, [K,SαA] = 0

[
H, S̃αA

] = −iQ̃αA
[
D, S̃αA

] = i

2
S̃αA,

[
K, S̃αA

] = 0 (3.162)

{
QαA, Q̃βB

} = 2HδαβδAB{
SαA, S̃βB

} = 2KδαβδAB{
QαA, S̃βB

} = −2DδαβδAB − 2(Jαβ)AB + i

2

(
2
∑
a

ga + 1

)
δαβδAB

{
Q̃αA,SβB

} = −2DδαβδAB − 2
(
J

†
αβ

)
AB

− i

2

(
2
∑
a

ga + 1

)
δαβδAB (3.163)

[
(Jαβ)AB,QγC

] = iQαAδβγ δBC,
[
(Jαβ)AB,Sγ,C

] = iSαAδβγ δBC[
(Jαβ)AB, Q̃γC

] = −iQ̃αAδβγ δBC,
[
(Jαβ)AB, S̃γ,C

] = −iS̃αAδβγ δBC. (3.164)

The Hamiltonian H , the dilatation generator D and the conformal boost generator form the 
one-dimensional conformal algebra so(1, 2) = sl(2, R) = su(1, 1). As each of the supercharges 
QαA and Q̃αA = −(QαA)† contain six real components, there exist twelve supercharges. They 
are the square roots of the Hamiltonian H . In addition, there are as many superconformal 
charges SαA and S̃αA, which are the square roots of the conformal boost generator K . The 
anti-commutators of the fermionic charges generate an extra bosonic R-symmetry generators 
(Jαβ)AB . They form the u(6) algebra (3.160). Thus the action (3.144) describes the SU(1, 1|6)

invariant N = 12 superconformal mechanics. In fact this belongs to the list of the simple super-
group for superconformal quantum mechanics [33,34].

4. Curved M2-branes and topological twisting

4.1. M2-branes wrapping a holomorphic curve

The BLG action (2.15) and the ABJM action (2.26) may describe the dynamics of probe 
membranes propagating in a fixed background geometry with an SO(8) and an SU(4) holonomy 
respectively. For both cases, the world-volume M3 is considered as a flat space–time R1,2 or 
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R × T 2. Now let us consider more general situations where curved M2-branes reside in some 
fixed curved background geometries. If we naively put the theory on a general three-dimensional
manifold, all supersymmetries are broken. However, here we shall wrap the M2-branes on a 
Riemann surface Σg of genus g that preserves supersymmetry (i.e. supersymmetric two-cycles) 
as the form

M3 =R× (Σg ⊂ X) (4.1)

where R is viewed as a time direction and X is a real 2(n + 1)-dimensional space preserving 
supersymmetry with vanishing three-form gauge field. The only known supersymmetric two-
cycles, i.e. calibrated two-cycles in special holonomy backgrounds are holomorphic curves in 
Calabi–Yau spaces and the corresponding two-form calibrations are Kähler calibrations. So we 
take the ambient space X as an (n + 1)-dimensional Calabi–Yau space and the other space as 
flat. The geometry of the M-theory is of the form

R
1,8−2n × CYn+1. (4.2)

4.1.1. Supersymmetry in Calabi–Yau space
In order to count the number of preserved supersymmetries in our setup, we firstly need to 

know the dimension of the vector space formed by the corresponding Killing spinor ε, that is 
the amount of supersymmetries in the background geometry. Since we are now considering the 
background geometries with vanishing four-form flux, the Killing spinor equation is given by

∇Mε =
(

∂M + 1

4
ωMPQΓ PQ

)
ε = 0 (4.3)

where ωMPQ, M, N, P, Q = 0, 1, . . . , 10, is an eleven-dimensional Levi-Civita spin connection. 
This leads to the integrability condition

[∇M,∇N ]ε = 1

4
RMNPQΓ PQε = 0. (4.4)

Eq. (4.4) implies that a Killing spinor ε transforms as a singlet under the restricted holonomy 
group H ⊂ Spin(1, 10) generated by RMNPQΓ PQ. In other words, the amount of preserved 
supersymmetries in the special holonomy manifold is equivalent to the number of singlets in 
the decomposition of the spinor representation 32 of Spin(1, 10) into the representation of the 
holonomy group H . In our case the background geometries are taken as Calabi–Yau (n +1)-folds 
with the holonomy H = SU(n + 1), n = 1, 2, 3, 4, and the decompositions are as follows.

1. CY5
In this case the geometry is of the form R × CY5. This splits the Spin(10) into SU(5) and 
the corresponding decomposition of the spinor representation is given by

16 = 10− ⊕ 53 ⊕ 1−5

16′ = 10+ ⊕ 5−3 ⊕ 15. (4.5)

The existence of two singlets implies that the space R × CY5 preserves 2
32 = 1

16 supersym-
metries.
Let us define an explicit set of projections defining the Killing spinors. To this end we need 
to specify how the Calabi–Yau spaces live in the eleven-dimensional space–time. We shall 
consider the situations where the Calabi–Yau manifolds fill in the order (x1, x2), (x9, x10), 
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(x7, x8), (x5, x6) and (x3, x4). Then the Killing spinors can be defined by the eigenvalues 
±1 for the following set of commuting matrices

Γ 12910, Γ 91078, Γ 7856, Γ 5634. (4.6)

The corresponding Killing spinors for CY5 can be defined by the projection

Γ 12910ε = Γ 91078ε = Γ 7856ε = Γ 5634ε = −ε. (4.7)

Note that this implies that Γ 012ε = ε.
2. CY4

For this case the geometry is the product form R1,2 × CY4. This leads to the decomposition 
of the Spin(8) into SU(4) and that of the spinor representation

8s = 60 ⊕ 12 ⊕ 1−2

8c = 4− ⊕ 4+. (4.8)

We see that the decomposition provides two singlets from sixteen components. Thus the 
geometry R1,2 × CY4 can preserve 2

16 = 1
8 supersymmetries. In this case the projection for 

the Killing spinor is given by

Γ 12910ε = Γ 91078ε = Γ 7856ε = −ε. (4.9)

3. CY3
In this case the geometry is given by R1,4 × CY3. This decomposes the Spin(6) into SU(3)

and correspondingly spinor representation decomposes as

4 = 3− ⊕ 13

4 = 3+ ⊕ 1−3. (4.10)

The appearance of two singlets from eight components means that there are 2
8 = 1

4 super-
symmetries in the product space R1,4 × CY3. Therefore the Killing spinor can be defined by 
the projection

Γ 12910ε = Γ 91078ε = −ε. (4.11)

4. K3
For this case the geometry is the product space R1,6× K3. The decomposition of Spin(4)

into SU(2) × SU(2) gives rise to that of the spinor representation

2 = (2,1)

2′ = (1,2). (4.12)

The presence of two singlets under one part of the SU(2) implies that there are 2
4 = 1

2 su-
persymmetries in the geometry R1,6× K3. The corresponding Killing spinors satisfy the 
projection

Γ 12910ε = −ε. (4.13)
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4.1.2. Calibration and supersymmetric cycle
Now consider the situation where the M2-branes wrapping a Riemann surface Σg propagate 

in a Calabi–Yau space without back reaction. To preserve supersymmetry on the world-volume, 
Σg turns out to be a calibrated two-cycle, i.e. holomorphic curve of a Calabi–Yau manifold. 
To see this let us briefly review the background material concerning a calibration. In general a 
calibration on a special holonomy manifold X is a differential p-form ϕ obeying [38]

dϕ = 0 (4.14)

ϕ|Cp
≤ Vol|Cp

, ∀Cp (4.15)

where Cp is any p-cycle in X and Vol is the volume form on the cycle induced from the metric 
on X. A p-cycle Σ is said to be calibrated by ϕ if it satisfies

ϕ|Σ = Vol|Σ. (4.16)

We remark that a calibrated submanifold is a minimal surface in their homology class because

Vol(Σ) =
∫
Σ

ϕ =
∫

Mp+1

dϕ +
∫
Σ ′

ϕ =
∫
Σ ′

ϕ ≤ Vol
(
Σ ′) (4.17)

where Σ ′ is another p-cycle in the same homology class such that ∂Mp+1 = Σ − Σ ′.
It is known that Calabi–Yau (n + 1)-folds admit two calibrations; the Kähler form J and 

the holomorphic (n + 1, 0)-form Ω . One can construct calibrations as bilinear forms of spinors
[39,40]

