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Abstract

In his work on P-partitions, Stembridge de0ned the algebra of peak functions �, which
is both a subalgebra and a retraction of the algebra of quasi-symmetric functions. We show
that � is closed under coproduct, and therefore a Hopf algebra, and describe the kernel of
the retraction. Billey and Haiman, in their work on Schubert polynomials, also de0ned a new
class of quasi-symmetric functions—shifted quasi-symmetric functions—and we show that � is
strictly contained in the linear span � of shifted quasi-symmetric functions. We show that � is
a coalgebra, and compute the rank of the nth graded component.

R	esum	e
Dans ses travaux sur les P-partitions, Stembridge d3e0nit l’alg5ebre � des fonctions de pics.

Cette alg5ebre peut être vue comme une sous-alg5ebre ou un quotient de l’alg5ebre des fonctions
quasi-sym3etriques. Nous montrons ici que � est ferm3ee sous le coproduit, et est donc une
alg5ebre de Hopf. Nous d3ecrivons aussi le noyau du quotient ci-dessus. D’autre part, dans leurs
travaux sur les polynômes de Schubert, Billey et Haiman ont d3e0ni une nouvelle classe de
fonctions quasi-sym3etriques: les fonctions quasi-sym3etrique d3ecal3e. Nous montrons que � est
strictement contenue dans l’espace lin3eaire � des fonctions quasi-sym3etrique gauchis. Puis nous
montrons que � est une coalg5ebre et calculons les dimensions des composantes de gauchis n.
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1. Introduction

Schur Q functions 0rst arose in the study of projective representations of Sn [7].
Since then they have appeared in variety of contexts including the representations
of Lie superalgebras [8] and cohomology classes dual to Schubert cycles in isotropic
Grassmanians [4,6]. While studying the duality between skew Schur P and Q functions
and their connection to the Schubert calculus of isotropic Qag manifolds, we were led
to their quasi-symmetric analogues: the peak functions of Stembridge [10]. We show
that the linear span of peak functions is a Hopf algebra (Theorem 2.2). We also
show that these peak functions are contained in the strictly larger set of shifted quasi-
symmetric functions (Theorem 3.6) introduced by Billey and Haiman [1]. We re-
mark that the quasi-symmetric functions here are not any apparent specialization of the
quasi-symmetric q-analogues of Hivert [3].

From extensive calculations, we believe that the set of all shifted quasi-symmetric
functions form a Hopf algebra, but at present we can only show that:
The set of all shifted quasi-symmetric functions forms a graded coalgebra whose

nth graded component has rank 
n, where 
n is given by the recurrence


n = 
n−1 + 
n−2 + 
n−4

with initial conditions 
1 = 1; 
2 = 1; 
3 = 2; 
4 = 4.
We shall prove this result (Theorems 3.2 and 4.3) and in addition shall establish

some other properties of these functions.
A composition �= [�1; �2; : : : ; �k ] of a positive integer n is an ordered list of pos-

itive integers whose sum is n. We denote this by � � n. We call the integers �i the
components of �, and denote the number of components in � by k(�). There exists a
natural one-to-one correspondence between compositions of n and subsets of [n − 1].
If A= {a1; a2; : : : ; ak−1} ⊂ [n − 1], where a1 ¡a2 ¡ · · ·¡ak−1, then A corresponds
to the composition, �= [a1 − a0; a2 − a1; : : : ; ak − ak−1], where a0 = 0 and ak = n. For
ease of notation, we shall denote the set corresponding to a given composition � by
I(�). For compositions � and �, we say that � is a re=nement of � if I(�) ⊂ I(�),
and denote this by � 4 �.

