On Planar Elliptic Structures with Infinite Type Degeneracy

Abdelhamid Meziani

Department of Mathematics, Florida International University, Miami, Florida 33199
E-mail: meziani@fiu.edu

Communicated by H. Brezis

Received October 16, 1999; revised July 17, 2000; accepted October 6, 2000

0. INTRODUCTION

This paper studies global properties of a class of planar vector fields that are elliptic except along a simple and closed curve. With each such vector field, we associate a complex number. This complex number characterizes the structure and bears heavily on the solvability of the associated pde equations.

Let L be a subbundle of the complexified tangent bundle $\mathbb{C}T\mathbb{R}^2$. Suppose that L is generated by a C^∞ vector field

$$L = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}$$

such that L is elliptic everywhere on \mathbb{R}^2 except along a simple and closed curve Σ. We assume that on Σ the vector field L is of infinite type and that $L \wedge L$ vanishes to first order (see section 1 for definitions). Such a structure can be viewed as follows. For each $p \in \mathbb{R}^2 \setminus \Sigma$, L is equivalent near p to a multiple of the CR operator $\frac{\partial}{\partial \bar{z}}$, and for each $p \in \Sigma$, L is equivalent near p, to a multiple of

$$\frac{\partial}{\partial y} - i x \frac{\partial}{\partial x}.$$

The vector field L is therefore locally integrable and it satisfies the Nirenberg-Treves condition \mathcal{P}. The local solvability is well understood (see [NT] and [T2]). In this paper, we focus on the global aspect of such structures. The questions addressed here are within the spirit of those contained in the following papers [BCH], [BHS], [BM1, 2], [ChT], [CoT], [HJ].
The subbundle \(\mathcal{V} = \mathcal{L} \) of \(CT^*R^2 \) is generated by the differential form

\[
\omega = b\, dx - a\, dy.
\]

(2)

Since \(\omega \neq 0 \), then

\[
d\omega = \omega \wedge \alpha
\]

(3)

for some differential form \(\alpha \). We prove in Section 2 that the complex number

\[
v = \exp \int_{\Sigma} \alpha \in C\setminus R
\]

(4)

is an invariant that characterizes \(\mathcal{L} \). Let \(\lambda \in R^* + iR \) be such that

\[
v = \exp \frac{2\pi i}{\lambda}.
\]

(5)

When \(\text{Im} \lambda \neq 0 \), we prove that, for every \(k \in Z^+ \), the vector field \(L \) is equivalent, under an \(C^k \) diffeomorphism defined near \(\Sigma \), to a multiple of the vector field

\[
T_{\lambda} = \lambda \frac{\partial}{\partial \theta} - ir \frac{\partial}{\partial r}
\]

(6)

defined in \(R \times S^1 \). When the structure is real analytic, the above equivalence holds under a real analytic diffeomorphism. In the case \(\text{Im} \lambda = 0 \), the above equivalence still holds but only under a \(C^{k,\sigma} \) diffeomorphism for some \(0 < \sigma < 1 \).

Let \(\Omega_+ \) and \(\Omega_- \) be the connected components of \(R^2 \setminus \Sigma \), with \(\Omega_- \) bounded. In Section 3, we prove that \(L \) is equivalent on \(\Omega_- \) (under a \(C^\infty \) diffeomorphism) to a multiple of the vector field \(X_{\lambda}^+ \) defined in the unit disc \(D \) by

\[
X_{\lambda}^+ = [1 + (\lambda - 1)\, r] \frac{\partial}{\partial \theta} - ir(1 - r) \frac{\partial}{\partial r},
\]

(7)

where \((r, \theta)\) are the polar coordinates. In \(\Omega_- \), we show that, depending on whether the complex structure defined by \(\mathcal{L} \) on \(\Omega_- \) is parabolic or
In hyperbolic (see Section 3), the vector field L is equivalent to a multiple of one of the following two vector fields

$$X_{1, \lambda}^- = \lambda \frac{\partial}{\partial \theta} - i(r - 1) \frac{\partial}{\partial r}$$ \hspace{0.5cm} \text{(8)}$$

$$X_{2, \lambda}^- = \lambda \frac{\partial}{\partial \theta} - ir(r - 1) \frac{\partial}{\partial r}$$ \hspace{0.5cm} \text{(9)}$$

In the remaining Sections 4 to 9, various associated pde are addressed. In Section 5 we consider the equation

$$T_\lambda u = f.$$ \hspace{0.5cm} \text{(10)}$$

We prove that if f is Hölder continuous, then (10) has a Hölder continuous solution if and only if

$$\int_0^{2\pi} f(0, \theta) \, d\theta = 0.$$ \hspace{0.5cm} \text{(11)}$$

When f is C^∞ and satisfies (11), we show that for every $k \in \mathbb{Z}^+$, equation (10) has C^k solutions. When f does not satisfy (11), we prove that (10) has distribution solutions, provided that $f \in L^p$ with $p > \max(2, \Re \lambda)$. It should be noted that equation (10) was studied in [BM2], using Fourier series, and that existence of only continuous solutions was established there under the strong assumption that $f \in C^\infty$ and satisfies (11).

In Sections 6 and 8, we establish a version of the similarity principle for solutions of

$$T_\lambda u = pu + qu,$$ \hspace{0.5cm} \text{(12)}$$

with $q = 0$ on Σ. We prove that (12) has a continuous solution u with $u \neq 0$ on Σ if and only if

$$\int_0^{2\pi} p(0, \theta) \, d\theta = \lambda \mathbb{Z}.$$ \hspace{0.5cm} \text{(13)}$$

In which case u has the form $e^{s w}$, with s, w continuous and $T_\lambda w = 0$. When (13) fails, we show that there exists a unique $\mu \in \mathbb{C}$ with

$$0 < \Re \mu \leq \Re \lambda$$ \hspace{0.5cm} \text{(14)}$$

such that any continuous solution has the form $r^\mu e^{s w}$, with s and w as before. Conversely, for any such w there exists a function s so that $e^{s w}$ or $r^\mu e^{s w}$ (depending on whether or not (13) holds) is a solution of (12).
In Sections 7 and 9, particular solutions of the equations

\[T_1 u = pu + f \]
(15)
\[T_2 u = pu + q\bar{u} + f \]
(16)
are constructed.

