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1. INTRODUCTION 

The fundamental connections between the calculus of variations and the 
Sturmian theory for a real self-adjoint linear homogeneous differential 
equation of the second order rest upon the fact that equations of this latter 

type appear as the “Jacobi” or “accessory” differential equation for a simple 
integral variational problem. In turn, the involved variational principles are 
at the basis of the extension of the classical Sturmian theory to self-adjoint 
differential systems, as emanated from the basic work of nIarston Norse 
[&lo]. At a relatively early stage (see [I, and references to other literature 
there cited; 2]), it was realized that for certain variational problems the 

“accessory system” was a boundary problem involving a self-adjoint integro- 
differential equation. In particular, Lichtenstein [6] treated a boundar!- 
problem involving a single integro-differential equation of the second order 
and a special set of two-point boundary conditions by means of the theory of 

quadratic forms in infinitely many- variables. Under certain conditions, he 
established the existence of infinitely many eigenvalues, together with an 
expansion theorem for functions in terms of the corresponding eigenfunctions. 
Subsequently, Lichtenstein [7] used the results of his earlier paper to establish 
sufficient conditions for a weak relative minimum for a simple integral 
isoperimetric problem of the calculus of variations by expansion methods. 

Courant [I, Sects. 5, 131 treated an integro-differential boundary problem 
similar to that considered by Lichtenstein [6] by means of difference equa- 
tions. A few years after Lichtenstein’s paper [7], the author [ 1 I] considered a 
self-adjoint boundary problem involving a system of integro-differential 
equations and two-point boundary conditions, and in addition to the proof 
of the existence of infinitely many eigenvalues, he established comparison 
and oscillation theorems which are generalizations of such theorems of the 
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classical Sturmian theory and contain as special instances the comparison 
and oscillation theorems of the Morse generalization to self-adjoint differential 
systems; indeed, [l l] presented for the first time such theorems not involving 
any assumption of normality on subintervals. The method of proof of [Ill 
may be described as functional in nature, employing in particular the “Green’s 

matrix” for an integro-differential system as introduced by Tamarkin [18] 
and Jonah [4]. 

The present paper returns to the area of the earlier paper [ 111, and for a 
problem formulated in the general context of a Hamiltonian system with 
two-point boundary conditions there is a more detailed consideration of the 

interrelations that exist between such integro-differential systems and 
ordinary differential systems, although some of the basic techniques that are 
commonly employed for differential systems are no longer available for the 

study of integro-differential systems. 
Section 2 is devoted to the formulation of the self-adjoint integro-differential 

system and basic properties of such system, while Section 3 presents some 
preliminary comparative results for integro-differential and differential 
boundary problems. Section 4 establishes the existence of a partial Green’s 
matrix for the integro-differential boundary problem, together with a brief 

discussion of fundamental properties of this matrix. Section 5 is concerned 
with existence and properties of the set of eigenvalues and eigenfunctions of 
integro-differential boundary problems, and the area of comparison and 
oscillation theorems is surveyed in Section 6. Finally, Section 7 is devoted to 

remarks on interrelations between the methods employed herein and other 
possible methods of treatment, together with comments on the relationship 
between problems of the sort considered and generalized differential systems 
of the type previously treated by the author [13, 14, 161. 

Matrix notation is used throughout; in particular, matrices of one column 

are called vectors, and for a vector (y&), (LX = l,..., m), the norm 1 y  1 is 

given by [lrl I* + ... + lynl I 1 2 li2. The m x m identity matrix is denoted 

by &a 9 or merely by E when there is no ambiguity, and 0 is used indis- 
criminately for the zero matrix of any dimensions; the conjugate transpose of 
a matrix M is denoted by ML. If  M is an n x m matrix the symbol 11 fill1 
is used for the supremum of I My I on the unit closed ball {y: 1 y  / < 1) of 
complex m-space, C,,, . The relations M > N (M > N), are used to signify 
that M and N are hermitian matrices of the same dimensions and M - N 
is a nonnegative (positive) definite matrix. For typographical simplicity, if 
M = [M,,] and N = [NUB], (a =: l,..., m; fl = I ,..., r) are m x r matrices, 
then the 2m x r matrix P = [PJ, (u = I,..., 2m; p = l,..., r), with 

paa = K, > p,,,+u3 = N,, is denoted by (M; N). 
A matrix function M(t) = [M&t)] is called continuous, integrable, etc., 

if each element M,,(t) possesses the specified property. I f  a hermitian matrix 
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function M(t), t E [a, b] is such that M(t.J - M(tJ 2 0, (:<O), for 

cc s: t, <: t, ~~1 b, then M(t) is called nondecreasing (nonincreasing) on [a, b]. 

I f  a matrix function M(t) is a.c. (absolutely continuous) on [a, 61, then :W(t) 
signifies the matrix of derivatives at values where these derivatives exist, and 
zero elsewhere. Similarly, if M(t) is (Lebesgue) integrable on [a, b] then 
sf: M(t) dt denotes the matrix of integrals of respective elements of X(t). 

For a given compact interval [a, b] the symbols &,,[a, b], L),,Ja, b], !?,“[a, h], 
L’f,[a, b], 23%,Ju, b], and %,,[a, b] are used to denote the class of h 1,’ k 
matrix functions M(t) on [a, b] which are respectively continuous, (Lebesgue) 
integrable, (Lebesgue) measurable, and essentially bounded, measurable, 
and !/ Mix* integrable, of bounded variation, and absolutely continuous. 

For brevity, in the designation of one of the above classes whenever k = 1 
the double subscript “1~1” is reduced to merely “h.” Also, whenever a matrix 
function M(t) defined on a general interval I of the real line is such that 
-II E P,,k[a, b] for arbitrary compact intervals [a. b] of I, then JZ is said to be 
“locallv of class PI,,; on I,” with similar meanings for “locallv of class 0’ - h /; 
on I.” etc. 

2. FORMULATION AND BASIC PROPERTIES OF THE PRoBLEiu 

Corresponding to the manner in which the general self-adjoint Hamiltonian 
system of ordinary differential equations may be written (see, for example, 
[ 15; Chap. VII]), the integro-differential system to be considered is 

z,,[u, v] @) 7 --z”(t) + c@) +) - A*(t) z(t) + 1” X(t, 4 11~~) ds = 0. 
- I, 

L,[u, 2.1 (t) -7 u’(t) - A(t) u(t) - B(t) z(t) = 0, (2.1) 

in n-dimensional vector functions u(t), z(t). Moreover, for the subsequent 
discussion it is supposed that A(t), B(t), C(t) are 72 x n matrix functions on a 
given interval I on the real line, and N(t, s) is an II x TZ matrix function on 
Z x I satisfying on arbitrary compact subintervals [a, b] of Z the following 
hypothesis. 

(9) (i) A(t), B(t), C(t) are of class L’~,,[a, 61, and R(t) and C(t) are 
hermitian ; 

(ii) Z?(t) > 0 for t a.e. (almost eereryuhere), on [a, h]; 

(iii) N(t, s) is of chss !P on [a, b] :J [a, 61. and 

lyt, s) = [iv@, t)]* fOY t, s E [a, b] :< [a, 61. 
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For 9’ a linear subspace of Ca,, and [a, b] a compact subinterval of I there 

will be associated with (2.1) t wo-point boundary conditions of the form 

tiE9, T[u, U] = QC + 06 E YL (2.2) 

in the 2n-dimensional boundary vectors a = (u(a); u(b)), 4 = (o(a); v(b)), 

where Q is an hermitian 2n x 2n matrix and D = diag{--E,; &}. The 
boundary problem involving (2.1) and the boundary condition (2.2) is 

denoted bv 8. Let 9[a, b] denote the class of n-dimensional vector functions 
7 ~&[a, b] such that there exists a 5 E Qn2[u, b] satisfying with 7 the dif- 

ferential equation Ls[y, [] = 0 on [a, b]. The subclass of B[u, b] on which 
~(a) = 0 = 7(b) is designated by Q,Ju, b]. Also, the symbol .9[9] is used to 
denote the class (7: 17 E S?[u, 61, +j E 9’}. 