For any composition �= [�1; �2; : : : ; �k ] we denote by M�, the monomial quasi-
symmetric function [2]:

M� =
∑

i1¡i2¡···¡ik

x�1
i1 ; : : : ; x

�k
ik :

We de0ne M0 = 1, where 0 denotes the unique empty composition of 0. We denote by
F�, the fundamental quasi-symmetric function [2]:

F� =
∑

�4�

M�:
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De�nition 1.1. For any subset A ⊂ [n−1], let A+1 be the subset of {2; : : : ; n} formed
from A by adding 1 to each element of A. Let � � n. Then, we de0ne

�� =
∑

��n
I(�)⊂I(�)∪(I(�)+1

2k(�)M�:

This is the natural extension of the de0nition of peak functions given in [10].

Example 1.2. We shall often omit the brackets that surround the components of a
composition.

If �= 21, then I(�) = {2}, and I(�) + 1 = {3}. Hence

�21 = 4M21 + 4M12 + 8M111:

Let Un be the Z-module of quasi-symmetric functions spanned by {M�}��n and let
�= ⊕n¿0 �n be the graded Z-algebra of quasi-symmetric functions. This is a Hopf
algebra [5] with coproduct given by

V(M�) =
∑

�=�·�
M� ⊗M�;

where � · � is the concatenation of compositions � and �.

Example 1.3. V(M32) = 1 ⊗M32 +M3 ⊗M2 +M32 ⊗ 1.

We compute the coproduct of the functions ��.

Lemma 1.4. For any composition � � n we have that

V(��) = 1 ⊗ �� +
∑

��·a ⊗ ��(b·�); (1)

where the sum is over all ways of writing � as ” · (a+b) ·�, that is, the concatenation
of compositions ” and �, and a component of � written as the sum of numbers a¿ 0,
b¿ 0. Also �(b · �) = [1 + �1; �2; : : : ] if b= 1 and b · � otherwise.

We shall use this result to show that certain subsets of functions �� span coalgebras
(Theorems 2.2 and 3.2).

Proof. De0nition 1:1 is equivalent to

�� =
∑

��n
�∗4�

2k(�)M�;
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where �∗ is the re0nement of � obtained by replacing all components �i ¿ 1, for i¿ 1,
by [1; �i − 1]. Thus, the LHS of Eq. (1) is equal to

∑

��n
�∗4�
�=�·!

2k(�)M� ⊗M! =
∑

�·!�n
(�·!)∗4�

2k(�)M� ⊗ 2k(!)M!: (2)

Let 2k(�)M� ⊗ 2k(!)M! be a term of this sum with � � m. If m= 0, then the term
is 1 ⊗ 2k(!)M!, where !∗ 4 �, and it appears in the summand 1 ⊗ �� on the RHS of
Eq. (1). If m¿ 0, then the term can only appear in one summand on the RHS of
Eq. (1), namely �”·a ⊗ ��(b·�) with ” · a � m. To show that it does indeed appear, we
need to prove that �∗ 4 ” · a and !∗ 4 �(b · �). Let !∗∗ be the re0nement of !∗

obtained by replacing the part !1 by [1; !1 − 1], if !1 ¿ 1. We have that

�∗ · !∗∗ = (� · !)∗ 4 ” · (a+ b) · �
which implies that �∗ 4 ” · a, and !∗∗ 4 b · � 4 �(b · �).

If ! � 0 or !1 = 1, then !∗ = !∗∗ 4 �(b · �). However, if !1 ¿ 1, then there are two
possible cases: either !1 6 b, or b= 1 and !1 − 1 6 �1. In the former case !∗ 4
b · �=�(b · �), while in the latter !1 6 1 + �1, whence !∗ 4 [1 + �1; �2; : : : ] =�(b · �).
Conversely, it is easy to see that all terms belonging to the tensor 1⊗ �� on the RHS
of Eq. (1) also appear in Eq. (2). Now let 2k(�)M� ⊗ 2k(!)M! be a term belonging to
a tensor �”·a ⊗ ��(b·�) on the RHS of Eq. (1). To show that it appears in Eq. (2) we
must prove that (� · !)∗ 4 ” · (a + b) · �. We have that �∗ 4 ” · a and !∗ 4 �(b · �),
which imply that

