
Theoretical Computer Science 396 (2008) 283–289
www.elsevier.com/locate/tcs

Note

The unbounded parallel batch machine scheduling with release dates
and rejection to minimize makespanI

Lingfa Lu, Liqi Zhang, Jinjiang Yuan∗

Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China

Received 21 November 2007; received in revised form 11 February 2008; accepted 12 February 2008

Communicated by D.-Z. Du

Abstract

In this paper, we consider the unbounded parallel batch machine scheduling with release dates and rejection. A job is either
rejected with a certain penalty having to be paid, or accepted and processed in batches on the parallel batch machine. The processing
time of a batch is defined as the longest processing time of the jobs contained in it. The objective is to minimize the sum of the
makespan of the accepted jobs and the total rejection penalty of the rejected jobs. We show that this problem is binary NP-hard
and provide a pseudo-polynomial-time algorithm. When the jobs have the same rejection penalty, the problem can be solved
in polynomial time. Finally, a 2-approximation algorithm and a fully polynomial-time approximation scheme are given for the
problem.
c© 2008 Published by Elsevier B.V.

Keywords: Scheduling; Rejection penalty; Fully polynomial-time approximation scheme

1. Introduction

The unbounded parallel batch machine scheduling problem with release dates and rejection can be described as
follows. There are n jobs J1, . . . , Jn with each job J j having a processing time p j , a release date r j , and a rejection
penalty w j . Each job J j is either rejected with a rejection penalty w j having to be paid, or accepted and processed on
the parallel batch machine. The parallel batch machine can process a number of jobs simultaneously as a batch. The
jobs in the same batch have the same starting time and completion time. The processing time of a batch is defined as the
longest processing time of the jobs contained in it. The objective is to minimize the sum of makespan of the accepted
jobs and total rejection penalty of the rejected jobs. Let R be the set of the rejected jobs. Using the general notation
for scheduling problem introduced by Graham et al. [9], the problem is denoted by 1|p-batch, r j |Cmax +

∑
J j ∈R w j .

In the last decade, there has been significant interest in scheduling problems that involve an element of batching.
The motivation for batching jobs is a gain in efficiency: it may be cheaper and faster to process jobs in a batch than to

I Research supported by NSFC (10671183), NSFC-RGC (70731160633) and SRFDP (20070459002).
∗ Corresponding author. Tel.: +86 371 67767835.

E-mail address: yuanjj@zzu.edu.cn (J. Yuan).

0304-3975/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.tcs.2008.02.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82114783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:yuanjj@zzu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2008.02.015

284 L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289

process them individually. The fundamental model of parallel batch machine scheduling was first introduced by Lee
et al. [11] with the restriction that the number of the jobs in each batch is bounded by a number b. This bounded model
is motivated by the burn-in operations in semiconductor manufacturing. For example, a batch of integrated circuits
(jobs) may be put inside an oven of limited size to test for their thermal standing ability. The circuits are heated
inside the oven until all circuits are burned. The burn-in time of the circuits (job processing times) may be different.
When a circuit is burned, it has to wait inside the oven until all circuits are burned. Therefore, the processing time
of a batch of circuits is the longest processing time of the jobs in the batch. Brucker et al. [1] provided an extensive
discussion of the unbounded version of the parallel batch machine scheduling. For the problem 1|p-batch, r j |Cmax,
Lee and Uzsoy [12] proposed a polynomial-time dynamic programming algorithm. Deng and Zhang [5] proved that
the problem 1|p-batch, r j |

∑
w j C j is binary NP-hard. Cheng et al. [4] proved that the problem 1|p-batch, r j |Lmax

is binary NP-hard. Liu et al. [13] provided a pseudo-polynomial-time algorithm for the problem 1|p-batch, r j | f ,
where f ∈ {Cmax, Lmax,