1. PRELIMINARIES

Let \(L \) be a 1-dimensional \(C^\infty \) subbundle of the complexified tangent bundle \(\mathbb{C}T\mathbb{R}^2 \). Suppose that \(L \) is generated by a \(C^\infty \) vector field

\[L = a(x, y) \partial_x + b(x, y) \partial_y \]
(1.1)
where \(a \) and \(b \) are \(\mathbb{C} \)-valued, \(C^\infty \) functions defined on \(\mathbb{R}^2 \), such that

\[|a(x, y)| + |b(x, y)| > 0 \quad \forall (x, y) \in \mathbb{R}^2. \]
(1.2)
The orthogonal bundle \(\nu = L^\perp \) (for the duality between tangent and cotangent vectors) is a 1-dimensional subbundle of \(\mathbb{C}T^*\mathbb{R}^2 \) generated by the 1-form

\[\omega = b(x, y) \, dx - a(x, y) \, dy. \]
(1.3)
The characteristic set of the structure defined by \(L \) (or \(\nu \)) is the set \(\Sigma \subset \mathbb{R}^2 \) where the structure fails to be elliptic. That is,

\[\Sigma = \{ p \in \mathbb{R}^2 : L_p \text{ and } \bar{L}_p \text{ are dependent} \} \]
\[= \{ p \in \mathbb{R}^2 : \omega(p) \wedge \bar{\omega}(p) = 0 \}, \]
(1.4)
where \(\bar{L} \) and \(\bar{\omega} \) are the complex conjugates of \(L \) and \(\omega \):

\[\bar{L} = a(x, y) \frac{\partial}{\partial x} + \bar{b}(x, y) \frac{\partial}{\partial y} \quad \text{and} \quad \bar{\omega} = \bar{b}(x, y) \, dx - \bar{a}(x, y) \, dy. \]
(1.5)
The structure \(L \) is said to be of finite type \(k - 1 \) at a point \(p \in \Sigma \) if there exists a vector field

\[T^k = [X_1, [X_2, [... [X_{k-1}, X_k]]]], \]
such that L and T^k are independent at p, where T^k is a Lie bracket of length $k-1$, with each of the X_j's is either L or \overline{L}, and where k is the smallest such integer. If no such vector field T^k exists for all integers k, the structure is said to be of infinite type at the point p. In this paper we consider structures \mathcal{L} for which

H1. Σ is a compact and connected 1-dimensional submanifold of \mathbb{R}^2;
H2. \mathcal{L} is of infinite type along Σ; and
H3. $\mathcal{L} \wedge \overline{\mathcal{L}}$ vanishes to first order along Σ.

Note that for L as in (1.1), the 2-vector

$$L \wedge \overline{L} = (ab - \overline{ab}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} = 2i \text{Im}(a \overline{b}) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}$$

(1.6)

is a generator of $\mathcal{L} \wedge \overline{\mathcal{L}}$.

If $p \in \Sigma$, then by a change of coordinates, we can assume $p = (0, 0)$ and Σ is given (locally near 0) by $x = 0$. The above conditions mean that \mathcal{L} is generated near 0 by a vector field

$$L = \frac{\partial}{\partial y} - i c(x, y) \frac{\partial}{\partial x},$$

(1.7)

for some C^∞ function c. Condition H3 implies that locally Σ is given by $\text{Re} c = 0$ and that the gradient of $\text{Re} c$ does not vanish on Σ. Thus Σ is a C^∞ one dimensional submanifold of \mathbb{R}^2. This together with the compactness of Σ prove the following lemma

Lemma 1.1. There exists a C^∞ change of coordinates of \mathbb{R}^2 that transforms Σ into the circle S^1.

After a change of variables, we can assume that the function c of (1.7) satisfies

$$\text{Re} c(0, y) = 0 \quad \text{and} \quad \frac{\partial}{\partial x} \text{Re} c(0, 0) \neq 0.$$

(1.8)

The vector field (1.7) satisfies the Nirenberg-Treves condition (P) (see [NT] or [T2]). After a further change of coordinates, we can assume that near 0 we have

$$L = \frac{\partial}{\partial y} - ix \frac{\partial}{\partial x}.$$

(1.9)
Hence, a structure \mathcal{L} satisfying conditions H1, H2, and H3 can be thought of as a structure for which $\Sigma = S^1$ is the unit circle. Near each point $p \notin \Sigma$, we can find (x, y) coordinates so that L is generated by the CR operator

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

(1.10)

Near each point $p \in \Sigma$, we can find (x, y) coordinates so that L is generated by

$$\frac{\partial}{\partial y} - ix \frac{\partial}{\partial x}.$$

(1.11)

Remark 1.1. Thanks to Lemma 1.1 we will assume throughout the remainder of this paper that $\Sigma = S^1$.

2. NORMAL FORMS NEAR THE CHARACTERISTIC SET

In this section, we prove that appropriate coordinates (r, θ) can be found near the characteristic set S^1 so that \mathcal{L} is generated by a standard vector field

$$i \lambda \frac{\partial}{\partial \theta} - ir \frac{\partial}{\partial r}$$

for some complex number λ with $\text{Re} \lambda > 0$.

Let \mathcal{L} be a C^∞ subbundle of $\mathbb{C}T\mathbb{R}^2$ with characteristic set $\Sigma = S^1$ and satisfying conditions H1, H2, and H3. Let L and ω be as in (1.1) and (1.3). Let $i : S^1 \to \mathbb{R}^2$ be the natural injection. Conditions H1, H2, and H3 mean that $i^*\omega = 0$ on S^1, and that $\omega \wedge \omega$ vanishes to first order along S^1. Since the 1-form ω does not vanish in \mathbb{R}^2, then we can write

$$d\omega = \omega \wedge \alpha$$

(2.1)

for some C^∞ differential form α.