Note that for the problems treated herein an alternate set of hypotheses 
would merely require the coefficient matrix functions A(t), B(t), C(t) to be of 
class &[a, b] on arbitrary compact subintervals [a, b] of I, and that N(t, S) 

be of class f! on [a, 61 x [a, b]. With such modification of the above hypo- 
thesis ($3) the definition of the class B[u, b] would be altered te require the 
involved 5 to be of class 9na[u, b]. For a treatment of differential systems and 
generalized differential systems in the context of such modified hypotheses the 

reader is referred to [13]. Hypothesis (9~) follows the procedure of [15, 
Chap. VII], and under such conditions the Dirichlet functional i defined 
below is in a Hilbert space setting. 

Of basic importance for the present discussion is the fact that if 
(a, 5,) E !&2[u, b] x !iZ!,*[u, b], then the functionals 

are hermitian. Moreover, if rla E~[u, b]: 5,) (a = 1, 2), then although in 
general the 5, are not determined uniquely, the values of the functionals 
(2.3), (2.3’) are independent of the particular 5, associated with the qa , and 
consequently, in this case the symbols for these functionals are reduced to 

Jh~ 71~: a, bl and ][T, , ye: a, 4. Al so, in accord with common terminology, 
if 7 ~%+[a, b]: 5, the symbols J[q, 7: a, b] and p[q, 77: u, b] are further reduced 

to h; a, 4 and I[,; a, 61. 

LEMMA 2.1. If  (u, V) E O,[a, b] x ‘?lJu, b], and r) ECB[U, b]: 5, then 

p[u; z’, 7; 5: a, b] = +j*T[u, v] + j-” q*(t)LJu, v] (t) dt. 
(I 
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LEhlhI.4 2.2. If  (u, v) E &[a, b] ?< !&“[a, b] the following conditions urc 
equk~alent : 

(a) j[u; 2), 7); 5: a, b] = 0 for ?j E~o[u, b]: 5; 

(b) there exists a v,, such that vu E %,[a, 61, B[zl - z;,] = 0 a.e. on 
[a, b], U?Zd LJU, q)] (t) = 0 on [a, 61. 

LEMMA 2.3. Ifn E %,[a, b] there exists a vu such that (u; 27”) is a solution of 
(2. l), (2.2) if and only if there exists a v  such thut u E S’[u, b] : z’ and 

j[u; I!, 7); 1;: a> 61 = 0 .for 7j E Y,[a, b]: 5. 

LEnrJrx 2.4. 1f (U, 0) E tx:,[u, 61 x S,,*[a, b], the following conditions are 
equivalent: 

(a) j[u; z, 7; 5: a, b] = 0 for 7 E2[:3]; 

(b) there exists a zl,, such that v,, E %~[a, b], B[zj - T,] = 0 a.e. on 
[u, b], and T[u, zlO] E SL, L,[u. no] (t) = 0 on [a, b]. 

In particular, as for differential systems, one has the following result. 

COROLLARY. Zf [a, b] is a compact subinterzvzl of I, j[,: a, b] is nonneguth~e 
dejinite on Q[S] and there exists un element u E 8[.B] sutisjying j[u: a, b] = 0, 
then there exists a v  E d,[u, b], such that (u; 21) is n solution of (2.1) (2.2). 

The results of Lemmas 2.2 and 2.3 and those of Lemma 2.4 and its Corol- 

lary may be established by steps analogous to those used in the proofs of 
[13, Theorems 2.1 and 2.21. 

For [a, 61 a compact subinterval of I, let (.5K: a, 6) denote the following 
hypothesis. 

(SjK: a, b). K(t) is a nonnegative hermitiun n :z: n matrix function of class 
L’z,[a, b], and such that the set (t: t E [a, b], K(t) + 0) is of positive measure. 

For brevity, we introduce the notations 

m7l 1 72: a, 4 = (.’ +re*(G K(t) dt) dt, K[Q: u, b] ~-z K[Q , Q: a, b]; 
- r, 

(2.4) 

clearly K[q , qs: a, 61 is an hermitian functional on k!,12[u, 61 :C 9!na[u, b]. In 
particular, for K(t) = E, we write 

.%, , %I a, bl .~= fb 7,*(t) 7l(t) dt, E[vl: a, 61 - E[71 , 71: a, b]. (2.4’) 
- ,, 
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Now we present some readily established properties of solutions of the 
boundary problem 

(i) L,[u, V; h] (t) G L,[u, V] (t) - X(t) u(t) = 0, t E [a, 4, 
(ii) L,[u, V] (t) = 0, (2.5) 

(iii) u E Y, T[u, w] E 91, 

and the related nonhomogeneous system 

(9 Mu, v; 4 (0 ==f(G L,[% 4 (4 = 0, t E [a, Q 
(ii) u E Y, qu, v] E Yl, (2.6) 

. . . . . 
where hypotheses ($1, II, m: a, b) and (5 K: a, b) are supposed to be satisfied, 
and in (2.6) it is supposed thatfE !&[a, b]. Also, we set 

with similar meanings for f[~ , 7*; h: a, b] and f[rll; A: a, b]. 

LEMMA 2.5. if(u, ZI) is a solution of (2.6) then 

j[u, 7; A: a, 61 = EV, 7: a, 61; 

in particular, 

f [ f f ;  A: a, 61 = E[f, u: u, 61. 

COROLLARY 1. If (U1, vl) is a solution of (2.6) for A = A, and f = fi , 
and (ul , Q) is a so&ion CJ~ (2.6) for h = A2 and f = f2 , then 

(A, - 1,) K[u, , u2: a. 61 + E[f, , u2: a, b] - E[u, , fi: a, b] = 0. w3) 

COROLLARY 2. if (u, v) is a solution of (2.5) for a value A, then 

J[u; A: a, 6-j = 0. 

COROLLARY 3. If  (ul , q) is u solution of (2.5) for a value A, and (ue, vJ 
is a solution of (2.5) ,for a o&e A,, then (A, -A,) K[u, , u2: a, b] = 0. In 
particular, if(u, w) is a solution of (2.5) for a w&e h such that K[u: a, b] # 0, 
then h is real. 

For a compact subinterval [a,, , b,] of I, . m view of hypothesis (sjiii) there 
exists a constant @a, , b,] such that 11 N(t, s)li < k[a, , b,,] for 
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and with the aid of Schwa& inequality it follows that if r] E ti!,s[a, , b,], then 

.bo bu 
IJ I v*(t) fv(t, s) v(s) dt ds < k[a, , b,] (“‘0 / 77(t),z dt. (2.9) 

“0 (LiJ - “I, 

Moreover, since by hypothesis (!$) there is a constant c = c[aO , b,] such 
that 11 B(t)11 < c a.e. on [a,, b,], and as B(t) > 0 a.e. on [a,, b,], it then 
follows that B(t) - (l/c) B2(t) >, 0 a.e. on [a, , b,]. In view of these inequali- 
ties, and with the aid of [15, Problem VII.4.4] and a method similar to that 

employed in the proofs of [IS, Lemma 1’11.1 1.1 and its Corollary], one may 
establish the following result. 

LEMMA 2.6. For I,, = [a0 , b,] a compact s&interval of I and a constant d 

satisfying 0 < d < b, - a,, , there exist corresponding constants 

4 = Wo > 4 > 0, I1 = ll[Io , d] 3 0 

such that if [a, b] is a compact subinterval of I, with b - u > d, then fat 

arbitrary 7 E~[u, b] and s E [a, b] we have 

I[?: a, b] ;z &[I0 , d] 11 y(a)i2 + 1 q(b)i” + 1 ~(s)j” -r 1” 1 q’(t) ” dt; 
II 

- I,[& , d] jb / q(f)lf dt. 

(3. IO) 

0 

As in the case of differential systems, an important class of systems (2.5) 
involves a nonnegative hermitian matrix function B(t) which satisfies the 
following condition. 

(es: a, b). If [a, b] is a compact s&interval oj- I there exists a positive 
constant &,[a, b] such that B2(t) - &[a, b] B(t) 2 0 a.e. on [a, b]. 