JMN = iε†ΓMNε (4.18)

ΩM1···Mn+1 = εT ΓM1···M2(n+1)
ε (4.19)

Now we consider the condition so that a bosonic configuration of membranes is supersym-
metric. Since one can always add a second probe brane without breaking supersymmetry if it is 
wrapped on the supersymmetric cycle which the original probe brane is wrapping, a simple way 
to find such condition is to analyze an effective world-volume action of a single membrane [41]. 
The action for a supermembrane coupled to d = 11 supergravity is given by [42]

S =
∫

d3x

[
1

2

√−hhμν∂μXM∂νX
NgMN − 1

2

√−h

− i
√−hhμνΘΓμ∇νΘ + 1

6
εμνλCMNP ∂μXM∂νX

N∂λX
P

]
(4.20)

where hμν , μ, ν = 0, 1, 2, is the metric of the world-volume, h = det(hμν), gMN , M =
0, 1, . . . , 10, is the d = 11 space–time metric. XM is a space–time coordinate and Θ is a 
fermionic space–time coordinate. CMNP is a three-form gauge field, which is now taken to be 
zero in our background geometries. The action (4.20) is invariant under the rigid supersymmetry 
transformations

δεX
M = iεΓ MΘ (4.21)

δεΘ = ε (4.22)

where ε is a constant anti-commuting eleven-dimensional spinor. Also the action (4.21) has a 
local fermionic symmetry, called κ-symmetry. The κ-symmetry transformation is given by
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δκXM = 2iΘΓ MP+κ(x) (4.23)

δκΘ = 2P+κ(x) (4.24)

where κ(x) is a d = 11 spinor and the matrix

P± = 1

2

(
1 ± 1

6
√−h

εμνλ∂μXM∂νX
N∂λX

P ΓMNP

)
(4.25)

is a projection operator satisfying

P 2± = 1, P+P− = 0, P+ + P− = 1. (4.26)

To extract the physical degrees of freedom, we must choose the suitable gauge that fixes the 
local world-volume reparametrization and the local κ-symmetry. Let us fix the reparametrization 
by choosing x0 = X0. Then the projection operator (4.25) can be expressed as

P± = 1

2
(1 ± Γ ) (4.27)

where

Γ := 1

2
√

det(hΣij )
Γ 0εij ∂iX

M∂jX
NΓMN. (4.28)

Here hΣij , i, j = 1, 2, is the metric of the Riemann surface wrapped by the M2-brane and √
det(hΣij ) is the area of the surface. As a next step we want to fix the local κ-symmetry on 

the world-volume. In order for a bosonic world-volume configuration to be supersymmetric, the 
global supersymmetry transformations (4.22) need to be compensated for by the κ-symmetry 
transformations (4.24)

(δε + δκ)Θ = ε + 2P+κ(x) = 0. (4.29)

Acting P− on both sides we find that

P−ε = 1 − Γ

2
ε = 0. (4.30)

Therefore the supersymmetry preserved by the M2-branes is given by the Killing spinor ε which 
obeys the projection (4.29). Noting that Γ 2 = 1 and Γ † = Γ , we find that

ε† 1 − Γ

2
ε = ε† (1 − Γ )(1 − Γ )

2
ε =

∣∣∣∣1 − Γ√
2

ε

∣∣∣∣
2

≥ 0. (4.31)

By normalizing the Killing spinors such that ε†ε = 1, the inequality (4.31) can be rewritten as

Vol(Σg) ≥ ϕ (4.32)

where Vol(Σg) =
√

det(hΣij ) is the area of the Riemann surface and ϕ is the differential two-
form defined by

ϕ = −1

2
(εΓMNε)dXM ∧ dXN. (4.33)

Hence the two-form (4.33) satisfies the condition (4.15) for the calibration and has the bilinear 
expression for Kähler calibration J (see (4.18)). Moreover it can be shown that the two-form 
(4.33) obeys the other required condition (4.14) for the calibration by using the supersymmetry 
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algebra [43]. Therefore we can conclude that the two-form (4.33) is a Kähler calibration and 
that the supersymmetric two-cycle Σg wrapped by the M2-branes is a calibrated two-cycle, i.e. 
a holomorphic curve. Notice that (4.29) is precisely the chirality condition Γ 012ε = 0 imposed 
on the supersymmetry parameters in the BLG-model (see (2.22)).

At this stage we are ready to count the number of preserved supersymmetries in our M2-brane 
configurations by combining the two different types of projections; the projections (4.7), (4.9), 
(4.11) and (4.13) for the background Calabi–Yau manifolds and the projection (4.29) (or (2.22)) 
for the membranes wrapped around a calibrated two-cycle Σg. In most of the cases wrapped 
branes break half of the supersymmetries preserved by the special holonomy manifolds ac-
cording to the additional projection for the branes wrapping calibrated cycles. However, for 
the Calabi–Yau 5-fold the projection condition (4.29) for the M2-branes does not give rise to 
a further constraint on the surviving two Killing spinors. This implies that M2-branes can wrap 
a holomorphic curve in a Calabi–Yau 5-fold without breaking down the supersymmetry. The 
amounts of preserved supersymmetries by the M2-branes wrapping holomorphic curves Σg in 
Calabi–Yau spaces are summarized as

N =

⎧⎪⎨
⎪⎩

8 for Σg ⊂ K3
4 for Σg ⊂ CY3
2 for Σg ⊂ CY4
2 for Σg ⊂ CY5.

(4.34)

Upon the dimensional reduction to R, the arising quantum mechanics on R will have the same 
number of supersymmetries.

4.2. Topological twisting

In general a quantum field theory on the curved M2-branes interacts with gravity, however, it 
is also possible to get a supersymmetric quantum field theory on R ×Σg by taking the appropriate 
decoupling limit lp → 0 while keeping the volume of Σg and that of X fixed. In order to derive 
such low-energy effective theories on the curved world-volume, we recall how the BLG-model 
describes the dynamics of the flat M2-branes. In the BLG-model the fields and supercharges 
transform under SO(2)E × SO(8)R as

XI
a : 8v0

Ψa : 8c+ ⊕ 8c−
ε: 8s+ ⊕ 8s−. (4.35)

The eight scalar fields XI ’s transform as the vector representations of the R-symmetry SO(8)R
which represents the rotational group of the transverse space of the M2-branes. In other words, 
they are sections of the normal bundle, which is trivial in this case. However, corresponding to 
the geometry given in (4.1), now the tangent bundle TX of the ambient Calabi–Yau manifold X
is decomposed as

TX = TΣ ⊕ NΣ (4.36)

where TΣ is the tangent bundle over the Riemann surface Σg and NΣ is the normal bundle 
over the surface. Therefore we need to take into account the existence of the non-trivial normal 
bundle of calibrated cycles and to introduce new dynamical variables instead of the original 
scalar fields. These transitions from scalars, i.e. trivial normal bundle to the non-trivial normal 
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bundles are intimately connected with the way in which the field theory on R × Σg realizes 
supersymmetry. Along with the coupling to the curvature on the Riemann surface, there now 
exists a coupling to an external SO(2n) gauge group, the R-symmetry background. Thus one can 
preserve supersymmetry on the holomorphic Riemann surface by choosing the SO(2) Abelian 
background from the SO(2n) appropriately.