Lemma 2.1. The following complex number is an invariant of \mathcal{L}

$$v = \exp \int_{S^1} \alpha$$

(2.2)
Proof. If $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ is a diffeomorphism and $\omega' = \Phi^*\omega$ has characteristic set $\Sigma' = \Phi^{-1}(\Sigma)$, then
\[d\omega' = \Phi^* d\omega = \Phi^* \omega \wedge \Phi^* \alpha = \omega' \wedge \alpha'.\]

Thus
\[\nu' = \exp \int_{\Sigma'} \omega' = \exp \int_{\Phi^{-1}(\Sigma)} \Phi^* \alpha = \exp \int_{S^1} \alpha = \nu.\]

Also, if ω'' is another generator of \mathscr{L} near S^1, then $\omega'' = g\omega$ for some nonvanishing function g. We have then
\[d\omega'' = g\, d\omega - \omega \wedge dg = g\omega \wedge \alpha - g\omega \wedge \frac{dg}{g} \]

Therefore,
\[\exp \int_{S^1} (\alpha - d \log g) = \exp \int_{S^1} \alpha.\]

To study \mathscr{L} near the characteristic set, we use convenient coordinates. The map
\[\mathbb{R} \times S^1 \to \mathbb{R}^2\]
\[(r, \theta) \mapsto ((1 + r) \cos \theta, (1 + r) \sin \theta) = (1 + r) e^{i\theta}\]
which is a diffeomorphism from a neighborhood of $\{0\} \times S^1$ to a neighborhood of the unit circle in \mathbb{R}^2. The pullback of $\nu' = \mathscr{L}^{-1}$ to a neighborhood of $\{0\} \times S^1$ is generated by a differential form
\[A(r, \theta) \, dr + B(r, \theta) \, d\theta, \quad (2.3)\]
where A and B are 2π periodic in θ. It follows at once from conditions H1, H2, and H3 that
\[A(0, \theta) \neq 0, \quad \forall \theta;\]
\[\text{Im}(B\overline{A}(r, \theta)) = rK(r, \theta); \quad (2.4)\]
\[K(0, \theta) \neq 0, \quad \forall \theta,\]
for some real valued function \(K\). We can therefore assume that \(\nu\) is generated near \([0] \times S^1\) by the differential form

\[\omega = dr + irC(r, \theta)\,d\theta, \]

for some \(C\)-valued function \(C\) with \(\text{Re} \,C(0, \theta) > 0\) for all \(\theta\).

Lemma 2.2. The invariant \(\nu\) of (2.2) is given by

\[\nu = \exp \left(i \int_0^{2\pi} C(0, \theta)\,d\theta \right). \]

Proof. We use the form \(\omega\) in (2.5) to write

\[d\omega = \omega \wedge \left[iC(r, \theta) + irC(r, \theta) \right] d\theta. \]

Thus

\[\nu = \exp \left(\int_{[0] \times S^1} \left[iC(r, \theta) + irC(r, \theta) \right] d\theta = \exp \left(i \int_0^{2\pi} C(0, \theta)\,d\theta \right). \]

Set \(\nu = \exp(2\pi i\lambda^{-1})\), where

\[\lambda = \left[\frac{1}{2\pi} \int_0^{2\pi} C(0, \theta)\,d\theta \right]^{-1} \in \mathbb{R}^+ + i\mathbb{R}. \]

The main result of this section is the following theorem:

Theorem 2.1. Let \(\omega\) and \(\lambda\) be as in (2.5) and (2.7) respectively. Suppose that \(\text{Im} \lambda \neq 0\). Then, for every \(k \in \mathbb{Z}^+\), there exists a \(C^k\) diffeomorphism \(\Phi_k: U \to V\) where \(U\) and \(V\) are open neighborhoods of \([0] \times S^1 \subset \mathbb{R} \times S^1\) such that \(\Phi_k(S^1) = S^1\) and

\[\Phi_k^* \omega = g(r, \theta) (\lambda \,dr + id\theta). \]

Before we proceed with the proof, we need some preliminary results. Consider the Taylor expansion of \(C\) with respect to \(r\),

\[C(r, \theta) = \sum_{j=0}^N c_j(\theta) r^j + r^N C_{N+1}(r, \theta), \]

where

\[c_j(\theta) = \frac{1}{j!} \frac{\partial^j C}{\partial r^j}(0, \theta) \in C^{\infty}(S^2). \]
and \(c_{N+1}(r, \theta) \in C^\infty(\mathbb{R} \times S^1) \). Set
\[
\omega_N = dr + ir \sum_{j=0}^N c_j(\theta) r^j d\theta. \tag{2.10}
\]

Note that
\[
\omega = \omega_N + ir^{N+2} c_{N+1}(r, \theta) d\theta \tag{2.11}
\]
and the coefficient of \(\omega_N \) are polynomials in \(r \). Let
\[
\hat{\omega}_N = d\hat{r} + ir \sum_{j=0}^N c_j(\theta) \hat{r}^j d\theta, \tag{2.12}
\]
where \(\hat{r} = r + ir' \in \mathbb{C} \). Let \(\hat{\omega}_N^1 \) and \(\hat{\omega}_N^2 \) be the real and imaginary parts of \(\hat{\omega}_N \) (note that \(\hat{\omega}_N \) is the complexification of \(\omega_N \)). From
\[
d\hat{\omega}_N \wedge \hat{\omega}_N = 0
\]
we have
\[
d\hat{\omega}_N^j \wedge \hat{\omega}_N^1 \wedge \hat{\omega}_N^2 = 0 \quad j = 1, 2. \tag{2.13}
\]

Hence \(\hat{\omega}_N \) defines (via \(\hat{\omega}_N^1 \) and \(\hat{\omega}_N^2 \)) a 1-dimensional foliation \(\mathcal{F}_N \) in \(\mathbb{C} \times S^1 \).