N?th the aid of elementary integral inequalities one establishes readily the 
following result, which is somewhat complementary to that of Lemma 2.6. 
In this regard the reader is referred to [15, Problem iII.4.61 and a corres- 
ponding inequality in [15, p. 3881. 

LEMMA 2.7. Suppose that I, = [aO, b,] zs a compact s&interval of I jbr 
. . . . . 

which hypotheses (!$I, 11,~): a,, b,) and ($B: a,, , b,) hold. Then there exists a 
constant f,JI,J such that if [a, b] is a nondegenerate &interval of I,, then for 
arbitrary q E~[u, b] we have 

h: a, 61 :G ~,[A,1 ;I q(a)l” + I v(b)12 + jb [I v’(t>l’ + I dt)l’I dt; . (2.1 I) 
u 

409/54/l -7 
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Also, if 0 < d < b, - a, then there exists a constant ZJI,,] such that if [a, b] 
is a compact subinterval of I,, with b - a 2 d then for arbitrary 7 E 9[a, b] 
we have 

(2.11’) 

As for the differential system to which (2.1), (2.2) reduces for N(t, s) = 0, 
(see, for example, [15, Sects. VII.3, \II.9), for [a, b] a compact subinterval 
of I let /l[a, b] denote the vector space of n-dimensional vector functions 

c(t) which on [a, b] are solutions of the differential equation 

v’(t) + d*(t) z!(t) = 0 

and satisfy B(t) w(t) = 0 a.e. on [a, b]. That is, v  E cl[a, b] if and only if 
u(t) = 0, w(t) is a solution of the integro-differential system (2.1). I f  v  E cl[a, b] 
and 7 E~[u, b]: 5, it follows readily that w*(t) T(t) is constant on [a, b]. Also, 

for a given integro-differential problem (g) involving a subspace Y of 
C,, , the subspace of rl[a, b] on which the 2n-dimensional vector Dv belongs 
to S”’ will be denoted by (1{.Y’}. Clearly, v  E /l(Y) if and only if u(t) = 0, 
v(t) is a solution of (a). I f  cl(Y) is zero-dimensional, the boundary problem 
(.%#A) is said to be normal or to have order of abnormality equal to zero, whereas 
if /l{,Y} has dimension S > 0, the problem (9) is said to be abnormal, with 

order of abnormality equal to 6. If  zo,, , (V = I,..., 2n - d), is a basis for YL 
and so(t), (/3 = I,..., d,), is a basis for cl[a, b], then (a) is normal if and only if 
the 2n >< (2n - d + d,) matrix [zcly Dw,] has rank 2n - d + d, . I f  (g) has 
order of normality equal to S > 0, then this matrix has rank 2n - d f  dfl - 6, 
and upon deleting a suitable set zu,*r] = 0, (V = vi ,..., v8), of the conditions 

defining Y the remaining conditions zc’,,*~ = 0, (cr f  vi, j = l,..., S), defines 
a subspace .YU of 2n-dimensional space that is of dimension d + 6, is such 
that .Y C ,YU , and the corresponding integro-differential problem 

(i) L,[u, a; h] (t) = 0, I&, w] = 0, 

(ii) ii E :Yu , qu, w] E Yul 

t E [a, bl 
(2.1 I) 

is normal. Moreover, since +*D+j = 0 for arbitrary 7 E~[u, b] (see, [15, 
Lemma VII.3.2]), an n-dimensional vector function 7 belongs to g[q if and 
only if 7 belongs to Q[#,J. Also, (B,) . ts a normal problem equivalent to the 
original problem (B) in the following sense: If  (u(t); v(t)) is a nonidentically 
vanishing solution of (B’,) then u(t) + 0 on [a, b], and (u(t); w(t)) is a solution 
of(B), whereas if (u(t); w(t)) is a solution of (&B) there exist unique constants 

c,3 > (P = I,..., da) such that (u(t); w(t) + L&&t)) is a solution of (a’,). 
Let .Yfl denote the (2n - d,)-dimensional subspace of C, defined as 

cYo = ($: 2;*Drj = 0, for ZI E rl[a, b]). (2.12) 
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In particular, if (~49~) denotes the problem (9) with 9 the zero-dimensional 
subspace of Can , then the associated normal problem (aUo) determined by the 
above-described process is (W) with Y = .T(‘; that is, the system involving 

the integro-differential equation (2.1) and the boundary condition 

a E .%Y L ” , T[u, v] E 9;, . (2.13) 

For a normal problem (B), the condition that the matrix [zcl. De:,] be of rank 
3n - d 1 d, is equivalent to the condition that 

dim{.fP[&] n ,q?]l = dim .Y[.B]I + dim cY,,m -mm (2~2 - d) -1 d,, , 

so that dim{,Y[g] n cYfl> = d - d(, . Now consider with a given problem (~9) 
a second problem (a*) involving the same integro-differential system (2.1) 
and the boundary conditions 

fi E y* , T[u, zq E .Y, -, (2.14) 

where .Y+ is a second subspace of C,, . I f  dim .Y = d, dim .Y_ == d, , and 

each of the systems (S?), (B#), is normal, then dim[Y n .U;,] = d ~- c/0 and 
dim[.YT, n .YO] = d, - d,, . I f  9+ n 9” C .Y n Y; , then d ..s d, and (J,) is 
called a subproblem of (a’) of dimension d - d, . I f  d > d, then there esist 

d - d, linear forms O,[$] = O,*?,i, (T = l,..., d ~ d,) such that 

.Y: n <Y,, = (7j:7j E .Y' n Yc, , C?,[+j] = 0, T == I,..., d - d,;. (2.15) 

Now suppose that the matrix function K(t) satisfies the following additional 
hypothesis, which clearly holds if there exists a positive constant c such that 

K(t) gtz L-E, a.e. on 1. 

(sjiv: a, 6). [a, b] is a compact subinteraal qf I, and there e.~ists (I constant 
c = c[a, b] such that 

I+: a, b] :> cE[q: a, b], for 17 E Y[a, b]. (2.16) 

In view of the results of Lemmas 2.1-2.5 we have the following property of 

boundary problems (2.1), (2.2). 

LEMMA 2.8. If the boundary problem (~8) dejned by (2.1), (2.5) satiy?es 
hypotheses (%(i, ii, iii): a, b), (5K: a, b), (biv: a, 6) mzd is normal, then 

(i) there exists a value A, such that 

j[77; 0,: a, b] > Ofor arbitrary 7 =+ 0 belonging to U[a, b]; (2.17) 

(ii) all eigenvalues A of the boundary value problem (3) specijed bJl(2. I), 
(2.2) are real and satisf>r X > Ao; 

(iii) if (u; v) is an eigenfunction of (2) corresponding to an eigenzgalue A, 
then K[u: a, b] > 0. 
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3. SOME ConwmA-rm RESULTS FOR INTEGRO-DIFFERENTIAL AND 

DIFFERENTIAL BOUNDARY PROBLEMS 

As the results presented in the lemmas of Section 2 are of the type that 
feature prominently in the treatment of ordinary differential boundary 
problems, one might surmise that the overall theory of integro-differential 
boundary problems may be developed in a manner highly analogous to that 

commonly used for differential systems, as in [IS, Chap. VII]. That there are 
fundamental differences, however, is pointed out in [I 1, Sect. 41. For example, 
in general it is not true that for given initial values u”, ZIO there exists a solution 
(u(t), z(t)) of (2.1) assuming the values u(t,) = u”, o(t,) = w” at a given initial 
value t = to . This possibility is illustrated by the integro-differential system 

(2.1), with n = 1, A = 0, B = 1, C = 0, N(t, s) = t + s, a = 0, and b the 
positive zero of the polynomial I = bs + 408bQ - 2880. In this example 
the system (2.1) is equivalent to the scalar linear homogeneous integro- 
differential equation of the second order 

u”(t) - J’b (t + s) u(s) ds = 0, t E [O, b]. 
0 

(3.1) 

Clearly any solution of this equation is of the form 

u(t) = co + c,t + c,t’ + C,P, 

and upon substitution it is found that for b a positive zero of p(b) there exists 
a solution of (3.1) satisfying u(O) = u”, u’(0) = ZJO if and only if UO and d 
satisfy a linear equation. Moreover, if u”, vu0 are such that there exists a solu- 

tion of (3.1) satisfying u(O) = uO, u’(0) = v” then this solution is not unique, 
since u(t) = 4b5t2 + (40 - 5b”) t3 is a solution of (3.1) for which 
u(0) = 0 = u’(0). 