(� · !)∗ = �∗ · !∗∗ 4 �∗ · !∗ 4 ” · a · �(b · �):
If b= 0 or b¿ 1, then

(� · !)∗ 4 ” · a · �(b · �) = ” · a · b · � 4 ” · (a+ b) · �:
If b= 1, then !∗ 4 �(b · �) = [1 + �1; �2; : : : ] implies that

!∗∗ = [1; : : : ] 4 [1; �1; : : : ] = b · �:
Therefore,

(� · !)∗ = �∗ · !∗∗ 4 ” · a · b · � 4 ” · (a+ b) · �
as desired.

Finally, we note that no term 2k(�)M� ⊗ 2k(!)M! appears more than once in
Eq. (2), or more than once in the expansion of the RHS of Eq. (1). The former is
clear, while the latter follows from the fact that if �”·a ⊗ ��(b·�) and �”′ ·a′ ⊗ ��(b′ ·�′ )
are distinct summands on the RHS of Eq. (1), then ” · a � k and ”

′ · a′
� l where

k �= l:
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2. The peak Hopf algebra

De�nition 2.1. For any composition �= [�1; �2; : : : ; �k ] we say that �� is a peak function
if �i = 1 ⇒ i= k.

Observe that if �� is a peak function and � � n, then I(�) ⊂ {2; : : : ; n− 1} such that
no two i in I(�) are consecutive.

Let �n be the Z-module spanned by all peak functions ��, � � n, and let �=⊕n¿0

�n. This was studied by Stembridge [10] who showed that the peak functions are
F-positive, are closed under product, and form a basis for �, and so the rank of �n is
the nth Fibonacci number. In addition, we also know the following about the algebra
of peaks, �.

Theorem 2.2. � is closed under coproduct.

Proof. If all components of a composition �, except perhaps the last, are greater than
1, then the same is true for all compositions ” · a and �(b · �) appearing in the RHS
of Eq. (1).

Let $ be the Z-linear map from � to � de0ned by $(F�) = �%(�), where %(�)
is the composition formed from �= [�1; �2; : : : ; �k ] by adding together adjacent com-
ponents �i; �i+1; : : : ; �i+j; where �i+l = 1 for l= 0; : : : ; j − 1, and either �i+j �= 1,
or i + j= k.

Example 2.3. If �= 31125111 then %(�) = 3453.

Stembridge [10] showed that $ : � → � is a graded surjective ring homomorphism,
and was an analogue of the retraction from the algebra of symmetric functions to Schur
Q functions. It is clear from our proof above that this morphism is in fact a Hopf
homomorphism. We can describe the kernel of $ as follows.

Lemma 2.4. The non-zero di@erences F� − F%(�) form a basis of the kernel of $.

Proof. Each diWerence F� − F%(�) is in the kernel of $ as $(F� − F%(�)) = 0 since
%(%(�)) =%(�). In addition, the non-zero diWerences are linearly independent as they
have diWerent leading terms. Letting fn denote the nth Fibonacci number, there are
2n−1 − fn such diWerences, and since

dim ker$= dim�n − dim�n

= 2n−1 − fn;

our result follows.
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3. The coalgebra of shifted quasi-symmetric functions

De�nition 3.1. For any composition �= [�1; �2; : : : ; �k ] � n we say that �� is a shifted
quasi-symmetric function (sqs-function) if n6 1 or �1 ¿ 1.

Observe that if �� is an sqs-function and � � n, then I(�) ⊂ {2; : : : ; n− 1}.
For integers n¿ 0, let �n be the Z-module spanned by all sqs-functions ��, � � n,

and let �= ⊕n¿0 �n.

Theorem 3.2. � is closed under coproduct.

Proof. If � is a composition of 0 or 1, or has 0rst component greater than 1, then
the same is true for all compositions ” · a and �(b · �) appearing in the RHS of
Eq. (1).