The leaves of \(\mathcal{F}_N \) are the integral curves of the vector field
\[
X_N = (r'x + r\beta) \frac{\partial}{\partial r} - (r'x - r\beta) \frac{\partial}{\partial \theta}, \tag{2.14}
\]
where \(x \) and \(\beta \) are the real and imaginary parts of \(\sum_{j=0}^N c_j(\theta) \hat{r}^j \). Denote by \(\Gamma_p \) the integral curve through the point \(p \) of \(X_N \). Note that \(\Gamma_{(0, 0)} = \{ 0 \} \times S^1 \). Now we study the holonomy of this circle. For \(\varepsilon > 0 \), let
\[
D_{\varepsilon} = \{ (z, 0) \in \mathbb{C} \times S^1 : |z| < \varepsilon \}.
\]

The disc \(D_{\varepsilon} \) is transversal to \(\mathcal{F}_N \). Let \(\psi \) be the first return map associated with the leaf \(\Gamma_{(0, 0)} \). The map \(\psi \) is a germ of a diffeomorphism at \(0 \in D_{\varepsilon} \).

Lemma 2.3. \(\psi \) is holomorphic and
\[
\psi'(0) = v^{-1} = \exp(-2\pi i/\lambda^{-1}), \tag{2.15}
\]
where \(v \) is defined in (2.2).
Proof. The integral curve of X_N through the point $(z, 0)$ is the trajectory of the system of equations

\[
\frac{dr}{d\theta} = r'\alpha(r, \theta) + r\beta(r, \theta)
\]
\[
\frac{dr'}{d\theta} = -r\alpha(r, \theta) + r'\beta(r, \theta)
\]
(2.16)
\[
\dot{r}(0) = z
\]
or equivalently of the system

\[
\frac{d\dot{r}}{d\theta} = -i\sum_{j=0}^{N} \dot{r}c_j(\theta)
\]
\[
\dot{r}(0) = z.
\]
(2.17)
Since (2.17) is holomorphic in \dot{r}, then the unique solution $\dot{r}(\theta, z)$ depends holomorphically on the initial condition z. The first return map is

\[
\psi(z) = \dot{r}(2\pi, z).
\]
(2.18)
It is therefore holomorphic in z and

\[
\psi'(0) = \frac{\partial \dot{r}}{\partial z}(2\pi, 0).
\]
(2.19)
If we expand

\[
\dot{r}(\theta, z) = \alpha_1(\theta) z + \alpha_2(\theta) z^2 + \cdots,
\]
(2.20)
then using (2.17), we see that

\[
\alpha_1(\theta) = -iz_1(\theta) c_0(\theta).
\]
(2.21)
Hence,

\[
\alpha_1(\theta) = \exp \left(-i \int_{0}^{\theta} c_0(s) \, ds \right).
\]
(2.22)
This together with (2.19) and Lemma 2.2 complete the proof of Lemma 2.3.
Lemma 2.4. Let ω_N be the 1-form defined in (2.12). Then there exists a C^∞ diffeomorphism

$$\hat{\Psi}_N: \hat{U} \to \hat{V},$$

where \hat{U} and \hat{V} are open neighborhoods of $\{0\} \times S^1 \subset \mathbb{C} \times S^1$ such that $\hat{\Psi}_N(z, \theta)$ is holomorphic in z and

$$\hat{\Psi}_N^* \omega_N = g(z, \theta) (\hat{\lambda} \ d\hat{t} + i \hat{t} \ d\theta),$$ \hspace{1cm} (2.23)

where $g \in C^\infty(\hat{U})$ and $\hat{\lambda} \in \mathbb{C}$ is defined in (2.7) with $\text{Im} \ \hat{\lambda} \neq 0$.

Proof. Let $\varepsilon > 0$ be small enough so that the first return map $\hat{\psi}$ associated with $\{0\} \times S^1$ is defined in the disc D_{ε}. Thus $\hat{\psi}: D_{\varepsilon} \to \hat{\psi}(D_{\varepsilon})$ is a biholomorphism with

$$|\psi(0)| = \exp \left(-2\pi \frac{\text{Im} \ \hat{\lambda}}{|\hat{\lambda}|^2} \right) \neq 1.$$ \hspace{1cm} (2.24)

ψ is therefore conjugate to its linear part (see for example [AA]). That is, there exists a germ of a biholomorphism h at $0 \in \mathbb{C}$ such that

$$\psi(z) = h^{-1} \cdot A \cdot h(z),$$ \hspace{1cm} (2.25)

where $A(\zeta) = e^{-2\pi i \zeta} - 1 = -1 \zeta$ is the linear part of ψ.

Now we construct a diffeomorphism $\hat{\Psi}_N$ that sends the vector field X_N into a multiple of

$$X_0 = \frac{\partial}{\partial \theta} - i \hat{\lambda}^{-1} \frac{\partial}{\partial \xi}.$$ \hspace{1cm} (2.26)

The integral curve of X_0 through the point $(0, z)$ is given by

$$\hat{r}_0(\hat{\theta}, z) = (\hat{\theta}, z e^{-i \hat{\lambda}^{-1}})$$ \hspace{1cm} (2.27)

and the first return map is $z e^{-2\pi i \hat{\lambda}^{-1}}$ (the linear part of Ψ). Define $\hat{\Psi}_N$ by

$$\hat{\Psi}_N(\hat{\theta}, \hat{r}(\hat{\theta}, z)) = (\theta, h(z) e^{-i \hat{\lambda}^{-1}}).$$ \hspace{1cm} (2.28)

It follows from (2.25) and Lemma 2.3 that $\hat{\Psi}_N$ is a diffeomorphism (near $\{0\} \times S^1$) such that

$$\hat{\Psi}_N^* X_N = g X_0.$$ \hspace{1cm} (2.29)