∑
(w j)C j ,

∑
(w j)U j ,

∑
(w j)T j }. In addition, more recent developments on this topic can

be found in [2].
In classical scheduling literatures, all jobs must be processed and no rejection is allowed. However, in real

applications, this may not be true. Due to the limited resources, the scheduler can have the option to reject some
jobs. The machine scheduling problem with rejection was first introduced by Bartal et al. [3]. They studied the off-line
version as well as the on-line version on identical parallel machines. The objective is to minimize the sum of makespan
of the accepted jobs and total rejection penalty of the rejected jobs. After that, the machine scheduling problem with
rejection received more and more attentions. Seiden [14] presented a better on-line algorithm if preemption is allowed
to all jobs. Hoogeveen, Skutella and Woeginger [10] considered the off-line multi-processor scheduling problem with
rejection when preemption is allowed. Zhang et al. [15] proved the single machine scheduling problem with release
date and rejection to minimize makespan is binary NP-hard. They also proposed a pseudo-polynomial-time algorithm
and a fully polynomial-time approximation scheme for the problem. Engels et al. [6] considered the single machine
scheduling with rejection to minimize the sum of weighted completion times of the scheduled jobs and total rejection
penalty of the rejected jobs. Epstein, Noga and Woeginger [7] considered on-line scheduling problem of unit-time
jobs with rejection to minimize the total completion time.

In this paper, we consider the unbounded parallel batch machine scheduling with release dates and rejection. The
objective is to minimize the sum of makespan of the accepted jobs and total rejection penalty of the rejected jobs.
We show that this problem is binary NP-hard and provide a pseudo-polynomial-time algorithm. When the jobs have
the same rejection penalty, the problem can be solved in polynomial time. Finally, a 2-approximation algorithm and a
fully polynomial-time approximation scheme are given for the problem.

2. NP-hardness proof

Theorem 2.1. The scheduling problem 1|p-batch, r j |Cmax +
∑

J j ∈R w j is binary NP-hard.

Proof. The decision version of the problem is clearly in NP. We use the NP-complete Partition problem (Garey and
Johnson [8]) for the reduction.

Partition problem: Given t positive integers a1, a2, . . . , at with
∑t

i=1 ai = 2B, is there a subset S ⊂ {a1, a2, . . . , at }

such that
∑

ai ∈S ai = B?
For a given instance of the Partition problem, we construct an instance of the decision version of problem

1|p-batch, r j |Cmax +
∑

J j ∈R w j as follows.

• n = 2t + 1 jobs.
• For i = 1, we have a “heavy” job J1 with (r1, p1, w1) = (0, 2t+1 B, 2t+2 B) and a “light” job J2 with

(r2, p2, w2) = (0, 2t+1 B + 2a1, a1).
• For each 2 ≤ i ≤ t , we have a “heavy” job J2i−1 with

(r2i−1, p2i−1, w2i−1) =

(
i−1∑
k=1

2t+2−k B, 2t+2−i B, 2t+2 B

)

and a “light” job J2i with (r2i , p2i , w2i) = (
∑i−1

k=1 2t+2−k B, 2t+2−i B + 2ai , ai).

L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289 285

• For j = 2t + 1, we only have a “heavy” job J2t+1 with

(r2t+1, p2t+1, w2t+1) = ((2t+2
− 2)B, 0, 2t+2 B).

• The threshold value is defined by Y = (2t+2
− 1)B.

• The decision asks whether there is a schedule π such that Cmax +
∑

J j ∈R w j ≤ Y .

It can be observed that the above construction can be done in polynomial time. Assume first that the Partition
problem has a solution S such that

∑
ai ∈S ai = B. We construct a schedule such that Cmax +

∑
J j ∈R w j ≤ Y by the

following way: If ai ∈ S, we assign the jobs J2i−1 and J2i as a batch Bi . If ai 6∈ S, we assign the job J2i−1 as a
batch Bi . We also assign the job J2t+1 as a batch Bt+1. Reject all other jobs and process the batches in the order of
B1, . . . , Bt+1. It is easy to verify that

Cmax +

∑
J j ∈R

w j =

∑
ai ∈S

(2t+2−i B + 2ai) +

∑
ai 6∈S

2t+2−i B +

∑
ai 6∈S

ai = (2t+2
− 1)B = Y.

Conversely, suppose that there is a schedule π such that Cmax +
∑

J j ∈R w j ≤ Y . We are ready to show that the
Partition problem has a solution. Denote by A and R the sets of accepted jobs and rejected jobs, respectively. We have
the following claims.