To illustrate another possibility for integro-differential systems that is 
different from the situation occurring for differential systems, consider the 
case of (2.1), (2.2) wherein n = 1, A = 0, B = 1, C = -1, N(t, s) = (&)-l, 
a = 0, b = 4rr, and 9’ is the zero-dimensional subspace of C, . The system 
(2.1), (2.2) is then equivalent to the scalar integro-differential boundary 
problem 

(i) u”(t) + u(t) - (477-l [an U(S) ds, 0 < t < 4n, 
‘0 

(ii) u(0) = 0 = u(4rr). (3.2) 

Equation (3.2i) has the nonvanishing real solution u(t) = 1, but the corres- 
ponding functional 

JT: 0,4rr] = h4” (77” - 77”) dt + (4+’ ( 1’” 77 ds)’ (3.3) 
‘0 
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is negative for certain values of 7 satisfying the prescribed end conditions 

~(0) = 0 I.= ~(47r). In particular, for 7(t) = sin(t/2) we have 

J[7): 0,4rr] = -3n/2. 

A partial explanation of the differences between the theory of integro- 

differential systems and ordinary differential systems is al-forded by the 
special case of systems (2.1), (2.2) wherein :\:(t, s) is a “degenerate kernel,” 
or a “kernel of finite rank.” In particular, suppose that 

Ayt, s) = M*(t) RM(.v) (3.4) 

where ;llr(t) is a R x n matrix function locallv of class Pz,! on I, and R is a 

nonsingular, constant, hermitian k x k matrix. i\n integro-differential 
boundary problem (2.1), (2.2) is th en equivalent to a differential boundar!, 
problem in (TZ + K)-dimensional vector functions u(t) = (u,(t)). v(t) == (v&(t)), 
(a = I ,..., 12 -I- k), with u,(t) = u,(t), v,(t) = ~:,~(t)~ (a = I ,..., n). For 
brevity we write u(t) = (u(t); ul(t)), v(t) = (e’(t); al(t)), where u’(t) and 

u’(t) are k-dimensional vector functions. Specifically, let A(t), B(t). C(t) 
denote the (n + k) x (n $- k) matrix functions defined b\, 

A(t) = [;;(::L) 

0 
o 1 , B(t) = diag{B(t), 0), C(t) = diag{C(t), 01, 

(3.5) 

and if the 2n x 2n hermitian matrix Q is represented in terms of n ; n 
matrices as 

(3.6) 

let Q denote the 2(n + K) x 2(n + R) matrix represented in terms of cor- 
responding (n + k) x (n + K) matrices 

Q = [$ z:] 7 (3.7) 

where Q1 = diag{Q, , R-l], Qz = diag(Q, , O)? and Q3 = diag(Q,, 0). !LIore- 
over, let D = diag{--E,+, , ENfl;}. Finally, if the subspace .Y of Cen in (2.2) 
is of dimension d, let S denote the subspace of C.7(,1,.1, specified by 

[u: D E :Y, u,+,(b) = 0, /3 = l,..., K). TVhen u(t), v(t) is a solution of the 
differential boundary problem 

(a) -v’(t) +t(t) u(t) - A*(t) v(t) 1 0, 
u’(t) - A(t) u(t) - B(t) v(t) = 0. (3.8) 

(b) ci E s, Q; +D+ES, 
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then z+(t) is constant on [a, b], and 

u’(t) = -- j-b &If(s) u(s) ds, t E [a, b]. (3.9) 
t 

Also, in terms of the component boundary vectors 2, zP, 6, 6r the boundary 
conditions (3.8b) are 

(4 ii E Y, _Oii+ D6EYL, 

(b) u’(b) = 0, R-W(a) - w’(u) = 0. 
(3.10) 

In particular, 

d(t) = R-W(a) = - jb M(s) u(s) ds, 
a 

(3.11) 

and from (3.8a) and (3.10a) it follows that (u(t), v(t)) is a solution of (2.1), 
(2.2). Conversely, if (u(t); v(t)) is a solution of (2.1), (2.2), then 

u(f) = (u(t); d(t), v(t) = (a(t); d(t)) 

with u’(t) and z;‘(t) defined by (3.9) and (3.1 l), respectively, is a solution of 

(3.8). 
Although the above examples do not illustrate the phenomenon in its full 

generality, one of the greatest differences between the theory of self-adjoint 
integro-differential equations (2.1) and the corresponding ordinary differential 
boundary problems occurring when N(t, s) = 0 is that for the latter we have 
the concept of conjugate or conjoined solutions, whereas for (2.1) this con- 
dition is essentially lacking. Specifically, if (ul; zlr) and (us; ~a) are two solu- 
tions of (2.1) then the function am* ur(t) - z+*(t) wr(t) is a.c. and a.e. on 
[a, b] we have 

[u?*(t) ul(t) - ~z*(t) z#l’ + uz*W (j-f W 4 W ds) 
(3.12) 

- ( [” u**(s) A+, t) ds) q(t) = 0. 
-a 

For N(t, s) E 0 this relation implies that the function pa* ur(t) - us*(t) s(t) 
is constant, and when the value of this constant is zero the solutions (ur; e,), 
(Us; up) are called mutually conjugate or conjoined. For the integro-differential 
system (2.1), however, Eq. (3.12) yields only that 

w**(b) u,(b) - u,*(b) a,(b) = q*(a) 241(u) - +*(a) w&z). 
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4. THE GREEN’S RIATRIX FOR INTEGRO-DIFFERENTIAL SYSTEMS 

I f  A is not an eigenvalue of (2.5) then using methods of Tamarkin [18] and 
Jonah [4], as in [I 1, Sect. 81, one may establish the existence of a Green’s 
matrix for this integro-differential boundary problem. In this connection, it is 
to be noted that in [ 11, Sect. 8, paragraph 31 the final phrase “yi(.v) Z;(X) is 
constant on nb” should be replaced by ‘yi(b) zi(h) = ?,((a) ~~(a).” In the 
case of a normal boundary problem (2.5) which satisfies hypotheses 
(.$, ii, iii: U, b) and ($jiv: a, b); however, a more ready proof of existence and 
basic properties of a partial Green’s matrix is afforded by the proof presented 

helow of the following theorem. 

THEOREM 4.1. Zf the boundary problem (2.5) sutisfies lz>~potheres 
(!$i, ii, iii: ~7, 6), (5*: a, b), (biv: LZ> 6), and is normal, then for A not ut~ 
eigenvalue qf this problem there exist n :< n matri.v.functions G(t, i; A), G&t. s; A) 
for (t, s) E :I = [a. b] x [a, b] such thut: 

(i) G(t. s; A) is continuous in (t, s) on 0, is ax. in each of these arguments 
on [n, b] for jfised values of the other, and G(t, s; A) ~ [G(s, t; ,T)] ” on r. 

(ii) G,(t, s; A) is continuous in (t, s) on each of the triangular domains 
J, z-~ )(t* s): (t. s) E I-J, s --; tl and 3, = I(t, s): (t, s) E E, t -< s), is bounded 

on !CJ, ud the restriction of G, to A, , (CT = I, 2), h us a fjnite limit at euch point 
(s, s) with s E [a, b]. 

(iii) Ifs E [u, b], and 5 is an arbitrar! rector in C,, , then 

(u(t); c(t)) = (G(t, s; A) E; G,,(t, s; A) 5) 

is a solution ofL2[u, z!] (t) = 0 on each of the nondegenerute subintervals [a, s) 

rind (s. b]; also, r( E .Y’ and therefore UE~‘[-JA]: 2’. 