Furthermore $\hat{\Psi}_N$ is the identity on $\{0\} \times S^1$ and it is holomorphic in z. \ \blacksquare
Lemma 2.5. There exists a C^∞ diffeomorphism
\[\Psi_N: U \to V, \]
where U and V are open neighborhoods of $\{0\} \times S^1 \subset \mathbb{R} \times S^1$ such that
\[\Psi_N^* \omega_N \wedge (\lambda \, dr + ir \, d\theta) = 0. \tag{2.30} \]
Furthermore, Ψ_N is real analytic in r and
\[\Psi_N(\{0\} \times S^1) = \{0\} \times S^1. \]
Proof. Let $\Psi_N(\theta, R) = (\Theta, R)$ be the diffeomorphism constructed in the proof of the previous lemma. Note that $\Theta = 0$, $R = \tilde{Q}(\tilde{r}, 0)$, with $Q(0, \theta) \neq 0$ and that $\lambda^4 e^{i\theta}$ is a multivalued first integral of $\lambda \, dR + iR \, d\theta$. Let
\[f(r, \theta) = rQ(r, \theta). \tag{2.31} \]
Since $f^4 e^{i\theta}$ is a (multivalued) first integral of ω_N, then
\[\omega_N = g(\lambda \, df + if \, d\theta). \tag{2.32} \]
A direct calculation shows that the change of variables
\[\rho = r \exp \left(-\frac{\text{Im} \lambda}{\text{Re} \lambda} \arg Q(r, \theta) \right) \]
\[\phi = \theta + \frac{|\lambda|^2}{\text{Re} \lambda} \arg Q(r, \theta) \tag{2.33} \]
transforms ω_N into a multiple of $\lambda \, dr + ir \, d\theta$.

Proof of Theorem 2.1. Let ω be as in (2.5). For $N \in \mathbb{Z}^+$ let
\[\omega = \omega_N + i r^{N+1} \epsilon_{N+1}(r, \theta) \, d\theta, \tag{2.34} \]
where ω_N and ϵ_{N+1} are defined in (2.9) and (2.10), respectively. Let Ψ_N be the diffeomorphism of Lemma 2.5 that transforms ω_N into a multiple of $\lambda \, dr + ir \, d\theta$. The diffeomorphism Ψ_N can be written as
\[\Psi_N(\rho, \phi) = (x(r, \theta), \beta(r, \theta)), \]
where the functions x, β are 2π-periodic in θ and $x(0, \theta) \neq 0$, $\beta(0, \theta) \neq 0$, for all θ. We can assume, after a change of variables, that
\[\omega = \lambda \, dr + ir \, d\theta + i r^{N+1} \epsilon_{N+1}(r, \theta) \, d\theta. \tag{2.35} \]
Consider the map $A(r, \theta) = (\rho, \phi)$ defined (for $r > 0$) by
\[
\rho = r^a \\
\phi = \theta + b \log r,
\]
where $a = \Re \lambda$ and $b = \Im \lambda$. Note that A is a diffeomorphism. The pullback of ω via A^{-1} is a multiple of
\[
\Omega = \left(1 - i\rho^{(\alpha + 1)/a} \frac{b}{a} E \right) d\rho + i\rho (1 + i\rho^{(N + 1)/a} E) d\phi,
\]
where
\[
E(\rho, \phi) = c_{N+1} \left(\rho^{1/a}, \phi - \frac{b}{a} \log \rho\right)
\]
is a bounded function defined near $\{0\} \times S^1 \subset \mathbb{R}^+ \times S^1$.

Now we prove that Ω has a first integral in $\rho > 0$. Consider the blowing down of Ω along $\{0\} \times S^1$. Let
\[
\pi: \mathbb{R}^+ \times S^1 \to \mathbb{R}^2; \quad \pi(\rho, \phi) = z = \rho e^{i\phi}.
\]
It follows at once from
\[
2\rho \, d\rho = \bar{z} \, dz + z \, d\bar{z} \quad \text{and} \quad 2i\rho^2 \, d\phi = \bar{z} \, dz - z \, d\bar{z}
\]
that the blowing down of Ω is a multiple of the differential form
\[
\sigma = dz - i \frac{|z|^{N+1/2}}{2i(b-a)} (b + a) E \frac{z}{E} \bar{z} \, d\bar{z}.
\]
Let $N \in \mathbb{Z}^+$ be large enough so that
\[
\frac{N+1}{a} > k + 1,
\]
where k is a preassigned integer. The 1-form σ is then elliptic near $0 \in \mathbb{R}^2$ and coincides to order $k + 1$ with dz. It follows from the theory of quasi-conformal mappings (see for instance [LV]) that there exist a C^{k+2} diffeomorphism $F(z, \bar{z})$ near $0 \in \mathbb{R}^2$ such that
\[
F(z, \bar{z}) = z + |z|^{k+1} K(z, \bar{z}) \quad \text{and} \quad \sigma \wedge dF = 0,
\]
where K is a bounded function. This means that the form Ω has a first integral defined by

$$\rho (1 + \rho^{k+1} K(\rho, \phi)) e^{i\phi}. \quad (2.40)$$

Hence, the function

$$r^\mu (1 + r^{a(k+1)} K(r^a, \theta + b \log r)) e^{i(\theta + b \log r)} \quad (2.41)$$

is a first integral of ω in $r > 0$. An analogous argument leads to

$$|r|^{a} (1 + |r|^{a(k+1)} K(|r|^a, \theta + b \log |r|)) e^{i(\theta + b \log |r|)} \quad (2.41')$$

a first integral of ω in $r < 0$.

Finally, with respect to the coordinates

$$R = r \, |1 + |r|^{a(k+1)} M(r, \theta)|^{\frac{1}{a}}$$

$$\Theta = \theta - \arg (1 + |r|^{a(k+1)} M(r, \theta)) - \frac{b}{a} \log |1 + |r|^{a(k+1)} M(r, \theta)|, \quad (2.42)$$

where $M = K$ in $r > 0$ and $M = K'$ in $r < 0$, the form ω achieves the standard form $\lambda R \, dR + iR \, d\Theta$. Moreover, if k is chosen large enough ($a(k+1) > l$) the above diffeomorphism is of class C^l near $\{0\} \times S^1$.

Remark 2.1. When $\text{Im} \, \lambda = 0$ the first return map ψ of the circle $\{0\} \times S^1$ satisfies $|\psi'(0)| = 1$. The function ψ is not in general conjugate to its linear part. In this case the differential form ω is not necessarily conjugate via C^l diffeomorphisms to the standard form $\lambda \, dr + i \, d\theta$. However, a weaker result can be proved in this situation. More precisely, we have the following theorem.