There is a beautiful observation that such an effective description for curved branes can be 
obtained by topological twisting [10]. Here we attempt to twist the BLG-model to obtain the 
low-energy descriptions for the curved M2-branes.5

Schematically topological twisting procedure can be achieved by replacing the original Eu-
clidean rotational group SO(2)E on the Riemann surface by a different subgroup SO(2)′E of 
SO(2)E × SO(8)R . Although there are many possible ways to pick such subgroups, here we will 
consider the following decomposition

SO(8) ⊃ SO(8 − 2n) × SO(2n)

⊃ SO(8 − 2n) × SO(2)1 × · · · × SO(2)n. (4.37)

The SO(8 − 2n) is a rotational group of the Euclidean space perpendicular to the Riemann sur-
face, while the SO(2)i are diagonal subgroups of the external SO(2n) gauge group. The meaning 
of this decomposition is that the Calabi–Yau manifold X enjoys the decomposable line bundles 
as the form

X = L1 ⊕ · · · ⊕Ln → Σg. (4.38)

Under the decomposition (4.37), the R-charges for 8v , 8s and 8c are determined as follows:

1. SO(8) ⊃ SO(6) × SO(2)1

8v = 60 ⊕ 12 ⊕ 1−2

8s = 4+ ⊕ 4−
8c = 4− ⊕ 4+. (4.39)

2. SO(8) ⊃ SO(4) × SO(2)1 × SO(2)2

8v = 400 ⊕ 102 ⊕ 10−2 ⊕ 120 ⊕ 1−20

8s = 2++ ⊕ 2′+− ⊕ 2−− ⊕ 2′−+
8c = 2−+ ⊕ 2′−− ⊕ 2+− ⊕ 2′++. (4.40)

3. SO(8) ⊃ SO(2) × SO(2)1 × SO(2)2 × SO(2)3

8v = 2000 ⊕ 1002 ⊕ 100−2 ⊕ 1020 ⊕ 10−20 ⊕ 1200 ⊕ 1−200

8s = 1+++ ⊕ 1++− ⊕ 1+−− ⊕ 1+−+ ⊕ 1−−+ ⊕ 1−−− ⊕ 1−+− ⊕ 1−++
8c = 1−++ ⊕ 1−+− ⊕ 1−−− ⊕ 1−−+ ⊕ 1+−+ ⊕ 1+−− ⊕ 1++− ⊕ 1+++. (4.41)

5 For the ABJM-model the geometric meaning of the topological twisting is less clear because the classical SU(4)R
R-symmetry reflects the orbifolds. In this paper we will focus on the BLG-model.
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4. SO(8) ⊃ SO(2)1 × SO(2)2 × SO(2)3 × SO(2)4

8v = 10002 ⊕ 1000−2 ⊕ 10020 ⊕ 100−20 ⊕ 10200 ⊕ 10−200 ⊕ 12000 ⊕ 1−2000

8s = 1++++ ⊕ 1++−− ⊕ 1+−−+ ⊕ 1+−+− ⊕ 1−−++ ⊕ 1−−−− ⊕ 1−+−+ ⊕ 1−++−
8c = 1−+++ ⊕ 1−+−− ⊕ 1−−−+ ⊕ 1−−+− ⊕ 1+−++ ⊕ 1+−−− ⊕ 1++−+ ⊕ 1+++−.

(4.42)

With one of the decompositions (4.39)–(4.42), we can now define a new generator s′, i.e. the 
SO(2)′E charge by

s′ := s −
n∑

i=1

aiTi . (4.43)

Here s denotes a generator of the original rotational group SO(2)E , Ti represents a generator of 
the subgroup SO(2)i diagonally embedded in the external gauge group SO(2n) and ai ’s are the 
constant parameters characterizing the twisting procedures. From now on we normalize these 
charges s′, s and Ti such that they are twice as the usual spin on the Riemann surface. Since ai’s 
are related to the degrees of the line bundles Li’s as

deg(Li ) =
{

2|g − 1|ai for g �= 0
ai for g = 0

(4.44)

and the degrees coincide with the first Chern class, the conditions that X is Calabi–Yau are given 
by

n∑
i=1

ai =
{−1 for g = 0

0 for g = 1
1 for g > 1.

(4.45)

Note that the Calabi–Yau conditions (4.45) simultaneously ensure the existence of the covariant 
constant spinors in the twisted theories. One can easily check that the topological twists underly-
ing the decompositions (4.39), (4.40), (4.41) and (4.42) preserve 8, 4, 2 and 2 supersymmetries 
as we expect for K3, CY3, CY4 and CY5.

Therefore given the decomposable line bundle structures of the Calabi–Yau manifolds (4.38), 
we can determine the topological twisting procedure from the two conditions (4.44) and (4.45). 
For a K3 surface, i.e. for a2 = a3 = a4 = 0, the local geometry is T ∗Σg and a single twisting 
parameter a1 is uniquely determined by the Calabi–Yau condition up to the orientation. For other 
Calabi–Yau spaces the Calabi–Yau conditions are not so powerful and there are infinitely many 
ways of the twisting characterized by ai , or the degrees of the line bundles.

5. SCQM from M2-branes in a K3 surface

Let us study the membranes wrapping a curved Riemann surface of genus g > 1 embedded in 
a K3 surface. In order to preserve supersymmetry one should carry out the topological twisting 
utilizing the decomposition (4.39). Requiring the existence of covariant constant spinors, the 
twisting procedure can be uniquely determined since the external gauge field is nothing but an 
SO(2) Abelian background in this case. Note that the twisting for Σg = P

1 can be realized just 
by the orientation reversal.
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Under SO(2)E × SO(8)R → SO(2)′E × SO(6)R , the twisted field theory with g > 1 is charac-
terized by the following representations

XI : 8v0 → 60 ⊕ 12 ⊕ 1−2

ε: 8s+ ⊕ 8s− → 40 ⊕ 42 ⊕ 4−2 ⊕ 40

Ψ : 8c+ ⊕ 8c− → 42 ⊕ 40 ⊕ 40 ⊕ 4−2. (5.1)

Therefore the bosonic field content is six scalar fields φI transforming as 60 and one-forms Φz, 
Φz transforming as 12 ⊕1−2. The fermionic field content is eight scalar fields ψ, ̃λ as 40 ⊕40 and 
one-forms Ψz, Ψ̃z as 42 ⊕ 4−2. The supersymmetry parameters are eight scalars ε, ε̃ as 40 ⊕ 40
and one-forms ε̃z, εz as 42 ⊕ 4−2. Here and hereafter we distinguish 4 and 4 in terms of tildes 
over the fermionic objects.

We should note that there are six bosonic scalar fields and eight fermionic scalar charges 
in the twisted theory. Since a Riemann surface is a real two-dimensional manifold and there 
are six scalar fields, the theory should describe the circumstance where the two-cycle lives in 
a 2 + (8 − 6) = 4-dimensional curved manifold X. The existence of eight scalar supercharges 
indicates that the four-manifold preserves 8

16 = 1
2 of the supersymmetries. This is the case where 

a holomorphic Riemann surface Σg is embedded in a K3 surface.
Locally the K3 geometry is the cotangent bundle T ∗Σg . The remaining two scalar fields 

combine to yield one-forms on the Riemann surface. They represent the motion of the M2-branes 
along the non-trivial normal bundle NΣ over the Riemann surface inside the K3 surface. Under 
the SO(6) rotational group of the six uncompactified dimensions, the six scalars transform as 
vector representations 6v and the one-forms are just singlets. We take the eleven-dimensional 
space–time configuration as

0 1 2 3 4 5 6 7 8 9 10
K3 × ◦ ◦ × × × × × × ◦ ◦
M2 ◦ ◦ ◦ × × × × × × × ×
Σg × ◦ ◦ × × × × × × × ×

(5.2)

where ◦ denotes the direction in which the geometrical objects extend, while × denotes the 
direction in which they localize. Note that the projection (4.13) for the K3 surface encodes the 
configuration (5.2). The world-volume of the M2-branes extend to a time direction x0 and spacial 
directions x1, x2. The spacial directions x1, x2 are tangent to the compact Riemann surface in the 
K3 surface. The normal geometry of the M2-branes is divided into two parts; one is the normal 
bundle NΣ inside the K3 surface, extending to two directions x9, x10 and the other is the flat 
Euclidean space transverse to the K3 surface, labeled by x3, . . . , x8.