Claim 1. J2i−1 ∈ A for each 1 ≤ i ≤ t + 1 and Cmax ≥ (2t+2
− 2)B.

Proof. If there exists some job J2i−1 ∈ R with 1 ≤ i ≤ t+1, then we have Cmax+
∑

J j ∈R w j ≥ w2i−1 = 2t+2 B > Y ,
a contradiction. Thus, we have J2i−1 ∈ A for each 1 ≤ i ≤ t + 1. Since J2t+1 ∈ A, we have Cmax ≥ r2t+1 =

(2t+2
− 2)B. �

Claim 2. For each pair i and j with 1 ≤ i < j ≤ t + 1, J2i−1 and J2 j−1 cannot be contained in the same batch.

Proof. Otherwise, there exist two jobs J2i−1 and J2 j−1 (i < j) contained in the same batch. Then we have

Cmax ≥ r2 j−1 + p2i−1 ≥ r2i+1 + p2i−1 ≥

i∑
k=1

2t+2−k B + 2t+2−i B = 2t+2 B > Y,

a contradiction. �

By Claim 2, all “heavy” jobs {J2i−1 : 1 ≤ i ≤ t +1} must belong to t +1 distinct batches. For 1 ≤ i ≤ t +1, let Bi
be the batch containing J2i−1 in π . Furthermore, by Claim 1, only the “light” jobs {J2i : 1 ≤ i ≤ t} can be rejected.

Claim 3. If J2i ∈ A, then we have J2i ∈ Bi .

Proof. Assume to the contrary that there exists a job J2i ∈ A such that J2i 6∈ Bi . If J2i 6∈ Bk for all 1 ≤ k ≤ t + 1,
then we have

Cmax ≥

t∑
k=1

p2k−1 + p2i ≥

t∑
k=1

2t+2−k B + 2t+2−i B ≥

t∑
k=1

2t+2−k B + 4B = 2t+2 B > Y,

a contradiction. If J2i ∈ Bk for some k with 1 ≤ k ≤ t + 1 and k 6= i , we consider two possibilities. When i < k, we
have

Cmax ≥ r2k−1 + p2i ≥ r2i+1 + p2i ≥

i∑
j=1

2t+2− j B + 2t+2−i B = 2t+2 B > Y,

a contradiction. When i > k, we have

Cmax ≥ r2i + p2k−1 ≥ r2k+2 + p2k−1 =

k∑
j=1

2t+2− j B + 2t+2−k B = 2t+2 B > Y,

a contradiction again. �

286 L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289

By Claims 2 and 3, we have Bi = {J2i−1, J2i } if J2i ∈ A, and Bi = {J2i−1} if J2i ∈ R. Let S = {ai : J2i ∈ R}.
We are ready to show that S is a solution of the Partition problem.

Since Cmax ≥ (2t+2
− 2)B and Cmax +

∑
J j ∈R w j ≤ Y = (2t+2

− 1)B, we have
∑

ai ∈S ai =
∑

J2i ∈R w2i ≤ B. If∑
ai ∈S ai < B, then we have

Cmax +

∑
J j ∈R

w j ≥

∑
J2i ∈A

p2i +

∑
J2i ∈R

p2i−1 +

∑
J2i ∈R

w2i

=

∑
ai 6∈S

(2t+2−i B + 2ai) +

∑
ai ∈S

2t+2−i B +

∑
ai ∈S

ai

=

t∑
i=1

2t+2−i B + 2

(∑
ai 6∈S

a j +

∑
ai ∈S

a j

)
−

∑
ai ∈S

a j

>

t∑
i=1

2t+2−i B + 2B + B

= (2t+2
− 1)B

= Y,

a contradiction. Hence, we have
∑

ai ∈S ai = B, and so S is a solution of partition problem. Theorem 2.1 follows. �

3. A dynamic programming algorithm

For a schedule π , we say that the accepted jobs are processed in the LPT-rule in π if, for every two accepted jobs
Ji and J j , pi > p j implies that Ji is processed no later than J j in π .