Theorem 2.2. Let ω and λ be as in (2.5) and (2.7). Suppose that $\text{Im} \, \lambda = 0$. Then there exists $\sigma > 0$ and a $C^{1+\sigma}$ diffeomorphism $\Phi: U \to V$, where U and V are open neighborhoods of $\{0\} \times S^1 \subset \mathbb{R} \times S^1$ such that $\Phi(S^1) = S^1$ and

$$\Phi^* \omega = g(r, \theta)(\lambda \, dr + i \, d\theta). \quad (2.43)$$

Proof. Let's write ω as

$$\omega = \lambda \, dr + i(1 + \alpha(\theta) + i\beta(\theta)) \, d\theta + i r^2 e(r, \theta) \, d\theta, \quad (2.44)$$

where α, β are \mathbb{R}-valued functions and

$$\int_{\alpha}^{2\pi} \alpha(\theta) \, d\theta = \int_{\beta}^{2\pi} \beta(\theta) \, d\theta = 0.$$
Let
\[
A(\theta) = \int_0^\theta \alpha(\sigma) \, d\sigma \quad \text{and} \quad B(\theta) = \int_0^\theta \beta(\sigma) \, d\sigma.
\] (2.45)

With respect to the coordinates
\[
R = r \exp \frac{-B(\theta)}{a},
\]
\[
\Theta = \theta + A(\theta)
\] (2.46)
(where \(\lambda = a \in \mathbb{R}^+ \)), the form \(\omega \) has the expression
\[
\omega = \lambda \, dR + iR(1 + iRe(\lambda, \Theta)) \, d\Theta,
\] (2.47)
for some \(C^\infty \) function \(e' \). As in the proof of Theorem 2.1, we use the transformation
\[
p = R^a
\]
\[
\phi = \Theta
\] (2.48)
to pullback \(\omega \) into a multiple of
\[
\Omega = dp + ip(1 + ip^{1/a}E) \, d\phi,
\] (2.49)
where
\[
E(p, \phi) = e'(p^{1/a}, \phi)
\] (2.50)
is bounded. The rest of the proof is similar to that of Theorem 2.1. This time the blowing down of \(\Omega \) is a multiple of
\[
dz - i \left| z \right|^{1/a} \frac{E}{2 + i \left| z \right|^{1/a} E} \frac{z}{2} \, dz
\] (2.51)
which is elliptic near \(0 \in \mathbb{R}^2 \) and of class \(C^{(1/a) - \varepsilon} \) for any \(0 < \varepsilon < \frac{1}{2} \). The diffeomorphism of class \(C^{1+(1/a) - \varepsilon} \) that transforms \(\omega \) into a multiple of \(\lambda \, dr + i r \, d\theta \) is constructed in a similar fashion as that in the proof of Theorem 2.1.

Remark 2.2. It is clear that the form \(\lambda \, dr + i r \, d\theta \) and \(-\lambda \, dr + i r \, d\theta \) are equivalent. The invariant \(\lambda \) is therefore defined up to sign. In the next section, we will find it more convenient to use \(\text{Re} \lambda < 0 \).
When the structure given by \(\omega \) is real analytic in \(r \) and \(\text{Im} \lambda \neq 0 \), the conjugacy between \(\omega \) and \(\lambda \, dr + i r \, d\theta \) can be achieve via a \(C^\infty \) diffeomorphism that is real analytic in \(r \). To see why, we consider the complexification \(\hat{\omega}(r, \theta) \) of \(\omega(r, \theta) \) with respect to \(r \). One can show directly (as was done with \(\hat{\omega}_N \)) that \(\hat{\omega} \) is conjugate to \(\lambda \, dr + i r \, d\theta \), via a \(C^\infty \) diffeomorphism that is holomorphic in \(r \). An analogous result to that of Lemma 2.5 gives the following theorem.

Theorem 2.3. Let \(\omega \) and \(\lambda \) be as in (2.5) and (2.7). Suppose that \(\text{Im} \lambda \neq 0 \) and that \(\omega \) is real analytic in the \(r \) variable. Then \(\omega \) is conjugate (near the characteristic set) to \(\lambda \, dr + i r \, d\theta \) under a \(C^\infty \) diffeomorphism that is real analytic in \(r \).

3. GLOBAL NORMAL FORMS

In this section, we determine global representatives in each component of \(\mathbb{R}^2 \setminus \Sigma \) for structures satisfying conditions H1, H2, and H3.

Let \(\omega \) be a \(C^\infty \)-1-form in \(\mathbb{R}^2 \) with characteristic set \(\Sigma \) and satisfying H1, H2, and H3 and let \(L \) be a generator of \(\mathcal{L} \). We have

\[
\mathbb{R}^+ = \Omega_+ \cup \Sigma \cup \Omega_-,
\]

where \(\Omega_\pm \) are the connected components of \(\mathbb{R}^2 \setminus \Sigma \), and where \(\Omega_+ \) is the simply connected and bounded component. Let \(U \) be an open neighborhood of \(\Sigma \). Define

\[
U^+ = \Omega_+ \cap U \quad \text{and} \quad U^- = \Omega_- \cap U.
\]

For \(\varepsilon > 0 \), define

\[
A^+ = (0, \varepsilon) \times S^1 \quad \text{and} \quad A^- = (-\varepsilon, 0) \times S^1.
\]