5.1. Twisted theory

Firstly our space–time configuration (5.2) breaks down the space–time symmetry group 
SO(1, 10) to SO(2)E × SO(6)R × SO(2)1. So the SO(1, 10) gamma matrix can be decomposed 
as ⎧⎪⎨

⎪⎩
Γ μ = γ μ ⊗ Γ̂ 7 ⊗ σ2, μ = 0,1,2

Γ I+2 = I2 ⊗ Γ̂ I ⊗ σ2, I = 1, . . . ,6

Γ i+8 = I2 ⊗ I8 ⊗ γ i, i = 1,2

(5.3)

where Γ̂ I is the SO(6) gamma matrix obeying
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{
Γ̂ I , Γ̂ J

} = 2δIJ ,
(
Γ̂ I

)† = Γ I (5.4)

Γ̂ 7 = −iΓ̂ 12···6 =
(
I4 0
0 −I4

)
. (5.5)

Similarly the SO(1, 10) charge conjugation matrix C is expressed as

C = ε ⊗ Ĉ ⊗ ε (5.6)

where ε := iσ2 is introduced as the charge conjugation matrix with the relations

εT = −ε, εγ με−1 = −(
γ μ

)T (5.7)

while Ĉ is the SO(6) charge conjugation matrix satisfying

ĈT = −Ĉ, ĈΓ̂ I Ĉ−1 = (
Γ̂ I

)T
, ĈΓ̂ 7Ĉ−1 = −(

Γ̂ 7)T
. (5.8)

Under the decomposition (5.3), the SO(8) chiral matrix becomes

Γ 012 = Γ 34···10 = I2 ⊗ Γ̂ 7 ⊗ σ2. (5.9)

For the twisted bosonic fields we set

φI := XI+2 (5.10)

Φz := 1√
2

(
X9 − iX10), Φz := 1√

2

(
X9 + iX10) (5.11)

Az := 1√
2
(A1 − iA2), Az := 1√

2
(A1 + iA2) (5.12)

where the bosonic scalar fields φI ’s transform as the vector representations 6v of the SO(6)

global symmetry and the indices I = 1, . . . , 6 label the flat transverse directions. The bosonic 
one-forms, Φz and Φz are the SO(6)-singlets and they describe the motion in the normal geom-
etry NΣ of the Riemann surface inside the K3 surface. These Higgs fields φI , Φz and Φz are the 
3-algebra valued.

Now consider the twisted fermionic objects. Primitively the fermionic fields Ψ are SL(2, R)

spinors that transform as the spinor representations 8c of the SO(8)R R-symmetry. As seen from 
(5.1), under the decomposition Spin(1, 10) → Spin(2) × Spin(6) × Spin(2), fermionic fields Ψ
are split into the representations 42, 40, 40 and 4−2, whose component fields are denoted by Ψz, 
λ̃, ψ and Ψ̃z respectively. Accordingly they can be expanded as

Ψ
αβ
A = i√

2
ψA

(
γ+ε−1)αβ + iΨ̃zA

(
γ zε−1)αβ − i√

2
λ̃A

(
γ−ε−1)αβ − iΨzA

(
γ zε−1)αβ

(5.13)

where the three indices α, A and β denote the SO(2)E spinor, the SO(6)R spinor and the SO(2)1
spinor respectively. Here we have introduced the matrices γ±, γ z and γ z defined by

γ+ := 1√
2
(I2 + σ2), γ− := 1√

2
(I2 − σ2) (5.14)

γ z := 1√
2

(
γ 1 + iγ 2) = 1√

2

(
i 1
1 −i

)
(5.15)

γ z := 1√ (
γ 1 − iγ 2) = 1√

( −i 1
1 i

)
. (5.16)
2 2
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As seen from (5.13), the above matrices enable us to carry out the topological twisting, or in 
other words the identification of the index α with the index β . The matrices γ+ and γ z are 
associated with the conjugate spinor representations 8c− and yield 40 and 4−2, while the other 
pair of matrices γ− and γ z are associated with 8c+ and give rise to 42 and 40. Together with the 
decomposition (5.9) and the chirality condition (2.12) for Ψ , one can check that the expansion 
(5.13) leads to the relations; Γ̂ 7ψ = ψ , Γ̂ 7Ψ̃z = −Ψ̃z, Γ̂ 7λ̃ = −λ̃ and Γ̂ 7Ψz = Ψz. For the A4
algebra all of these fermionic fields are the fundamental representations of the SO(4) gauge 
group. We define the conjugate of the SO(6) spinors as

ψ := ψT Ĉ, λ̃ := λ̃T Ĉ, Ψ z := Ψ T
z Ĉ, Ψ̃ z := Ψ̃ T

z Ĉ. (5.17)

Likewise, the supersymmetry parameters originally transform as the SL(2, R) spinor repre-
sentations of the rotational group of the world-volume and 8s of the SO(8) R-symmetry in the 
BLG-model, while in the twisted theory they reduce to the four distinct representations 40, 42, 
4−2 and 40. Thus we can write supersymmetry parameters as

ε
αβ
A = i√

2
ε̃A

(
γ+ε−1)αβ + iεzA

(
γ zε−1)αβ − i√

2
εA

(
γ−ε−1)αβ − iε̃zA

(
γ zε−1)αβ

. (5.18)

Here again the indices α, A and β label SO(2)E , SO(6)R and SO(2)1 respectively. εA and ε̃A are 
fermionic scalars on an arbitrary Riemann surface transforming as 40 and 40 respectively. The 
existence of the eight supersymmetric parameters reflects the fact that the effective theory will 
be endowed with the corresponding eight supercharges.

In terms of the expressions (5.3), (5.10), (5.11), (5.12) and (5.13), we obtain the twisted BLG 
Lagrangian

L = 1

2

(
D0φ

I ,D0φ
I
) − (

Dzφ
I ,Dzφ

I
) + (D0Φz,D0Φz) − 2(DzΦw,DzΦw)

+ (λ̃,D0ψ) + (Ψ z,D0Ψ̃z) − (Ψ̃ z,D0Ψz) − 2i(Ψ̃ z,Dzψ) + 2i(λ̃,DzΨz)

+ i

2

(
λ̃Γ̂ IJ ,

[
φI ,φJ ,ψ

]) − i
(
Ψ̃ zΓ̂

IJ ,
[
φI ,φJ ,Ψz

])
+ 2i

(
ψΓ̂ I ,

[
Φz,φ

I ,Ψz

]) − 2i
(
λ̃Γ̂ I ,

[
Φz,φ

I , Ψ̃z

])
+ i

(
λ̃, [Φz,Φz,ψ]) − 2i

(
Ψ̃ w, [Φz,Φz,Ψw])

− 1

12

([
φI ,φJ ,φK

]
,
[
φI ,φJ ,φK

]) − 1

2

([
Φz,φ

I ,φJ
]
,
[
Φz,φ

I ,φJ
])

− 1

2

([
Φz,Φw,φI

]
,
[
Φz,Φw,φI

]) − 1

2

([
Φz,Φw,φI

]
,
[
Φz,Φw,φI

])
+ 1

6

([Φz,Φw,Φv], [Φz,Φw,Φv]
) + 1

2

([Φz,Φw,Φv], [Φz,Φw,Φv]
) +LTCS.

(5.19)

Here we have introduced ( , ) as the trace form on the 3-algebra introduced in (2.4) and we have 
defined the covariant derivatives Dz := 1√

2
(D1 − iD2) and Dz := 1√

2
(D1 + iD2).

The corresponding BRST transformations are given by

δφI
a = iε̃Γ̂ I λ̃a − iεΓ̂ Iψa (5.20)

δΦza = −iε̃Ψza (5.21)
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δΦza = −iεΨ̃za (5.22)

δψa = iD0φ
I
a Γ̂ ε̃ − 2DzΦzaε + 1

6

[
φI ,φJ ,φK

]
a
Γ̂ IJK ε̃ + [

Φz,Φz,φ
I
]
a
Γ̂ I ε̃ (5.23)

δλ̃a = iD0φ
I
a Γ̂ I ε − 2DzΦzaε̃ − 1

6

[
φI ,φJ ,φK

]
a
Γ̂ IJKε + [

Φz,Φz,φ
I
]
a
Γ̂ I ε (5.24)

δΨza = −Dzφ
I Γ̂ I ε̃ − iD0Φzε + 1

2

[
Φz,φ

I ,φJ
]
a
Γ̂ IJ ε + 1

3
[Φw,Φw,Φz]aε (5.25)

δΨ̃za = Dzφ
I
a Γ̂ I ε + iD0Φzaε̃ + 1

2

[
Φz,φ

I ,φJ
]
a
Γ̂ IJ ε̃ + 1

3
[Φw,Φw,Φz]aε̃ (5.26)

δÃb
0a = −εΓ̂ I φI

c ψdf cdb
a − ε̃Γ̂ I φI

c λ̃df cdb
a − 2εΦzcΨ̃zdf cdb

a + 2ε̃ΦzcΨzdf cdb
a (5.27)