(i\-) [ f  . f  E L),,?[u, b], then the unigne sohLtion qf the integro-kyerential 

system 

(a) L,[u, r; Al (0 =f(t), LJU, E] (t) -= 0, t E [CI, b], 

(I,) ri E -qAq, T[u, 211 E Yq9]) 
(4.1) 

is ,yielen bll 

. ,r 
u(t) : ( G(t, s; A).f(s) ds, 

. I, 
z’(t) = fb G,,(t, s; A)J(s) tfs, t E [a. h]. 

* r, 
(4.2) 

(v) If?] E ~?[a]: 5, and (u(t); v(t)) is the unique solution ?f the dzflerentiul 
system 

(a) L,[u, z-; A] (t) = K(t) q(t), L,[u, zs] (t) = 0. t I- [a, b]. 

(b) fi E .Y[.%‘], qu, z-1 E P[.37]], 
(4.3) 
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j[u, 7; A: a, b] = IQ: a, b], jyu; A: a, b] = K[q, u: a, b]; (4.4) 

moreover, there exists a positive k = k[h: a, b] such that 

K[u: a, b] < k2K[7: a, b]. 

Now for k = k[a, b] as defined by (2.9) and c = ~[a, b] as in hypotheses 
(!$v: a, b), whenever h, is a value satisfying conclusion (i) of Lemma 2.7 
and 1 < ha - k/c the functional 

j”[7; I: a, b] = fj*Q7j + sb {<*B[ + 7*C7} dt - K[7: a, b] (4.5) 
(I 

is positive definite on .PJ[a, b], and hence, all eigenvalues X of the differential 
boundary problem 

(a) L,O[u, v; h] (t) := -v’(t) + C(t) u(t) - A*(t) v(t) - AK(t) u(t) = 0, 
L,O[u, v; A] (t) SE L,[u, v] (t) EE u’(t) - A(t) u(t) - B(t) v(t) = 0, 

(b) tin Y, T[u, v] E .Yl, (4.6) 

are real and satisfy h > ho - k/c. 
Now let 1 be a fixed real value less than ho - k/c, and denote by GO(t, s), 

Goo(t, s) the partial Green’s matrix of (4.6) as established in [15, Theorem 
VII.8.21. Then these matrix functions possess properties of the sort specified 
in the above statement of Theorem 4.1, and for 4 E gn2[a, b] the unique solu- 
tion of 

(a) h”[u, v; II (t) = 4(t), L,[u, VI (t> = 0, t E [a, bl, 
(b) u E 9, T[u, v] E YJ-, 

is given by 

u(t) = j-1 G”(t, s) 4(s) ds, 
” 

v(t) = j-” Goo(t, s) d(s) ds. 
” 

As the integro-differential system (2.6) is of the form (4.7) with 

(4.7) 

(43) 

4(t) =f(t) + (A - 4 K(t) 44 - I,” N(t, s) u(s) 4 (4.9) 

it follows that (u(t); w(t)) is a solution of (2.6) if and only if u(t) is a solution 
of the vector Fredholm integral equation 

u(t) = j-” M(t, s; A) u(s) ds + j-b G”(t, s)f(s) ds, 
n n 

(4.10) 
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where 

,Il(t, s; A) = (A - I) G”(t, s)K(s) - 1” G”(t, 6) il:((, s) d[, (4.1 I) 
‘” 

and v(t) is given by the second equation of (4.8) with +(t) espressed in terms 
of u(t) as in (4.9). 

Now the condition that h is not an eigenvalue of (2.5) is equivalent to the 
condition that the homogeneous Fredholm equation 

u(t) = jb M(t, s; A) u(s) ds 
(I 

(4.12) 

has only the identically zero solution, and hence, there exists a resolvent 
kernel matrix H(t, s; A) such that the solution of (4.10) is given by 

u(t) = jb G”(t, s)f(s) ds - lb H(t, 5; A) ( fb G”(S, s)f(s) dsj dt. (4.13) 
u ” ,, * I, 

Consequently, if we set 

G(t, s; A) == G”(t, s) - fb H(t, 6; A) Go& 5) d5, 
- ,l 

(4.14) 

G,(t, s; A) == Goo(t, s) + (A - I) 1.’ Gon(t, 5) K(5) G(iT, s; A) dS 
- <I 

b *b Ti 

(4.15) 
- G”(t, P) QJ, 0 G(if, s; A) dt clp, 

- CL * (I 

the solution of (2.6) is given by (4.2). I n view of corresponding properties of 
GO(t, s) and Goo(t, s) as established in [15, Theorem VII.8.21, for fixed h the 
matrix functions G(t, s; A) and G,(t, s; A) are seen to have the continuity 
properties of conclusions (i) and (ii), as well as the solution properties of (iii) 
and (iv). Since under the stated hypothesis of Theorem 4.1 all eigenvalues of 
(2.5) are real, if h is not an eigenvalue, then its complex conjugate1 is also not 
an eigenvalue, and the identity G(t, s; A) - [G(s, t; A)] * may be established 

in a classical manner using the resolvent properties of G(t, s; A) and G(t, s; ,\) 
as stated in conclusion (iv) and the identity of Corollary 1 to Lemma 2.5. 
This result, which in view of (4.14) is equivalent to the property 
F(t, s; A) = [F(s, t; A)]* of the matrix function 
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also may be derived directly using the resolvent equations satisfied by 
M(t, s; h) and H(t, s; h), together with the fact that 

F,(t, s; A) = lb M(t, 5; A) GO([, s) d[ 
*” 

possesses the analogous property F,(t, s; h) = [Fr(s, t; A)]*. 
Finally, the results of conclusion (v) are ready consequences of the identity 

of Lemma 2.1. 
Although the conclusions of Theorem 4.1 contain no statements on the 

character of the matrix functions G(t, s; h) and G,(t, s; h) as functions of h, 
from the general theory of integral equations it follows that they are mero- 
morphic functions of h in the complex plane with poles at the eigenvalues of 

(2.5). Also, if C is a compact set in the complex h plane not containing an 
eigenvalue of (2.5), then G(t, s; X) is continuous in (t, s, X) on [a, 61 x 
[a, b] x C, and Go(t, s; X) is bounded for such valus of (t, s, h), while for 
OL = 1, 2 the matrix function G,(t, s; X) is continuous on d, x C. 

For a normal problem (2.5) satisfying a strengthened form of the hypo- 

theses of Theorem 4.1, Theorem 5.3 presents a series expansion of G(t, s; h) 
in terms of the eigenfunctions of this problem. 

5. EXISTENCE AND PROPERTIES OF EIGENVALUES 

In view of the results of Sections 2 and 4, for integro-differential boundary 
problems (2.5) the proofs of the existence and properties of eigenvalues may 

be carried out in a manner completely analogous to that employed for dif- 
ferential boundary problems in [IS, Chap. VII, Sects. 10-121. A basic 
existence theorem is the following result. 

THEOREM 5.1. If  the boundary problem (2.5) satisfies hypotheses 
. . . . . . 

($1, 11, UK a, b), (bK: a, b), (!$iv: a, b) and is normal, then the eigenvalues sf this 
problem may be ordered as a sequence A, 5: A, < ..’ with corresponding eigen- 
functions (u(t); v(t)) = (t+(t); wj(t)) such that: 

(a) K[ui , uj: a, b] = Sij , (i, j = 1, 2 ,... ); 

(b) A, = p[ul: a, b] is the minimum of i[q: a, b] on the class 

2.2,&#; K] = {?: ‘7 E 9[2], IQ: a, b] = 1 i; (5.1) 

(c) for j = 2, 3,... the class 

QN,[8; K] = {v: q e S’,Jg; K], K[q, ui: a, b] = 0, i = I,..., j - 11 (5.2) 

is nonempty and Ai = 3[uj: a, b] is the minimum of J[q: a, b] on 9i.vj[B: ICj; 

(d) {,ijl --f cc, as j + c;o. 
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Indeed, if A1 is defined as the infimum of j[v: a, b] on Y,%Ja: K], then A, 

is not less than the constant A, in conclusion (ii) of Lemma 2.8, and 
I[?; A,: a, b] > 0 on g[&?]. Moreover, if A, were not an eigenvalue of (2.5) 

for an 7 z 0 belonging to .Q[HJ let (u; V) denote the solution of (4.3) for 
X = A, , and as in conclusion (v) of Theorem 4.1 let k be a positive constant 
such that K[u; a, b] s< kzK[T: a, b]. Then the inequalit! 