Proposition 3.1. Let \(\omega \) be as above and \(\lambda \in \mathbb{R}^+ + i \mathbb{R} \) be the associated invariant. Suppose that \(\text{Im} \lambda \neq 0 \). Then there exists a neighborhood \(U \) of \(\Sigma \) in \(\mathbb{R}^2 \), \(\varepsilon > 0 \), and \(C^\infty \) diffeomorphisms

\[
\phi^+: U^+ \cup \Sigma \to A^+ \cup (\{0\} \times S^1)
\]

\[
\phi^-: U^- \cup \Sigma \to A^- \cup (\{0\} \times S^1)
\]

such that

\[
\omega \wedge (\phi^+)\ast (\lambda \, dr + i r \, d\theta) = 0.
\]
Proof. It follows from Theorem 2.1 that there is an open neighborhood U of Σ and a C^0 function $z: U \to D_\sigma = \mathbb{C}$, where D_σ is the disc with radius σ centered at 0, such that
\[z: U^+ \to D_\sigma \setminus 0 \quad \text{and} \quad z: U^- \to D_\sigma \setminus 0 \] (3.5)
are C^∞ diffeomorphisms, $z(\Sigma) = 0$ and $\omega \wedge dz = 0$.
Let $\varepsilon = \sigma^{1/\alpha}$, where $\lambda = \alpha + ib$ and let
\[F: (-\varepsilon, \varepsilon) \times S^1 \to D_\sigma, \quad F(r, \theta) = r^\lambda e^{i\theta}. \] (3.6)
Note that $dF \wedge (\lambda \, dr + ir \, d\theta) = 0$ (for $r \neq 0$). Define
\[\phi^+: U^+ \to A_\varepsilon^+ \quad \text{by} \quad \phi^+(r, \theta) = F^{-1} \cdot z(r, \theta). \] (3.7)
ϕ^+ is then a C^∞ diffeomorphism and satisfies (3.4) in U^+. We need to show that ϕ^+ extends as a C^∞ diffeomorphism up to Σ. For this we use again Theorem 2.1 as follows. Let $k \in \mathbb{Z}^+$ and $\phi_k: U \to A_k$ be a C^k diffeomorphism that conjugates ω with $\lambda \, dr + ir \, d\theta$. The function $z \circ \phi_k^{-1}$ is then a solution of the equation $L_0h = 0$, where
\[L_0 = \zeta \frac{\partial}{\partial \theta} - ir \frac{\partial}{\partial r} \]
is orthogonal to $\lambda \, dr + ir \, d\theta$. We have
\[z \circ \phi_k^{-1} = h^+ \circ F \quad \text{in} \quad U^+, \] (3.8)
where h^+ is a holomorphic function defined in $D_\sigma \setminus 0$. Since z is continuous in U and is a diffeomorphism in U^+, then h^+ is holomorphic in D_σ and $(h^+)'(0) \neq 0$. We can assume that $(h^+)'(0) = 1$. Now we have,
\[\phi^+(r, \theta) = F^{-1} \cdot h^+ \cdot F \circ \phi_k(r, \theta). \] (3.9)
We can write
\[\phi_k(r, \theta) = rA(r, \theta) \exp(iB(r, \theta)) \quad \text{and} \quad h^+(\zeta) = \zeta(1 + \zeta K(\zeta)), \] (3.10)
where $A(0, \theta) \neq 0$, A, B are R-valued of class C^k and 2π periodic in θ, and K is holomorphic. A direct calculation shows that

$$\phi^+(r, \theta) = rA |1 + rK|^{1/2} \exp \left(i \left(B + \arg(1 + rK) - \frac{b}{a} \log(1 + rK) \right) \right).$$

(3.11)

It is therefore clear that ϕ^+ extends as a C^k function up to Σ. Since $k \in \mathbb{Z}^+$ is arbitrary, then ϕ^+ is in fact C^∞ up to Σ. An analogous argument shows that ϕ^- is also C^∞ up to Σ.}

Lemma 3.1. Let u be a solution of $Lu = 0$ in U^+ (respectively in U^-). If u is bounded, then it is continuous in $U^+ \cup \Sigma$ (respectively in $U^- \cup \Sigma$) and u is constant on Σ.

Proof. Let ϕ be a diffeomorphism near Σ that conjugates ω with $\tilde{\omega} = dr + i d\theta$. The function $F \circ \phi$, where F is given by (3.6), is a solution of $Lu = 0$. Moreover, $F \circ \phi$ is a first integral of ω in U^\pm. Hence, any solution u of $Lu = 0$ in U^+ can be factored through $F \circ \phi$, via a holomorphic function, defined in a punctured disc. That is

$$u(r, \theta) = h \circ F \circ \phi(r, \theta),$$

where $h(\zeta)$ is holomorphic for $\zeta \neq 0$. Now, if u is bounded, then so is h. Therefore h extends holomorphically to 0. This means that $u \in C^0(U^+ \cap \Sigma)$ and $u(\Sigma) = h(0)$. An analogous argument holds for a bounded solution in U^-.

The differential form ω defines a complex structure in Ω^+ and a complex structure in Ω^-. By the uniformization theorem (see [S]), there exist diffeomorphisms

$$z_{\pm} : \Omega_\pm \to \mathbb{C}$$

such that

$$\omega \wedge dz_{\pm} = 0 \quad \text{in } \Omega_\pm.$$

(3.13)

Furthermore, $z_+(\Omega_+)$ is either the unit disc D or \mathbb{C} and $z_-(\Omega_-)$ is an annulus.

Lemma 3.2. The differential form ω defines a parabolic structure in Ω_+. That is, the uniformizing function of (3.12) satisfies $z_+(\Omega_+) = \mathbb{C}$.

Proof. If the structure on Ω_+ were hyperbolic ($z_+(\Omega_+) = D$), then the function z_+ would be a bounded solution of $Lu = 0$ in Ω_+. By Lemma 3.1 the function z_+ would then be continuous up to Σ and constant on Σ. This is a contradiction.

Lemma 3.3. There exists a uniformizing function

$$z_- : \Omega_- \to \mathbb{C}$$

such that z_- is continuous up to Σ, $z_- (\Sigma) = 0$ and either

$$z_-(\overline{\Omega}_-) = C \quad \text{or} \quad z_-(\overline{\Omega}_-) = D.$$

Proof. Let z_- be as in (3.12). The image $z_-(\Omega_-)$ is one of the following annuli

$$C^* = \{ z : |z| > 0 \} \quad \text{or} \quad A_\rho = \{ z : \rho < |z| < 1 \},$$

for some unique $0 \leq \rho < 1$. Let $R > 0$ be large enough so that

$$\Sigma \subset \{ (x, y) : x^2 + y^2 < R^2 \} = D_R.$$

Without loss of generality, we can assume that $z_- (\Omega_- \cap D_R)$ is bounded (otherwise replace z_- by $1/z_-$. The function z_-, bounded near Σ, extends then continuously up to Σ and is constant on Σ (Lemma 3.2). This implies that $z_- (\Sigma) = 0$ and so the conclusion of the lemma holds.