Lemma 3.1. For problem 1|p-batch, r j |Cmax +
∑

J j ∈R w j , there exists an optimal schedule such that the accepted
jobs are processed in the LPT-rule.

Proof. Otherwise, there exist two accepted jobs Ji and J j with pi > p j such that Ji is processed later than J j . Then
we put Ji into the batch containing J j . Clearly, this does increasing the objective value. A finite number of repetitions
of this procedure yields an optimal schedule of the required form. �

Based on Lemma 3.1, we only consider the schedules in which the accepted jobs are processed in the LPT-rule.
Assume that jobs have been indexed such that p1 ≥ · · · ≥ pn . We first introduce two useful notations.

• A j (k, W) is the optimal objective function value of the following scheduling problem: (1) The jobs in consideration
are J1, . . . , J j . (2) J j is accepted. (3) In the last batch, Jk is the job with the minimum index. (4) the total rejection
penalty is exactly W .

• R j (k, W) is the optimal objective function value of the following scheduling problem: (1) The jobs in consideration
are J1, . . . , J j . (2) J j is rejected. (3) In the last batch, Jk is the job with the minimum index. (4) the total rejection
penalty is exactly W .

In an optimal schedule for the first j jobs which assumes either A j (k, W) or R j (k, W), we distinguish the following
four possibilities for J j−1 and J j .

Case 1. Both J j−1 and J j are rejected.
Since J j is rejected, in the corresponding optimal schedule for J1, . . . , J j−1, Jk is still the job with the minimum

index in the last batch and the total rejection penalty among J1, . . . , J j−1 is W − w j . Thus, we have R j (k, W) =

R j−1(k, W − w j) + w j since J j−1 is rejected.

Case 2. J j−1 is accepted and J j is rejected.
Similar to case 1, we have R j (k, W) = A j−1(k, W − w j) + w j .

Case 3. J j−1 is rejected and J j is accepted.

L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289 287

If k = j , then J j consists the last batch. Thus, we have A j (j, W) = min0≤k′≤ j−2{max{R j−1(k′, W) − W, r j } +

p j + W }. If k < j , then both Jk and J j belong to the last batch. Thus, we have A j (k, W) = max{R j−1(k, W) − W −

pk, r j } + pk + W . In conclusion, we have

A j (k, W) =

{
min

0≤k′≤ j−2
{max{R j−1(k′, W) − W, r j } + p j + W }, if k = j;

max{R j−1(k, W) − W − pk, r j } + pk + W, otherwise.

Case 4. Both J j−1 and J j are accepted.
Similar to case 3, we have

A j (k, W) =

{
min

1≤k′≤ j−1
{max{A j−1(k′, W) − W, r j } + p j + W }, if k = j;

max{A j−1(k, W) − W − pk, r j } + pk + W, otherwise.

Combining the above four cases, we have the following dynamic programming algorithm DPA.

Dynamic programming algorithm DPA

The boundary conditions:

A1(1, 0) = r1 + p1 and A1(k, W) = ∞ for any k 6= 1 or W 6= 0.

R1(0, w1) = w1 and R1(k, W) = ∞ for any k 6= 0 or W 6= w1.

The recursive function: If k = j , then

A j (j, W) = min


min

0≤k′≤ j−2
{max{R j−1(k′, W) − W, r j } + p j + W },

min
1≤k′≤ j−1

{max{A j−1(k′, W) − W, r j } + p j + W }.

If k < j , then

A j (k, W) = min

{
max{R j−1(k, W) − W − pk, r j } + pk + W,

max{A j−1(k, W) − W − pk, r j } + pk + W.

Furthermore,

R j (k, W) = min{A j−1(k, W − w j) + w j , R j−1(k, W − w j) + w j }.

The optimal value is given by

min
{

min{An(k, W), Rn(k, W)} : 0 ≤ k ≤ n and 0 ≤ W ≤

∑
w j

}
.

Theorem 3.2. The dynamic programming algorithm DPA solves 1|p-batch, r j |Cmax +
∑

J j ∈R w j in O(n2∑w j)

time.