0 r,. j[q - (l/k) u; A,: a, b] 

= j[?; A,: a, b] - k-‘j[q, u; A,: a, b] - k-‘j[u, 7; A,: a, b] + k-“j[u; A,: a, b] 

= j[y; A,: a, b] - 2k-‘IQ/: a, b] + k-V+, u: a, b], 

together with the Schwarz inequality 

impI\- the result 0 i:  ̂
d finiti\e property of.x/r” A 

r: a, b] - k-‘K[T: a, b]. which contradicts the 
e r 
Correspondingli-, thetproof of the existence of a sequence of eigenvalues 

and eigenfunctions satisfying conclusions (a), (b), (c) of Theorem 5.1 proceeds 
by induction as in the case of the differential boundary problem to which 

(2.5) reduces in case LV(t, s) == 0. In particular, for the integro-differential 
boundary problem one may establish a result corresponding to that of [ 15, 
Theorem JX.10.4], or one may reduce the consideration of higher eigenvalues 
to the consideration of the smallest eigenvalue of an associated integro- 
differential boundary problem by the device of [15, Problem VII.10.2]. 

X ready manner in which to establish conclusion (d) is to consider the 
ertremizing properties of the eigenvalues of (2.5) and the differential boundar! 
problem (4.6). For k = k[u, b] defined by (2.9) and c = ~[a, b] in hypothesis 
($iv: a, b) we have for 7 ~&?[a] the inequality .j[q: a, b] k p[q; k/c: a, 61, 
where the latter functional is defined by (4.5). Clonsequently, if [hjO, 11~“; z’;“1, 

( j = I, 2....) denotes a sequence of eigenvalues and corresponding eigen- 
functions for (4.6) which satisfies the corresponding conditions (a), (b), (c) 
of Theorem 5. I, then the extremizing property of eigenvalues implies 
Xj 3 Aj” - k/c, (j = 1, 2,...), and the conclusion (d) for the sequence [hi.; 
is a consequence of the corresponding result for the sequence {h,“]. 

It is to be noted that once the existence of a partial Green’s matris is 
established for (2.5) as in Theorem 4.1 the theory of this integro-differential 

problem is reducible to that of an associated vector integral equation with 
symmetrizable kernel. Specifically, if I is a real value not exceeding the A,, 
of(i) of Lemma 2.8, then (u(t), o(t)) is a solution of (2.5) if and only if u(t) 
is a solution of the integral equation 

u(t) = (A - I) f’ G(t, s; I) K(s) u(s) <is, (5.3) 
- 0 
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and w(t) is defined by 

TJ(~) = (A - I) j-” G,(t, s; I) K(s) u(s) ds. (5.4) a 

Since G(t, s; Z) = [G(s, t; 1)]* and K(t) = K*(t), we then have satisfied the 
symmetrizability condition: X(t, s) = K(t) G(t, s; I) K(s) is such that 
X(t, s) E= [.%(s, t)]*, and K[u: a, b] > 0 for an arbitrary eigenfunction u(t) 
of (5.3). In this connection, the reader is referred to [12] and associated 
references therein. In particular, the integral equation (5.3) presents a special 
fully symmetrizable transformation of the type II discussed in [12, Sect. 71. 

In view of the definitive extremizing properties of the eigenvalues of (2.5), 
under the hypotheses of Theorem 5.1 one has for the system {hj , uj; vj} of 
that theorem the well-known property that if r is a positive integer and 
d 1 ,..*, d, are constants such that j d, I* + ... + 1 d, I2 = 1, then 

7 = Q,(t) + ... i- d,u,(t), 5 = d,v,(t) + ... + d&t) 

are such that 7 ~9[99]: 5 and I[?: a, b] = X, ( d, I* + ... + A, 1 d, /‘2 < A, . 
Also, for k = 1, 2,... the eigenvalue h,,, possesses the maximum-minimum 
property that if F = {fi(t),...,fk(t)} is a set of n-dimensional vector functions 
fj(t) of class !&*[a, b], and h[F] d enotes the minimum of j[,: a, b] on the 
class of 77 ~g~[g; K] satisfying E[q,fj: a, b] = 0, (j = I,..., k), then 
v.q d h-t1 and X[.F] = hk+i for the particular set fj(t) = K(t) ui(t), 
(j = I,..., k). Also, corresponding to [15, Theorems 11.3, 11.41, one may 
establish the following results. 

THEOREM 5.2. Ilf the Itvpotheses of Theorem 5.1 are satisfied, then: 

(i) if 7 E %‘[a, b], and cj[q] = K[q, uj: U, b], ( j = 1, 2 ,... ), then the 
injnite series x:,“=, j cj[v]12 and xj”=, hj / cj[~]12 con-verge, and 

i I cj[‘7112 = K[T: a, 61, (5.5) 
j=l 

f hj I cj[rlll” < j[q: at b]; (5.6) 
i=l 

(ii) if X is not an eigenvalue of (2.3, then 

f 1 Xj - A I-* Uj(t) Uj*(S) == Job [G(r, t; A)]* K(r) G(Y, S; A) dr (5.7) 
j=l 

for (t, s) E [a, b] X [a, b]; in particular, 

jt ! A; - h I-* ! Uj(t)l’ = Trace {IO* [G(r, t; A)]* K(r) G(Y, t; A) dr[ . (5.8) 
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Now let (.$K’: a, b) denote the following hypothesis. 

(5,‘: a, b). K(t) is a nonnegative hermitian matrix function of class f?z,,[a, h] 
and such that if q(t) & 0 is an element of c:,[a, b] then K[q; a, b] > 0. 

Clearly on a given compact subinterval [a, b] of I, hypothesis (gK’: a, b) 

is a stronger form of the condition (bK: a, b). 
Corresponding to [15, Theorem 11.51, one has the following result. 

THEOREM 5.3. suppose that for a given compact subinterval [a, b] of I 
_. . . . . 

the boundary problem (2.5) is normal and satisfies hypotheses (%I, II. 111: a, b), 

($jB: a, b), and (Bx’: a, 6). 

(a) If 71 E 9[93], then the series z,:, cj[v] uj(t) converges to ?(tj, uniformb 
on [a, b]; also, 

\ 
lb j q’(t) - f  Cj[7)] Uj’(t) I2 d( ~+ 0 “S m - ,%’ 

(.I, 
(5.9) 

,-L 

I[?: a, b] = x A, I c,[v]“. 
,=I 

(5. IO) 

(b) Jf A is not an eigenvaiue of (2.5). then 

G(t, s; A) = i (hj ~- A)-‘2 uj(t) uj*(s) for (t, s) E [a, b] :< [a, b], (5. I I ) 
i=l 

and the series in (5.11) converges uniformly on [a, b] ‘< [a, b]. 

6. COMPARISON AND OSCILLATION THEOREMS 

With the results of Section 5 one may proceed to establish comparison 
theorems which are almost verbatim analogs of such theorems for differential 
systems as are presented [15, Chap. VII, Sect. 121, and consequently, even 
detailed statements of such theorems will be omitted here. For the special 
type of integro-differential systems considered in [I I], such comparison 
theorems are presented in [II, Sect. 51. It is important to note, however, 
that in view of inequality (2.9) one has for an integro-differential boundar! 
problem (2.5) satisfying the hypotheses of Theorem 5.1 comparison theorems 
relating its eigenvalues to those of a corresponding differential boundar! 
problem wherein N(t, s) = 0 and C(t) is replaced by C(t) - k[a, b] E, or b!. 
C(t) - (k[a? b]/c[a, b]) K(t). In particular, if there exist positive constants 
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ci , ca such that c,E < K(t) < c,E on a compact subinterval [a, b] of I, then 
with the aid of such simple comparison theorems one establishes for a system 
satisfying the hypotheses of The,orem 5.1 that xi l/Xj’ converges if p > 4, 
but diverges for p < &, where xj denotes summation over those values of j 

for which hj # 0. 
In the case of oscillation theorems, however, it is worthwhile to present 

specifically for a system (2.5) results analogous to those of [II, Sect. 61. 
. . . . . . 