Unlike peak functions [10], sqs-functions are not F-positive since

�211 =F22 + F112 + 2F121 + F211 − F1111:

De�nition 3.3. For any composition, � � n, we de0ne the complement �c of � to be
the composition for which I(�c) = (I(�))c, the set complement of I(�) in [n− 1]. We
de0ne the graph G(�) of � to be the graph obtained from

by removing the edge (i; i + 1) if and only if i∈ I(�).

Observe that G(�c) contains the edge (i; i + 1) if and only if this edge is not
contained in G(�). These graphs will be used later to simplify the proof of
Theorem 3.6.

Let a word of length n be any n-tuple, w1; w2; : : : wn, and let a binary word of length
n be a word w1; w2; : : : ; wn such that wi ∈{0; 1} for all i. For 2 6 i 6 n − 1, let us
denote by 3(i), the composition [1i−2; 3; 1n−i−1] of n. For some subset S ⊂ {2; : : : ; n−1},
let us denote by

∧
i∈S 3(i), the composition of n for which G(

∧
i∈S 3(i)) has an edge

between vertices i and i+ 1 if and only if an edge exists between vertices i and i+ 1
in G(3(i)) for some i∈ S.

Example 3.4. Let S = {2; 3} ⊂ [3]. Then G(3(2)) is



N. Bergeron et al. / Discrete Mathematics 246 (2002) 57–66 63

and G(3(3)) is

hence G(
∧

i∈S 3(i)) is

so
∧

i∈S 3(i) is the composition 4:

De�nition 3.5. (Billey and Haiman [1]). Let � be a composition of n. Let A(I(�))
denote the set of all sequences j1 6 j2 6 : : : 6 jn in N such that we do not
have ji−1 = ji = ji+1, for any i∈ I(�). The shifted quasi-symmetric function �BH

� is
given by

�BH
� =

∑

J=( j1 ;:::; jn)
j16:::6jn
J∈A(I(�))

2|j|xj1 : : : xjn ;

where |j| denotes the number of distinct values ji in J .

Theorem 3.6. For any sqs-function �� we have that �� = �BH
� .

Proof. For each i∈ I(�) ⊂ [n− 1], ji−1 = ji = ji+1 is forbidden in any monomial

xj1xj2 : : : xji : : : xjn

appearing as a summand of the function �BH
� . This is equivalent to saying that M�

is a summand of �BH
� if and only if G(3(i)) �⊂ G(�) for all i∈ I(�). Therefore, at

least one of i− 1 or i must be the largest label of a vertex in a connected component
in G(�).

Now, when going from compositions of n to subsets of [n−1] we can do so using our
graphs, G. All we have to do is list the label of the vertex that is the largest in each
connected component, not listing n. We call these vertices the end-points. We are now
in a position to prove the equivalence of De0nitions 1:1 and 3:5 for sqs-functions. The
powers of 2 agree so we need only show that the indices of summation do too. To
see this, take any sqs-function �� and let i∈ I(�). Then M� is a summand in �BH

� if at
least one of i − 1 or i is an end-point in G(�). Therefore, i or i − 1 belongs to I(�),
and M� is a summand of ��. Conversely, if M� is a summand of ��, then this implies
that for each i∈ I(�), we have that i − 1 or i belongs to I(�), so one of i − 1 or i is
an end-point in G(�), so M� is a summand of �BH� :
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4. A basis for �

De�nition 4.1. Let �� be an sqs-function and � � n. We de0ne an internal peak i∈ I(�)
such that i − 1; i + 1 �∈ I(�), and i∈{3; : : : ; n− 2}.

Remark. Observe that the occurrence of an internal peak in the ith position in I(�) =
{w1; w2; : : :}, where w1 ¡w2 ¡: : : , is equivalent to having two components of �, say
�i; �i+1 such that �i+1 ¿ 2, and �i ¿ 2 if i �= 1, or �i ¿ 3 if i= 1.