δÃb
za = 2iεΓ̂ I φI

c Ψzdf cdb
a + 2iεΦzcλ̃df cdb

a (5.28)

δÃb
za = −2iε̃Γ̂ I φI

c Ψ̃zdf cdb
a + 2iε̃Φzcψdf cdb

a. (5.29)

5.2. Derivation of quantum mechanics

Now we consider the reduction to a low-energy effective one-dimensional field theory on R, 
that is membrane quantum mechanics. As the size of the Riemann surface shrinks, only the light 
degrees of freedom are relevant. To keep track of them we have to find the static configurations 
that minimize the energy, that is the zero-energy conditions. We can replace the zero-energy 
conditions by a set of BPS equations. In addition, we set all the fermionic fields to zero because 
we are interested in bosonic BPS configurations. Then the BPS equations, which correspond to 
the vanishing conditions of the BRST transformations (5.23)–(5.26) for the fermionic fields, are

Dzφ
I = 0, Dzφ

I = 0 (5.30)

DzΦz = 0, DzΦz = 0 (5.31)[
φI ,φJ ,φK

] = 0 (5.32)[
Φz,Φz,φ

I
] = 0,

[
Φz,φ

I ,φJ
] = 0,

[
Φz,φ

I ,φJ
] = 0 (5.33)

[Φw,Φw,Φz] = 0, [Φw,Φw,Φz] = 0. (5.34)

We first note that according to the algebraic equations (5.32), (5.33) and (5.34), all the bosonic 
Higgs fields have to lie in the same plane in the SO(4) gauge group. Thus we can write them as

φI = (
φI1, φI2,0,0

)T
, Φz = (

Φ1
z ,Φ2

z ,0,0
)T

, Φz = (
Φ1

z ,Φ2
z ,0,0

)T
. (5.35)

Correspondingly via supersymmetry one can also write the fermionic partners as

ψ = (
ψ1,ψ2,0,0

)T
, λ̃ = (

λ̃1, λ̃2,0,0
)T (5.36)

Ψz = (
Ψ 1

z ,Ψ 2
z ,0,0

)T
, Ψ̃z = (

Ψ̃ 1
z , Ψ̃ 2

z ,0,0
)T

. (5.37)

The configurations (5.35)–(5.37) generically break the original SO(4) gauge group down to 
U(1) × U(1). Taking into account these solutions and the BPS equations (5.30), (5.31) we find 
that Ã1

z3 = Ã2
z3 = Ã1

z4 = Ã2
z4 = 0. This implies that these components of the gauge field now be-

come massive by the Higgs mechanism. Then we should follow the time evolution for remaining 
degrees of freedom in the low-energy effective theory.

To achieve this consistently we further need to impose the Gauss law constraint. This requires 
that the gauge field is flat; F̃zz = 0. Recall that we are now considering the case where the 
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genus of the Riemann surface is greater than one. In that case the generic flat connections are 
irreducible. As long as we only consider irreducible flat connections, the Laplacian has no zero 
modes. Accordingly it is not allowed for scalar fields to have non-trivial values and it is required 
that φI = 0.6

To sum up, the above set of equations over the compact Riemann surface reduces to

F̃ 1
zz2 = 0 (5.38)

∂zΦz1 + Ã1
z2Φz2 = 0 (5.39)

∂zΦz2 − Ã1
z2Φz1 = 0. (5.40)

Let us discuss the generic BPS configuration obeying (5.38)–(5.40). Since we are now con-
sidering a compact Riemann surface of genus g, there are g holomorphic (1, 0)-forms ωi , 
i = 1, . . . , g, and g anti-holomorphic (0, 1)-forms ωi . Let us normalize them as∫

ai

ωj = δij ,

∫
bi

ωj = Ωij (5.41)

with ai , bi being canonical homology basis for H1(Σg). The matrix Ω is the period matrix 
of the Riemann surface. It is a g × g complex symmetric matrix with positive imaginary part. 
Eq. (5.38) imposes the flatness condition for the U(1) gauge field Ã1

z2. The space of the U(1)

flat connection on a compact Riemann surface is the torus known as the Jacobi variety denoted 
by Jac(Σg). The flat gauge fields can be expressed in the form [26]

Ã1
z2 = −2π

g∑
i,j=1

(Ω − Ω)−1
ij Θiωj , Ã1

z2 = 2π

g∑
i,j=1

(Ω − Ω)−1
ij Θiωj (5.42)

where Θi := ζ i + Ωij ξ
j represents the complex coordinate of Jac(Σg) which characterizes the 

twists e2πiξ i
and e−2πiζ i

around the i-th homology cycles ai and bi . Notice that ξ i → ξ i + mi , 
ζ i → ζ i +ni for ni, mi ∈ Z gives rise to the same point on Jac(Σg). This implies that Jac(Σg) =
C

g/LΩ where LΩ is the lattice generated by Zg + ΩZ
g . We define a function

ϕ := −2π

g∑
i,j=1

(Ω − Ω)−1
ij

(
Θifj (z) − Θif j (z)

)
(5.43)

where fi(z) :=
∫ z

ωi is the holomorphic function of z that obeys the relations fi |aj
= δij and 

fi |bj
= Ωij . Then we can write the flat gauge fields as

Ã1
z2 = ∂zϕ, Ã1

z2 = ∂zϕ. (5.44)

Using the above expressions for the U(1) flat connection, the generic solutions to Eqs. (5.39)
and (5.40) can be expressed as

6 Such BPS solutions with the irreducible connections have been considered in the four-dimensional topologically 
twisted Yang–Mills theories defined on the product of two Riemann surfaces [44–46] and the corresponding decoupling 
limit for the brane description has been argued in [47].
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Φz1(z, z) − iΦz2(z, z) = e−iϕ(z,z)

g∑
i=1

xi
Aωi

Φz1(z, z) + iΦz2(z, z) = eiϕ(z,z)

g∑
i=1

xi
Bωi (5.45)

where xi
A, xi

B ∈ C are constant on the Riemann surface. Since we take the limit where the Rie-
mann surface Σg shrinks to zero size, the space–time configurations of the membranes should 
be expressed as single-valued functions of z and z in the low-energy effective quantum mechan-
ics. In other words, ξ i and ζ i can only be integers and therefore the U(1) flat gauge fields Ã1

z2

and Ã1
z2 are quantized. The single-valuedness condition requires that the point of the Jac(Σg) is 

fixed.
Putting all together, the general bosonic BPS configurations are given by

φI = 0

Φz =
g∑

i=1

⎛
⎜⎜⎜⎝

1
2 (e−iϕxi

A + eiϕxi
B)

i
2 (e−iϕxi

A − eiϕxi
B)

0
0

⎞
⎟⎟⎟⎠ωi, Φz =

g∑
i=1

⎛
⎜⎜⎜⎝

1
2 (eiϕxi

A + e−iϕxi
B)

− i
2 (eiϕxi

A − e−iϕxi
B)

0
0

⎞
⎟⎟⎟⎠ωi

Ãz =

⎛
⎜⎜⎝

0 ∂zϕ(z, z) 0 0
−∂zϕ(z, z) 0 0 0

0 0 0 Ã3
z4(z, z)

0 0 −Ã3
z4(z, z) 0

⎞
⎟⎟⎠ (5.46)

where Ã3
z4 and Ã3

z4 are the Abelian gauge fields associated with preserved U(1) symmetry and 
they do not receive any constraints from the BPS conditions.