Suppose that hypotheses (51, 11, 111) and sj K: a, b) are satisfied on arbitrary 

nondegenerate compact subintervals [a, b] of I. Moreover, suppose that the 
end-form+j*Q+j involves only the values q(a), that is, Q = diag{Q,, , 0} where 
Qn is an n x n hermitian matrix, and that 0 is an n x Q matrix of rank q and 

column vectors 0, ,..., 0, . For b > a and [a, b] CI, let a(@, b) denote the 

normal boundary problem determined by the integro-differential equations 
(2.5i, ii), and the boundary conditions 

o*,(a) = 0, T(b) = 0. (6.1) 

That is, the subspace 9’ of Can belonging to this problem consists of those $ 
satisfying 

nq = 0, (6.2) 

where M is the (q + n) x (2n) matrix of the form 

hi-[: ;j. (6.3) 

For 6 > a and [a, b] C1, let r,, denote the order of abnormality of (2.5i, ii), 
and let V(t) be an n x rb matrix function whose column vectors form a basis 
for A[a, b] ; that is, I’(t) is of constant rank rb on [a, b], and 

V’(t) + A*(t) V(t) = 0, B(t) V(t) = 0 

on this interval, so that every solution u(t) := 0, v(t) of (2.5i, ii) on [a, b] is 
of the form w(t) = I’(t) p for some constant r,-dimensional vector p. I f  the 
n x (q + lb) matrix [O V(u)] is of rank 4 + r,, - k, , then 0 < kb < q and 
there exist p, = q - k, values 1 < u1 < ua < ... < uDb such that the 
n x (q + rb - KJ matrix 

[@my T’Fai(a>l 9 (y = u1 , u2 ,..., opti; j = l,..., v,; oi = l,..., n) (6.4) 

is of rank p, + rn = q - k, + rn , so that for the normal boundary problem 
determined by (2.5i, ii) and (6.1) the subspace Y of C,, is specified by 

@.,“$a) = 0, T(6) = 0, (Y = Ul >*--> %J. (63) 



INTEGRO-DIFFERENTL4L STSTERIS 109 

-41~0, if (D is an n x (~2 - pb) matrix of rank II -pp, such that O,,*@ == 0, 
(y = ITI )...) opb), then the end-values of a solution (u, zr) of (2.K ii) are such 
that T[u. U] E 9’ if and only if 

@*[Ql12+j - C(U)] = 0. (6.5ii) 

It is to be remarked that the choice of the o1 . . . . . cPt may be the same for all 

values of b on a subinterval [u,, , 6,,] of Z,, = {t: t E Z, t ;, a) and such that T(, 

is constant for b E [a,, Z+,]. Th us the normal integro-differential boundar! 
problem for b E Z,, involves the integro-differential equations (2.5i, ii), and 
the two-point boundary conditions (6.5i, ii). Since for this problem the 

boundary condition at t = h is ~(6) = 0, it is to be noted that for a < h --: r 
and [a. c] CZ, if 77 ~a[@, b]: < then q(b) =z 0 and for 

(%,(47 S”(4) = (17(t)? i(t)1 

on [a, b], (I, c,,(t)) = (0, 0) on (b, c] we hat-e that v,, E&Q, c]: <,, 
A value b E Z, is called a foculpoint of t = n relative to the system (2.5i, ii), 

(6.5i, ii) for A = A,, if: 

(i) A =. A0 is an eigenvulue of.SY{O, 6); 

(ii) there is at Zeast one corresponding eigenfunction (u(t); a(t)) qf 
.&{@, bj such that for c E I, there exists no function v,(t) dt$ned on [a, c] and 
,formiq ulith u,(t) I= u(t) 012 [u. b], u”(t) .= 0 on [b, f ]  an ezjyensolution u,,(t), 
z’“(t) of .qo, c-1. 

If  (I, z:(t)) is a solution ofS?{O, 6: satisfying the above conditions (i), (ii), 
then ZL = u(t), f  E [a, b] is said to be an arc determining t = b us u,focul point 
of f  == CI relative to the system (2Si, ii), (6.5i, ii), and the dimension of the 
linear space of such determining arcs is called the order of t -= b as a focal 
point off =I u. I f  the matrix [O V(u)] s f  i o rank n,so that an arc 7 E U[.8(0, bj] 

must satisfy q(u) -= 0, then the corresponding focal points are called conjugate 
points of t = a, relative to the integro-differential system (2.5i, ii); in this 
case, for brevity, .%{O, b] is called the null end-point problem and denoted by 
&‘{b; . 

For (I t Z and b EZ,, , we shall denote by Ai( (n. .Cj == (uj(f: b), e,,(t: h)), 

(j =- I, 2....), a set of eigenvalues and eigenfunctions of .&CO, b], supposed 

ordered and orthonormal in the sense of Theorem 5.1. 
Since, as noted above, the integro-differential boundary- problem .;‘A{@, hl 

may be compared with a differential boundary problem involving the same 
two-point boundary conditions, the following result for d(O, bj is a con- 
sequence of the corresponding result for differential boundary problems. 

I,EivX4 6. I. X,(b)-+ +co us b+a-. 
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For @@, b} we also have the following result, which may be proved by 
exactly the same method as that used to establish [ll, Lemma 6.21. The 
pertinent solvability results for certain systems occurring in the proof are 
now provided by conclusion (iv) of Theorem 4.1. 

LEMMA 6.2. Each of the eigenoalues Xj(b) C$ LB{@, b} is a continuous 

monotone nonincreasing function on I, and Xi(b) --t + 00 as b --t a+. 

With the results of Lemmas 6.1 and 6.2, an argument similar to that 
used to establish [ll, Theorem 6.11 now yields the corresponding result. 

THEOREM 6.1. For c E I, and a given value X = 1, the number of points on 
the open interval (a, c) which are focal points to t = a relative to (2.5i, ii), 
(6.5i, ii) for X = x is equal to the number of eigenvahes A,(c) of ST{@, c)- which 

are less than A, where each focal point is counted a number of times equal to its 
order. 

For a given real value I let Vi(b) denote the number of eigenvalues of 
B{O, b} less than 1. As a result of one of the simplest comparison theorems 
for such problems it then follows that the number of conjugate points of 
t = a relative to (2.5i) for X = I, and located in the open interval (a, b) is at 
least V,(b) - d and at most V, , where d denotes the dimension of the null 
end-point problem P(b) as a subproblem of B{O, b). 

As an example, fo’r b > 0 consider the canonical system 

-o’(t) - u(t) + (4~))~ jb u(s) ds == 0, 
0 

u’(t) - v(t) = 0, u(0) = 0, u(b) = 0, 
(6.6) 

which for b = & reduces to system (3.2). In this case, the kernel function 
K(t, s) = 1 is of rank 1, and, as noted in Section 3, the determination of 
solutions of (6.6) is equivalent to solving the differential boundary problem 

(a) -o’(t) - u(t) + (4~))’ v’(t) = 0, -d’(t) = 0, 
u’(t) - v(t) = 0, d’(t) + (47r-’ u(t) = 0, 

(b) 40) = 0, 4rrui(O) - v’(0) = 0, (6.7) 

u(4%9 = 0, ui(47r) = 0. 