Proof. The correctness of the algorithm is guaranteed by the above discussion. The recursive function has at most
O(n2∑w j) states. If k = j , each iteration costs O(n) time; otherwise, each iteration costs a constant time. Hence,
the total running time is bounded by O(n2∑w j). �

Specifically, if w j = w for j = 1, . . . , n, then W ∈ { jw : 1 ≤ j ≤ n}. That is, there are at most n choices for each
W in the above DPA. Thus, we have the following corollary.

Corollary 3.3. The dynamic programming algorithm DPA solves 1|p-batch, r j , w j = w|Cmax +
∑

J j ∈R w j in O(n3)

time.

288 L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289

4. Approximation algorithms

4.1. A 2-approximation algorithm

Assume that S is a set of jobs. We use p(S) = maxJ j ∈S p j and w(S) =
∑

J j ∈S w j to denote the processing time
and the total rejection penalty of S, respectively. Now, we propose a 2-approximation algorithm for the considered
problem.

Approximation algorithm A

Step 1. For each t ∈ {r j : j = 1, . . . , n} and p ∈ {p j : j = 1, . . . , n}, we divide the jobs into two sets of jobs such
that S1(t, p) = {J j : r j ≤ t and p j ≤ p} and S2(t, p) = {J j : r j > t or p j > p}.

Step 2. For each S1(t, p) and S2(t, p) obtained from Step 1, we accept and process all jobs in S1(t, p) as a batch
starting at time t on the machine, and reject the jobs in S2(t, p). The resulting schedule is denoted by π(t, p).

Step 3. Let Z(t, p) be the value of the objective function for each π(t, p). Among all the schedules obtained above,
select the one with the minimum Z(t, p) value. �

Let π be the schedule obtained by the above approximation algorithm. Let Z and Z∗ be the objective values of the
schedule π and an optimal schedule π∗, respectively.

Theorem 4.1. Z ≤ 2Z∗ and the bound is tight.

Proof. Let A∗ and R∗ be the sets of the accepted jobs and the rejected jobs in π∗, respectively. Let r∗
= max{r j :

J j ∈ A∗
} and p∗

= max{p j : J j ∈ A∗
}. By the definitions of r∗ and p∗, we have S2(r∗, p∗) = {J j : r j > r∗ or p j >

p∗
} ⊆ R∗. Then, we have Z∗

≥ max{r∗, p∗
} + w(S2(r∗, p∗)). Thus, we have

Z ≤ Z(r∗, p∗) = r∗
+ p∗

+ w(S2(r
∗, p∗)) ≤ 2Z∗.

To show that the bound is tight, we consider the following instance with 2 jobs: (r1, p1, w1) = (0, 1, 2),
(r2, p2, w2) = (1, 0, 2). It is easy to verify that Z(0, 0) = w1 +w2 = 4, Z(0, 1) = Z(1, 0) = 3 and Z = Z(1, 1) = 2.
However, the optimal schedule accepts both J1 and J2 with J1 starting its processing at time 0 followed by J2. That
is, Z∗

= 1. Thus, we have Z = 2 = 2Z∗. �

4.2. A fully polynomial-time approximation scheme

Let Z be the objective value of the above approximation algorithm. Let Z∗ be the optimal objective value. By
Theorem 4.1, we have Z∗

≤ Z ≤ 2Z∗. For any job J j with w j > Z , it is easy to see that J j ∈ A∗. Otherwise,
we have Z∗

≥ w j > Z ≥ Z∗, a contradiction. If we modify the rejection penalty of such a job J j by setting
wi = Z , the optimal objective value does not change. Thus, without loss of generality, we can assume that w j ≤ Z
for j = 1, . . . , n. Now, we propose a fully polynomial-time approximation scheme Aε for this problem.

Fully polynomial-time approximation scheme Aε

Step 1. For any ε > 0, set M =
εZ
2n . Given an instance I , we define a new instance I ′ by rounding the rejection

penalty of the jobs in I such that w′

j = b
w j
M cM , for j = 1, . . . , n.

Step 2. Apply the dynamic programming algorithm DPA to instance I ′ to obtain an optimal schedule π∗(I ′) for
instance I ′.

Step 3. Replace the modified rejection penalty w′

j by the original rejection penalty w j in π∗(I ′) for each
j = 1, . . . , n to obtain a feasible solution π for instance I . �

Let Zε be the objective value of schedule π . We have the following theorem.