By virtue of the supersymmetry we can write the corresponding fermionic fields from the 
bosonic configurations (5.46) as

ψ = 0, λ̃ = 0

Ψz =
g∑

i=1

⎛
⎜⎜⎜⎝

1
2 (Ψ i

A + Ψ i
B)

i
2 (Ψ i

A − Ψ i
B)

0
0

⎞
⎟⎟⎟⎠ωi, Ψ̃z =

g∑
i=1

⎛
⎜⎜⎜⎝

1
2 (Ψ̃ i

A + Ψ̃ i
B)

− i
2 (Ψ̃ i

A − Ψ̃ i
B)

0
0

⎞
⎟⎟⎟⎠ωi. (5.47)

Substituting the BPS configuration (5.46) and (5.47) into the twisted action (5.19), we find

S =
∫
R

dt

∫
Σg

d2z

[(
D0Φ

a
z ,D0Φza

) + (
Ψ a

z ,D0Ψ̃za

) − (
Ψ̃ a

z ,D0Ψza

)

− k

2π
Ã1

02F̃
3
zz4 − k

4π

(
Ã1

z2
˙̃
A3

z4 − Ã1
z2

˙̃
A3

z4

)]
. (5.48)

Since the gauge fields Ã1
z2, Ã1

z2 are quantized and their time derivatives do not show up in the 
effective action, they can be integrated out as the auxiliary fields. They give rise to the constraints 
˙̃
A3 = ˙̃

A3 = 0.
z4 z4
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Making use of the Riemann bilinear relation [48]∫
Σg

ω ∧ η =
g∑

i=1

[ ∫
ai

ω

∫
bi

η −
∫
bi

ω

∫
ai

η

]
(5.49)

and performing the integration on Σg we obtain the low-energy effective gauged quantum me-
chanics

S =
∫
R

dt

[∑
i,j

(ImΩ)ij
(
D0x

iaD0x
j
a + Ψ iaD0Ψ̃

j
a − Ψ̃ iaD0Ψ

j
a

) − kC1(E)Ã1
02

]
. (5.50)

Here the indices a = A, B stand for the two internal degrees of freedom for the two M2-branes. 
The covariant derivatives are defined by

D0x
i
A = ẋi

A + iÃ1
02x

i
A, D0x

i
B = ẋi

B − iÃ1
02x

i
B (5.51)

D0Ψ
i
A = Ψ̇ i

A + iÃ1
02Ψ

i
A, D0Ψ

i
B = Ψ̇ i

B − iÃ1
02Ψ

i
B (5.52)

D0Ψ̃
i
A = ˙̃

Ψ i
A − iÃ1

02Ψ̃
i
A, D0Ψ

i
B = ˙̃

Ψ i
B + iÃ1

02Ψ̃
i
B (5.53)

and the Chern number C1(E) ∈ Z is associated to the U(1) principal bundle E → Σg over the 
Riemann surface

C1(E) =
∫
Σg

c1(E) = 1

2π

∫
Σg

d2zF̃ 3
zz4. (5.54)

The action (5.50) has the invariance under the one-dimensional SL(2, R) conformal transforma-
tions

δt = f (t) = a + bt + ct2, δ∂0 = −ḟ ∂0 (5.55)

δxi
a = 1

2
ḟ xi

a, δÃ1
02 = −ḟ Ã1

02 (5.56)

δΨ i
a = 0, δΨ̃ i

a = 0. (5.57)

Also the action (5.50) is invariant under the N = 8 supersymmetry transformations

δxi
a = 2iε̃Ψ i

a , δxi
a = 2iεΨ̃ i

a (5.58)

δΨ i
a = −iD0x

i
aε, δΨ̃ i

a = iD0x
i
aε̃ (5.59)

δÃ1
02 = 0. (5.60)

Therefore we conclude that the N = 8 superconformal gauged quantum mechanics (5.50)
may describe the low-energy effective motion of the two wrapped M2-branes around Σg probing 
a K3 surface.

As seen from the action (5.50), the U(1) gauge field Ã1
02, due to the absence of the kinetic 

term, is regarded as an auxiliary field. In consequence the gauge field has no contribution to 
the Hamiltonian. Hence the corresponding gauge symmetry yields an integral of motion as a 
moment map μ :M → u(1)∗ and we can reduce the phase space M to Mc = μ−1(c) by fixing 
the inverse of the moment map at a point c ∈ u(1)∗. Choosing a temporal gauge Ã1

02 = 0, we find 
the action
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S =
∫
R

dt
∑
i,j

(ImΩ)ij
(
ẋia ẋ

j
a + Ψ ia ˙̃

Ψ
j
a − Ψ̃ iaΨ̇

j
a

)
(5.61)

and the Gauss law constraint

φ0 := kC1(E) + i
∑
i,j

(ImΩ)ij
[
Kij + 2

(
Ψ i

AΨ̃
j
A − Ψ i

BΨ̃
j
B

)] = 0 (5.62)

where

Kij := (
ẋi
Ax

j
A − xi

Aẋ
j
A

) − (
ẋi
Bx

j
B − xi

Bẋ
j
B

)
. (5.63)

The constraint equation (5.62) requires that all states in the Hilbert space are gauge invariant. In 
this case the symmetry of the system is not so large as in the previous superconformal gauged 
quantum mechanical models (3.13) and (3.104). It is curious to know whether the superconformal 
gauged quantum mechanics (5.50) (or (5.61) together with (5.62)) have a reduced Lagrangian 
description with an inverse-square type potential. However, our result may drop a hint on the 
obstructed construction of SCQM that a large class of SCQM could be formulated as “gauged 
quantum mechanics” with the help of auxiliary gauge fields as in [28–30].

Although it would be helpful to determine the corresponding supermultiplet for our N = 8
superconformal quantum mechanics (5.50), we do not fully understand it because our derivation 
is not based on the superfield formulation and the reduced quantum mechanical description is 
missing. Judging from the representations (5.1) of the physical variables under the remaining 
R-symmetry SO(6), the corresponding supermultiplet may be inferred as the g combinations of 
(2, 8, 6) multiplet.7 However, the elimination of the single auxiliary gauge field Ã1

02 may reduce 
the physical degrees of freedom and thus lead to other supermultiplet.

6. Conclusion and discussion

We have studied the IR quantum mechanics resulting from the multiple M2-branes wrapping 
a compact Riemann surface Σg after shrinking the size of the Riemann surface by reducing the 
BLG-model and the ABJM-model. For g = 1 the dimensional reductions of the BLG-model and 
the ABJM-model yield the low-energy effective N = 16 and N = 12 superconformal gauged 
quantum mechanical models respectively. After the integration of the auxiliary gauge fields, 
OSp(16|2) quantum mechanics (3.54) and SU(1, 1|6) quantum mechanics (3.144) emerge from 
the reduced theories. For g �= 1 the Riemann surface is singled out as a calibrated holomorphic 
curve in a Calabi–Yau manifold to preserve supersymmetry. The IR quantum mechanical models 
have N = 8, 4, 2 and 2 supersymmetries for K3, CY3, CY4 and CY5 respectively. When the 
Calabi–Yau manifolds are constructed via decomposable line bundles over the Riemann surface, 
the K3 surface essentially allows for a unique topological twist while for the other Calabi–Yau 
manifolds there are infinitely many topological twists which are specified by the degrees of the 
line bundles. In particular we have analyzed the two wrapped M2-branes around a holomorphic 
genus g > 1 curve exploring a K3 surface based on the topologically twisted BLG-model. We 
have found the N = 8 superconformal gauged quantum mechanics (5.50) that may describe the 
low-energy dynamics of the wrapped M2-branes in a K3 surface. It is known that [28–30] there 
are the connections of the gauged quantum mechanics to the conformal mechanical models, the 

7 Here we use the notation (n, N , N −n) with n physical bosonic variables, N fermions and N −n auxiliary bosonic 
variables.
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Calogero model and their generalizations. An interesting question is what type of interaction po-
tential, if it exists, may characterize our superconformal gauged quantum mechanics (5.50). This 
remains open issue for future investigation.

There are a number of future aspects of the present work. In particular, they contain the fol-
lowing impressive subjects:

1. AdS2/CFT1 correspondence
One of the most appealing programs relevant to our work is to attack the AdS2/CFT1 cor-
respondence. This is the most significant case of AdSd+1/CFTd correspondence [49] in that 
all known extremal black holes contain the AdS2 factor in their near horizon geometries.
It has been discussed in [50,51] that the motion of the particle near the horizon of the extreme 
Reissner–Nordström black hole is described by the (super)conformal mechanics. Since such 
black holes can be alternatively described by the wrapped M2-branes around a compact Rie-
mann surface in M-theory, we expect that our superconformal quantum mechanics provides 
further examples and the M-theoretic interpretation.
It has been pointed out in [52,53] that the correlation functions of the DFF-model [12] have 
the expected scaling behaviors although one cannot assume the existence of the normalized 
and conformal invariant vacuum states in conformal quantum mechanics as in other higher-
dimensional conformal field theories. We would like to extend the analysis to superconformal 
quantum mechanics including our models.