In particular, for this differential system the conjoined basis for (6.7a) 
determined by the end conditions of (6.7b) at t = 0 is given by the 
4 x 2 matrix [U(X); V(x)] with 

(4 
sin t 

Vt> = [t4rrJ-l [ (4?7-1 [l - cos t] 
cos t - l] 1 (477)’ - (1679-l [t - sin t] ’ 

(b) r/(t) = [ ""0" t c4+; sin '1 . (6.8) 
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The values t E 1, which define conjugate points to t =: 0 for (6.6) are then the 

values for which the matrix U(t) is singular, and an easy computation shows 
that these conjugate points are the values t = 2s, where s > 0 and either 
sin s = 0 or tan s = s - 2a. In particular, for this system there are three 
focal points to t == 0 on (0,47~]: or = 2s, , where s = sr is the root on (7~:2, X) 

of the equation tan s = s - 2rr, 7s = 2rr, and T:$ =I 4x. 
It is to be emphasized that the problem of determining the points conjugate 

to t = 0 relative to the integro-differential system (6.6) is distinct from that of 
determining the points conjugate to t = 0 relative to the differential system 

(6.7a). For this latter problem the conjoined basis determining the points 
conjugate to t = 0 is the 4 x 2 matrix (r.;,(t); l-,(t)) with 

(‘) 

sin t 

r.‘1(t) = [(4n)-l (cos t - 1) 
(4n)- l (I ~ cos t) 

-( 16rr’)m I (t ~ sin t) I ’ 
(6.9) 

(b) 1 -l(t) = [‘; t (4rr)-’ sin ‘1 _ 
1 

That is, the points conjugate to t = a relative to this ordinary differential 
system are the values for which the matrix Cl(t) is singular, and these values 
are t = 2r where r >.O and either sin r = 0 or tan r == r. Thus, on (0, 4n] 
there are three such conjugate points: T~ = 2rr, T, := 2r, , where r = r1 is the 
root on (rr, 3~12) of tan r = r, and 7s = 4?r. 

As in [I 1, Sect. 71, the results that have been described for integro- 
differential boundary problems linear in the parameter may be used to 
establish results on existence of eigenvalues, comparison and oscillation for 
similar problems nonlinear in the parameter, and wherein the functional 
corresponding to / satisfies certain monotoneity conditions. For hrevit!-. 
however, such results will not be presented in detail. 

7. GENERAL COMMENTS 

As noted in the examples of Section 3, in general for integro-differential 
equations there do not exist results on the existence of solutions satisfying 
given initial values, as hold in the case of differential equations. Consequently, 
for boundary problems involving integro-differential equations the methods 
of Morse [g-lo] using “broken extremals” are no longer available for the 
derivation of oscillation and comparison theorems. In particular, for integro- 
differential systems (2.1) wherein N(t, s) is of the degenerate form (3.4) the 
results involving a given problem and its subproblems are equivalent to 
corresponding problems and subproblems for the enlarged differential system 
(3.8), and thus in such cases the comparison theorems for the integro- 

409!54!I-s 
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differential systems are deducible from corresponding comparison theorems 
for the associated differential system. As illustrated by the example considered 
at the end of Section 6, for such integro-differential systems the problem of 

focal points is equivalent to a corresponding focal point problem for the 
associated differential system, although the specific conjugate point problem 
for the integro-differential system is not the same as the conjugate point 
problem for the related differential system. In this connection, however, a 
fundamental property of the treatment is that presented in Section 6, to 

the effect that if a < b < c and [a, c] C I, then whenever 7 E~[O, b]: 5 with 

44 = 0 then (rl&), L(t)) = (r](t), 5(t)) on I% 4 (q&), Z;,(f)) = (0, 0) on 
(b, c] is such that q,, E L?#[@, c]: i& . Because of this property, the oscillation 

theory for integro-differential systems of the form (2.5i, ii) may be considered 
in the setting of the general theory of Hestenes [3], although for the derivation 
of certain aspects of this problem in that context it appears that one needs 
much of the structure of the present discussion, especially that of Sections 2 
and 4. As far as the consideration of comparison theorems, it also appears that 
a modified Weinstein method in the general character of Weinberger [19] 

may be used. Again, an important aspect of the treatment involves the partial 
Green’s matrix G(t, s; h) and its expansion as presented in Theorem 5.3. 

An important open question is the general relationship between the theory 
of a given integro-differential problem (2.5) and associated problems involvmg 

kernels of finite rank which approximate N(t, s). Specifically, from the 
Hilbert-Schmidt theory of Fredholm equations with hermitian kernels it 
follows that the eigenvalues of the vector integral equation 

C(t) = u j" W, s)+(s) ds, t E [a, bl (7.1) 
0 

are all real, and the totality of eigenvalues and corresponding eigenfunctions 
may be arranged as a sequence {uj , 4j(t)} with 1 uj / < / aj,.r 1 , (i = 1, 2 ,... ), 
Ji 4i*(~) +j(s) ds = Sij , (i, j = 1, 2 ,... ), and each eigenvalue occurring in the 
sequence a number of times equal to its multiplicity. Also, ( oj / - 00 as 

j-+ ~0 and N(t, S) = CL, (l/uj)$j(t) 4j*( s in the sense of the Hilbert space ) 
!P{[u, b] x [a, b]). Indeed, with the oj arranged in nondecreasing absolute 
value, if 

nrm(t~ s, = C (li”j) +jCt) +i*(s>7 m = 1, 2,... 
j=l 

(7.2) 

then the !P-norm of N(t, s) - N,,(t, s) on [a, b] x [a, b] is equal to l/l u,,,+r / , 
and thus tends to zero as m - co. As N,(t, s) is of the form (3.4) with n/Z(t) 
the m x m matrix with row vectors dj*(t), (j = l,..., m), and R the real 
diagonal matrix [(l/uj) 8,,], (;,i = I,..., m), th e modified integro-differential 
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problem with ,V(t, s) replaced by 1V,,(t, ) s is reducible to an ordinary dif- 

ferential equation problem in (n + m)-dimensional vector functions u(t), v(t) 
as defined in Section 3. If  3,,,[~: a, b] d enotes the functional (2.3) with N(t, sj 
replaced by N,,,(t, s), then for 7 E 9[a, b] we have 

I f[q: a, b] - JJ,: a, b]l G (I!; 0 ,,,- i ,) q7: a. 61. (7.3) 

Also, whenever condition (!$v: a, b) is satisfied, we have 

i Jr7: a, 61 - j,,[7: 0, bll s (lip I ~,,<,l II) k’[7: a, bl. (7.4) 

for arbitrary 7 E Q[u, b]. Consequently, whenever the hypotheses of Theorem 
5.1 are satisfied, and for the problem involving A:,,,(t, s) the eigenvalues and 
eigenfunctions {hi”‘, uj”‘(t); vi”‘(t)} are ordered as in that theorem, for the 
eigenvalues and eigenfunctions {Aj , uj(t); z:(t)) of the given problem we ha1.e 

for m = 1,2,..., the comparison result 

I xj - hj”’ I < (lj[c I onr+l !]) (j :=~ 1, 2,...). (7.5) 

Finally, it is to be noted that the theory of integro-differential systems as 

discussed hereinmay be extended to “generalized integro-differential systems” 
similar to the “generalized differential systems” considered by the author in 
[ 13, 16. 171. Moreover, as noted in [ 17, Section 31, certain types of Fredholm-- 

Stieltjes integral equations, including those considered by Krall [5], are 
equivalent to such generalized differential equations. For such problems the 
functional 1[7: a, h] is replaced by a functional of the form 

$*Qjj + fb15*B5 t 
- II 

7*C7) dt + fb (.* 7*(t) R’(t, s) 7(s) ds dt 
- (I * L, 

-L lb 7*(f) [d~~qf)l7(~), 
(7.6) 

- u 

where M(t) is an n x n hermitian matrix function of bounded variation on 
[n, h]. System (2.1) is correspondingly replaced by the system 

-dz(t) -t jC(i) u(t) - A*(t) z:(t) + i” A’(t, s) u(s) ds; dt + [dM(t)] u(t) = 0, 
-0 

u’(t) -~ --l(i) u(t) - B(t) z,(t) = 0. 

(7.7) 

No detailed discussion of boundary problems associated with such systems 
will be presented, however, since under hypotheses of the sort considered in 
the preceding sections, system (7.7) is reducible to a corresponding system 
of the form (2.1) in the vector functions C(t) = u(t). C(t) = z.(t) - M(t) u(t). 
In this connection, for differential problems the reader is referred to [13, 
Theorem 2.31. 
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