Theorem 4.2. Zε ≤ (1 + ε)Z∗ and the running time of Aε is O(n4

ε
).

Proof. Let Z∗(I ′) be the optimal objective value of schedule π∗(I ′). From Step 1 of Aε , we have w′

j ≤ w j < w′

j +M ,
and so, Z∗(I ′) ≤ Z∗. Replace w′

j by w j for each j = 1, . . . , n, we have

Zε ≤ Z∗(I ′) +

n∑
j=1

(w j − w′

j) ≤ Z∗
+ nM ≤ Z∗

+
εZ

2
≤ (1 + ε)Z∗.

L. Lu et al. / Theoretical Computer Science 396 (2008) 283–289 289

Since w j ≤ Z for j = 1, . . . , n, we have
∑n

j=1b
w j
M c ≤

2n
ε

∑n
j=1

w j
Z ≤

2n2

ε
. Note that w′

j = b
w j
M cM for

j = 1, . . . , n. Then, in the dynamic programming algorithm, we have W ∈ {k M : 0 ≤ k ≤
∑n

j=1b
w j
M c}. That is,

there are at most
∑n

j=1b
w j
M c = O(n2

ε
) choices for each W in DPA. So, the running time of DPA (also Aε) is O(n4

ε
).

Theorem 4.2 follows. �

References

[1] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, S.L. van de Velde, Scheduling a batching machine, Journal of Scheduling
1 (1998) 31–54.

[2] P. Brucker, S. Knust, Complexity results for scheduling problem. http://www.mathematik.uniosnabrueck.de/reseach/OR/class/2007.
[3] Y. Bartal, S. Leonardi, A.M. Spaccamela, J. Sgall, L. Stougie, Multiprocessor scheduling with rejection, SIAM Journal on Discrete

Mathematics 13 (2000) 64–78.
[4] T.C.E. Cheng, Z.H. Liu, W.C. Yu, Scheduling jobs with release dates and deadlines on a batching processing machine, IIE Transactions 33

(2001) 685–690.
[5] X. Deng, Y.Z. Zhang, Minimizing mean response time for batch processing systems, Lecture Notes on Computer Science 1627 (1999)

231–240.
[6] D.W. Engels, D.R. Karger, S.G. Kolliopoulos, S. Sengupta, R.N. Uma, J. Wein, Techniques for scheduling with rejection, Journal of

Algorithms 49 (2003) 175–191.
[7] L. Epstein, J. Noga, G.J. Woeginger, On-line scheduling of unit time jobs with rejection: Minimizing the total completion time, Operations

Research Letters 30 (2002) 415–420.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
[9] R.L. Graham, E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling:

A survey, Annals of Discrete Mathematics 5 (1979) 1–15.
[10] H. Hoogeveen, M. Skutella, G.J. Woeginger, Preemptive scheduling with rejection, Mathematics Programming 94 (2003) 361–374.
[11] C.-Y. Lee, R. Uzsoy, L.A. Martin-Vega, Efficient algorithms for scheduling semiconductor burn-in operations, Operations Research 40 (1992)

764–775.
[12] C.-Y. Lee, R. Uzsoy, Minimizing makespan on a single batch processing machine with dynamic job arrivals, International Journal of

Production Research 37 (1999) 219–236.
[13] Z.H. Liu, J.J. Yuan, T.C.E. Cheng, On scheduling an unbounded batch machine, Operations Research Letters 31 (2003) 42–48.
[14] S. Seiden, Preemptive multiprocessor scheduling with rejection, Theoretical Computer Science 262 (2001) 437–458.
[15] L.Q. Zhang, L.F. Lu, J.J. Yuan, Single machine with release date and rejection to minimize makespan, EJOR (submitted for publication).

http://www.mathematik.uniosnabrueck.de/reseach/OR/class/2007

	The unbounded parallel batch machine scheduling with release dates and rejection to minimize makespan
	Introduction
	NP-hardness proof
	A dynamic programming algorithm
	Approximation algorithms
	A 2-approximation algorithm
	A fully polynomial-time approximation scheme

	References