2. Indices and the reduced Gromov–Witten invariants
The formula for the numbers of genus g curves in a K3 surface, the so-called reduced 
Gromov–Witten invariants [54] has been firstly proposed by Yau and Zaslow in the analysis 
of the wrapped D3-brane [55]. Closely related to their setup, our N = 8 superconformal 
gauged quantum mechanics (5.50) appears from the wrapped M2-branes instead of the 
D3-brane. It would be interesting to compute the indices and to extract enumerative infor-
mation and structure from our model.

3. 1d–2d relation
In analogy with the fascinating stories arising from the compactification of M5-branes, for 
example, the AGT-relation [56], the DGG-relation [57] and the 2d–4d relation [58], it would 
be attractive to find the relationship between the superconformal field theories and the ge-
ometries or relevant dualities from M2-branes, i.e. “1d–2d relation”. It has been observed in 
[59] that the WDVV equation [60,61] and the twisted periods [62,63] which are relevant to 
two-dimensional geometries and topological field theories appear from the constraint condi-
tions for the constructions of N = 4 superconformal mechanics. It would be interesting to 
investigate whether our M-theoretical construction of superconformal quantum mechanics 
could help to understand and generalize such relations.

Acknowledgements

I am deeply indebted to Hirosi Ooguri for numerous discussions, valuable comments and 
stimulating suggestions on this project. I am grateful to Yu Nakayama and Satoshi Yamaguchi for 
helpful discussions and for sharing their insights throughout the course of this work. I would also 
like to thank Abhijit Gadde, Kazuo Hosomichi, Daniel L. Jafferis, Kazunobu Maruyoshi, Takuya 
Okuda, Du Pei, Pavel Putrov and Yuji Tachikawa for useful discussions and comments. This 
work was supported in part by JSPS fellowships for Young Scientists Grant Number 12J01182.



440 T. Okazaki / Nuclear Physics B 890 (2015) 400–441
References

[1] M. Duff, P.S. Howe, T. Inami, K. Stelle, Superstrings in D = 10 from supermembranes in D = 11, Phys. Lett. B 
191 (1987) 70.

[2] J.H. Schwarz, Superconformal Chern–Simons theories, J. High Energy Phys. 0411 (2004) 078, arXiv:hep-
th/0411077.

[3] A. Basu, J.A. Harvey, The M2–M5 brane system and a generalized Nahm’s equation, Nucl. Phys. B 713 (2005) 
136–150, arXiv:hep-th/0412310.

[4] J. Bagger, N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020, arXiv:hep-th/0611108.
[5] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008, 

arXiv:0711.0955.
[6] J. Bagger, N. Lambert, Comments on multiple M2-branes, J. High Energy Phys. 0802 (2008) 105, arXiv:0712.3738.
[7] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66–76, arXiv:0709.1260.
[8] A. Gustavsson, Selfdual strings and loop space Nahm equations, J. High Energy Phys. 0804 (2008) 083, arXiv:

0802.3456.
[9] O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N = 6 superconformal Chern–Simons-matter theories, 

M2-branes and their gravity duals, J. High Energy Phys. 0810 (2008) 091, arXiv:0806.1218.
[10] M. Bershadsky, C. Vafa, V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420–434, 

arXiv:hep-th/9511222.
[11] J.P. Gauntlett, N. Kim, S. Pakis, D. Waldram, Membranes wrapped on holomorphic curves, Phys. Rev. D 65 (2002) 

026003, arXiv:hep-th/0105250.
[12] V. de Alfaro, S. Fubini, G. Furlan, Conformal invariance in quantum mechanics, Nuovo Cimento A 34 (1976) 569.
[13] V. Akulov, A. Pashnev, Quantum superconformal model in (1, 2) space, Theor. Math. Phys. 56 (1983) 862–866.
[14] S. Fubini, E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984) 17.
[15] S. Bellucci, E. Ivanov, S. Krivonos, O. Lechtenfeld, ABC of N = 8, d = 1 supermultiplets, Nucl. Phys. B 699 

(2004) 226–252, arXiv:hep-th/0406015.
[16] E. Ivanov, S. Krivonos, V. Leviant, Geometric superfield approach to superconformal mechanics, J. Phys. A 22 

(1989) 4201.
[17] N. Wyllard, (Super)conformal many body quantum mechanics with extended supersymmetry, J. Math. Phys. 41 

(2000) 2826–2838, arXiv:hep-th/9910160.
[18] S. Fedoruk, E. Ivanov, O. Lechtenfeld, Superconformal mechanics, J. Phys. A 45 (2012) 173001, arXiv:1112.1947.
[19] G. Papadopoulos, M2-branes, 3-Lie Algebras and Plucker relations, J. High Energy Phys. 0805 (2008) 054, 

arXiv:0804.2662.
[20] J.P. Gauntlett, J.B. Gutowski, Constraining maximally supersymmetric membrane actions, J. High Energy Phys. 

0806 (2008) 053, arXiv:0804.3078.
[21] N. Lambert, C. Papageorgakis, Relating U(N) × U(N) to SU(N) × SU(N) Chern–Simons membrane theories, 

J. High Energy Phys. 1004 (2010) 104, arXiv:1001.4779.
[22] A. Gustavsson, S.-J. Rey, Enhanced N = 8 supersymmetry of ABJM Theory on R(8) and R(8)/Z(2), arXiv:

0906.3568.
[23] O.-K. Kwon, P. Oh, J. Sohn, Notes on supersymmetry enhancement of ABJM theory, J. High Energy Phys. 0908 

(2009) 093, arXiv:0906.4333.
[24] M. Benna, I. Klebanov, T. Klose, M. Smedback, Superconformal Chern–Simons Theories and AdS(4)/CFT(3) cor-

respondence, J. High Energy Phys. 0809 (2008) 072, arXiv:0806.1519.
[25] D. Bashkirov, A. Kapustin, Dualities between N = 8 superconformal field theories in three dimensions, J. High 

Energy Phys. 1105 (2011) 074, arXiv:1103.3548.
[26] L. Alvarez-Gaume, G.W. Moore, C. Vafa, Theta functions, modular invariance and strings, Commun. Math. Phys. 

106 (1986) 1–40.
[27] V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, Springer-

Verlag, New York–Heidelberg, 1978, translated from Russian by K. Vogtmann and A. Weinstein.
[28] D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Com-

mun. Pure Appl. Math. 31 (4) (1978) 481–507.
[29] A.P. Polychronakos, Integrable systems from gauged matrix models, Phys. Lett. B 266 (1991) 29–34.
[30] S. Fedoruk, E. Ivanov, O. Lechtenfeld, Supersymmetric Calogero models by gauging, Phys. Rev. D 79 (2009) 

105015, arXiv:0812.4276.
[31] J.E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter, T.S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes 

in Mathematics, vol. 1913, Springer, Berlin, 2007.

http://refhub.elsevier.com/S0550-3213(14)00368-X/bib447566663A313938376278s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib447566663A313938376278s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib5363687761727A3A32303034796As1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib5363687761727A3A32303034796As1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib426173753A323030346564s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib426173753A323030346564s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4261676765723A32303036736Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4261676765723A323030376A72s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4261676765723A323030376A72s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4261676765723A323030377669s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47757374617673736F6E3A323030377675s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47757374617673736F6E3A323030386479s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47757374617673736F6E3A323030386479s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416861726F6E793A323030387567s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416861726F6E793A323030387567s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42657273686164736B793A313939357179s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42657273686164736B793A313939357179s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4761756E746C6574743A323030317173s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4761756E746C6574743A323030317173s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib6465416C6661726F3A313937366A65s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416B756C6F763A313938347568s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib467562696E693A313938346866s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656C6C756363693A323030347572s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656C6C756363693A323030347572s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4976616E6F763A313938386974s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4976616E6F763A313938386974s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib57796C6C6172643A31393939746Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib57796C6C6172643A31393939746Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4665646F72756B3A323031316161s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib50617061646F706F756C6F733A32303038736Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib50617061646F706F756C6F733A32303038736Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4761756E746C6574743A323030387566s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4761756E746C6574743A323030387566s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4C616D626572743A323031306A69s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4C616D626572743A323031306A69s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47757374617673736F6E3A32303039706Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47757374617673736F6E3A32303039706Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B776F6E3A323030396172s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B776F6E3A323030396172s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656E6E613A323030387A79s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656E6E613A323030387A79s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib426173686B69726F763A323031317074s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib426173686B69726F763A323031317074s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416C766172657A4761756D653A313938366573s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416C766172657A4761756D653A313938366573s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230363930323838s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230363930323838s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230343738323235s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230343738323235s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib506F6C796368726F6E616B6F733A313939316278s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4665646F72756B3A32303038686Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4665646F72756B3A32303038686Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5232333337383836s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5232333337383836s1


T. Okazaki / Nuclear Physics B 890 (2015) 400–441 441
[32] E.J. Routh, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies. Being Part II of a 
Treatise on the Whole Subject, 6th ed., Dover Publications, Inc., New York, 1955.