We can now describe the basis of � as follows.

Theorem 4.2. The coalgebra � has a basis consisting of all sqs-functions �� where
I(�) contains no internal peak.

We sketch the proof of Theorem 4.2 later.

Theorem 4.3. The rank of �n is given by the recurrence


n = 
n−1 + 
n−2 + 
n−4

with initial conditions 
1 = 1, 
2 = 1, 
3 = 2, 
4 = 4.

This recurrence was suggested by a superseeker query [9].

Proof. By direct calculation we obtain that 
1 = 1, 
2 = 1, 
3 = 2, and 
4 = 4.

To obtain our recurrence, we observe that for each sqs-function, �� where � � n, we
can encode I(�) as a binary word of length n− 2, by placing a 1 in position i− 1 if i
is contained in I(�), and 0 otherwise. By this one-to-one correspondence, we see that
I(�) contains no internal peak if its corresponding binary word does not contain 010
as a subword.

We therefore, count binary words of length n that avoid the subword 010. Appending
either 1 or 0 to such a binary word of length n−1 gives one of length n, provided that
we have not created the subword 010 in the last three positions. Let an, bn, cn, and
dn enumerate those binary words of length n− 2 that avoid the subword 010 and end
in, respectively, 00, 01, 10, and 11. We then obtain the following four simultaneous
recursions.

an = an−1 + cn−1; bn = an−1 + cn−1; cn =dn−1; dn = bn−1 + dn−1:

Clearly, the number of I(�)s in [n− 1] with no internal peaks is given by


n = an + bn + cn + dn:
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However, by substituting in our recurrences we obtain


n = an + bn + cn + dn

= 2an−1 + bn−1 + 2cn−1 + 2dn−1

= 
n−1 + an−1 + cn−1 + dn−1

= 
n−1 + an−2 + bn−2 + cn−2 + 2dn−2

= 
n−1 + 
n−2 + dn−2

= 
n−1 + 
n−2 + bn−3 + dn−3

= 
n−1 + 
n−2 + an−4 + bn−4 + cn−4 + dn−4

= 
n−1 + 
n−2 + 
n−4:

We say that M� is a maximal term of �� if for any � higher in the partial order
of compositions M� is not a summand of ��. The following lemma is stated without
proof.

Lemma 4.4. Let �� be an sqs-function. Consider the collection S of all possible sets
derived from I(�) by adding either i−1 or i+1 to I(�) for all internal peaks i∈ I(�).
If M� is a maximal term of ��, then � is derived from

∧

i∈(I(�̃))c

I(�̃)∈S

3(i)

by eadding adjacent components equal to 1 together to give a component equal to 2
as often as possible.

Lemma 4.5. Let �� be an sqs-function, and let I(�) have an internal peak in the jth
position, then we have the following linear relation:

�� = �[�1 ;:::;�j−1;1;�j+1 ;:::;�k ] + �[�1 ;:::;�j ;1;�j+1−1;:::;�k ]

−�[�1 ;:::;�j−1;1;1;�j+1−1;:::;�k ]:

Proof. By De0nition 3:5 we have that the leading terms of �� determine the other
summands that belong to ��. Hence, by Lemma 4.4 it follows that the summands of
�� will be the union of the summands of �[�1 ;:::;�j−1;1;�j+1 ;:::;�k ] and �[�1 ;:::;�j ;1;�j+1−1;:::;�k ].
However, those summands that appear in both will be duplicated. By de0nition these
will be the summands of �[�1 ;:::;�j−1;1;1;�j+1−1;:::;�k ], and the result follows.

Proof of Theorem 4.2. From our relation in Lemma 4.5, it follows that any �� can be
rewritten as a linear combination of functions ��̃, where I(�̃) contains no internal peaks.
In addition, by Lemma 4.4 and De0nition 3:5 we have that the set of all sqs-functions
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�� where I(�) contains no internal peaks is linearly independent and thus forms a basis
for �: .
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