[33] P. Claus, R. Kallosh, A. Van Proeyen, Conformal symmetry on world volumes of branes, arXiv:hep-th/9812066.
[34] R. Britto-Pacumio, J. Michelson, A. Strominger, A. Volovich, Lectures on superconformal quantum mechanics and 

multiblack hole moduli spaces, arXiv:hep-th/9911066.
[35] B. de Wit, H. Nicolai, Hidden symmetry in d = 11 supergravity, Phys. Lett. B 155 (1985) 47.
[36] H. Nicolai, D = 11 supergravity with local SO(16) invariance, Phys. Lett. B 187 (1987) 316.
[37] B. de Wit, H. Nicolai, d = 11 supergravity with local SU(8) invariance, Nucl. Phys. B 274 (1986) 363.
[38] R. Harvey, H.B. Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47–157.
[39] J. Dadok, F.R. Harvey, Calibrations and spinors, Acta Math. 170 (1) (1993) 83–120.
[40] F.R. Harvey, Spinors and Calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Inc., Boston, MA, 

1990.
[41] K. Becker, M. Becker, A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 

(1995) 130–152, arXiv:hep-th/9507158.
[42] E. Bergshoeff, E. Sezgin, P. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 

(1987) 75–78.
[43] J. Gutowski, G. Papadopoulos, P. Townsend, Supersymmetry and generalized calibrations, Phys. Rev. D 60 (1999) 

106006, arXiv:hep-th/9905156.
[44] M. Bershadsky, A. Johansen, V. Sadov, C. Vafa, Topological reduction of 4-d SYM to 2-d sigma models, Nucl. 

Phys. B 448 (1995) 166–186, arXiv:hep-th/9501096.
[45] A. Kapustin, E. Witten, Electric–magnetic duality and the geometric Langlands program, Commun. Number Theory 

Phys. 1 (2007) 1–236, arXiv:hep-th/0604151.
[46] A. Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson–’t Hooft operators, and S-duality, arXiv:

hep-th/0612119.
[47] J.M. Maldacena, C. Nunez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. 

J. Mod. Phys. A 16 (2001) 822–855, arXiv:hep-th/0007018.
[48] H.M. Farkas, I. Kra, Riemann Surfaces, second ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New 

York, 1992.
[49] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 

(1998) 231–252, arXiv:hep-th/9711200.
[50] P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend, et al., Black holes and superconformal mechanics, Phys. 

Rev. Lett. 81 (1998) 4553–4556, arXiv:hep-th/9804177.
[51] G. Gibbons, P. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187–192, arXiv:hep-th/

9812034.
[52] C. Chamon, R. Jackiw, S.-Y. Pi, L. Santos, Conformal quantum mechanics as the CFT1 dual to AdS2, Phys. Lett. B 

701 (2011) 503–507, arXiv:1106.0726.
[53] R. Jackiw, S.-Y. Pi, Conformal blocks for the 4-point function in conformal quantum mechanics, Phys. Rev. D 86 

(2012) 045017, arXiv:1205.0443.
[54] J. Bryan, N.C. Leung, The enumerative geometry of K3 surfaces and modular forms, J. Am. Math. Soc. 13 (2) 

(2000) 371–410 (electronic).
[55] S.-T. Yau, E. Zaslow, BPS states, string duality, and nodal curves on K3, Nucl. Phys. B 471 (1996) 503–512, 

arXiv:hep-th/9512121.
[56] L.F. Alday, D. Gaiotto, Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. 

Math. Phys. 91 (2010) 167–197, arXiv:0906.3219.
[57] T. Dimofte, D. Gaiotto, S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 

367–419, arXiv:1108.4389.
[58] A. Gadde, S. Gukov, P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320.
[59] S. Bellucci, A. Galajinsky, E. Latini, New insight into WDVV equation, Phys. Rev. D 71 (2005) 044023, arXiv:

hep-th/0411232.
[60] E. Witten, On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990) 281–332.
[61] R. Dijkgraaf, H.L. Verlinde, E.P. Verlinde, Topological strings in d < 1, Nucl. Phys. B 352 (1991) 59–86.
[62] B. Dubrovin, On almost duality for Frobenius manifolds, in: Geometry, Topology, and Mathematical Physics, in: 

Amer. Math. Soc. Transl. Ser. 2, vol. 212, Amer. Math. Soc., Providence, RI, 2004, pp. 75–132.
[63] M. Feigin, A. Silantyev, Singular polynomials from orbit spaces, Compos. Math. 148 (6) (2012) 1867–1879.

http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230303638333639s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5230303638333639s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib436C6175733A313939387573s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42726974746F506163756D696F3A313939396178s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42726974746F506163756D696F3A313939396178s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib64655769743A313938356979s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4E69636F6C61693A313938366A6Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib64655769743A313938366D7As1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D52363636313038s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231323038353633s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231303435363337s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231303435363337s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4265636B65723A313939356B62s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4265636B65723A313939356B62s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4265726773686F6566663A31393837636Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4265726773686F6566663A31393837636Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4775746F77736B693A313939397475s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4775746F77736B693A313939397475s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42657273686164736B793A31393935766Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42657273686164736B793A31393935766Ds1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B6170757374696E3A32303036706Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B6170757374696E3A32303036706Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B6170757374696E3A323030366869s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4B6170757374696E3A323030366869s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D616C646163656E613A323030306D77s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D616C646163656E613A323030306D77s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231313339373635s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231313339373635s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib436C6175733A313939387473s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib436C6175733A313939387473s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib476962626F6E733A313939386661s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib476962626F6E733A313939386661s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4368616D6F6E3A32303131786Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4368616D6F6E3A32303131786Bs1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4A61636B69773A323031327572s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4A61636B69773A323031327572s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231373530393535s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5231373530393535s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib5961753A313939356D76s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib5961753A313939356D76s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416C6461793A323030396171s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib416C6461793A323030396171s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib44696D6F6674653A323031316A75s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib44696D6F6674653A323031316A75s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib47616464653A32303133736361s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656C6C756363693A32303034776Es1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib42656C6C756363693A32303034776Es1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib57697474656E3A313938396967s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib44696A6B67726161663A31393930646As1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5232303730303530s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5232303730303530s1
http://refhub.elsevier.com/S0550-3213(14)00368-X/bib4D5232393939333038s1

	Membrane quantum mechanics
	1 Introduction
	2 World-volume theories of M2-branes
	2.1 BLG-model
	2.2 ABJM-model

	3 SCQM from ﬂat M2-branes
	3.1 N=16 superconformal mechanics
	3.1.1 Derivation of quantum mechanics
	3.1.2 Reduced system with inverse-square interaction
	3.1.3 OSp(16|2) superconformal mechanics

	3.2 N=12 superconformal mechanics
	3.2.1 Derivation of quantum mechanics
	3.2.2 Reduced system with inverse-square interaction
	3.2.3 SU(1,1|6) superconformal mechanics


	4 Curved M2-branes and topological twisting
	4.1 M2-branes wrapping a holomorphic curve
	4.1.1 Supersymmetry in Calabi-Yau space
	4.1.2 Calibration and supersymmetric cycle

	4.2 Topological twisting

	5 SCQM from M2-branes in a K3 surface
	5.1 Twisted theory
	5.2 Derivation of quantum mechanics

	6 Conclusion and discussion
	Acknowledgements
	References