For $\lambda = a + ib \in \mathbb{C}$ with $a < 0$, let

$$\omega_+^\lambda = [1 + (\lambda - 1) r] \, dr + ir(1 - r) \, d\theta. \tag{3.14}$$

Note that ω_+^λ is real analytic in \mathbb{R}^2, and satisfies H1, H2, H3 with characteristic set S^1 and associated invariant λ. Let

$$F : D \to \mathbb{C}, \quad F(re^{i\theta}) = r(1 - r)^i \, e^{i\theta}. \tag{3.15}$$

Note that since $\Re \lambda < 0$, then F is a real analytic diffeomorphism.

Theorem 3.1. Let ω be as above with associated invariant λ. Suppose that $\Re \lambda < 0$ and $\Im \lambda \neq 0$. Then there exists a C^∞-diffeomorphism

$$\Phi^+ : \overline{\Omega}_+ \to \overline{D}$$

such that

$$\left(\Phi^+ \right)^* \omega_+^\lambda \wedge \omega = 0. \tag{3.16}$$
Proof. Let \(z_+ : \Omega_+ \to \mathbb{C} \) be as in Lemma 3.2. Define
\[
\Phi_+ : \Omega_+ \to D \quad \text{by} \quad \Phi_+(p) = f^{-1} \circ z_+(p),
\]
where \(F \) is defined in (3.15). Clearly, \(\Phi_+ \) is a diffeomorphism and it satisfies (3.16) in \(\Omega_+ \). That \(\Phi_+ \) extends smoothly up to \(\Sigma \) follows from Theorem 2.1 and Proposition 3.1.

Let
\[
\omega_{1,\lambda} = \lambda \, dr + i(r-1) \, d\theta
\]
(3.18)
\[
\omega_{2,\lambda} = \lambda \, dr + i(r-1) \, d\theta.
\]
The differential forms \(\omega_{1,\lambda} \) and \(\omega_{2,\lambda} \) are real analytic in \(\mathbb{R}^2 \setminus 0 \) with characteristic set \(S^1 \), satisfy conditions H1, H2, H3, and have invariant \(\lambda \). Let \(D' = \mathbb{R}^2 \setminus \bar{D} \) and let
\[
G_1 : D' \to C; \, G_1(r, \theta) = \frac{1}{(r-1)^2} e^{-\theta}
\]
(3.19)
\[
G_2 : D' \to D; \, G_2(r, \theta) = \left(\frac{r}{r-1} \right)^\lambda e^{-\theta}.
\]
The functions \(G_1 \) and \(G_2 \) are diffeomorphisms, continuous up to the boundary \(S^1 \) and satisfy
\[
dG_i \wedge \omega_{i,\lambda} = 0 \quad i = 1, 2.
\]
(3.20)

Arguments similar to those used in the proof of Theorem 3.1 give

Theorem 3.2. Let \(\omega \) be as above satisfying H1, H2, H3 and with invariant \(\lambda \in \mathbb{R}^- + i\mathbb{R} \). Suppose that \(\text{Im} \, \lambda \neq 0 \). If \(\omega \) defines a parabolic structure in \(\Omega_- \), then there exists a \(C^\infty \) diffeomorphism
\[
\Phi_1 : \bar{\Omega}_- \to \bar{D}', \quad \text{such that} \quad \Phi_1^* \omega_{1,\lambda} \wedge \omega = 0.
\]
(3.21)
If \(\omega \) defines a hyperbolic structure in \(\Omega_- \), then there exists a \(C^\infty \) diffeomorphism
\[
\Phi_2 : \bar{\Omega}_- \to \bar{D}', \quad \text{such that} \quad \Phi_2^* \omega_{2,\lambda} \wedge \omega = 0.
\]
(3.22)
When the associated invariant \(\lambda \in \mathbb{R} \), the results of the above theorems still hold but only under \(C^{1+\sigma} \) diffeomorphisms. More precisely,

Theorem 3.3. Let \(\omega \) be as in Theorem 3.1 with \(\lambda \in \mathbb{R} \). Then (3.16) holds with \(\Phi^+ \in C^{1+\sigma} \) for some \(\sigma > 0 \).
Theorem 3.4. Let Ω be as in Theorem 3.2 with $\lambda \in \mathbb{R}$. Then (3.21) or (3.22) holds with $\Phi_i \in C^{1+\sigma}$ for some $\sigma > 0$.

The proofs are analogous to those of Theorems 3.1 and 3.2 and will not be repeated here.

4. THE HOMOGENEOUS EQUATION $Lu = 0$

Most of the results in this section are implicitly contained in [BM2] and, therefore, no proofs will be given here. Let

$$L = a(x, y) \frac{\partial}{\partial x} + b(x, y) \frac{\partial}{\partial y}$$

be a C^∞ vector field in \mathbb{R}^2. Suppose that L satisfies conditions H1, H2, H3 with invariant $\lambda = a + ib$ and with characteristic set $\Sigma = S^1$. For convenience, we will assume in this section that $a < 0$. Let (r, θ) be the polar coordinates of $\mathbb{R}^2 (x = r \cos \theta, y = r \sin \theta)$, and let

$$X_\lambda = \lambda \frac{\partial}{\partial \theta} - i(1-r) \frac{\partial}{\partial r}$$

$$X^+ = \left[1 - (\lambda + 1) r \right] \frac{\partial}{\partial \theta} - ir(1-r) \frac{\partial}{\partial r}$$

$$X^-_{1,\lambda} = \lambda \frac{\partial}{\partial \theta} - i(r-1) \frac{\partial}{\partial r}$$

$$X^-_{2,\lambda} = \lambda \frac{\partial}{\partial \theta} - ir(r-1) \frac{\partial}{\partial r}$$

The first integrals of these vector fields are, respectively,

$$z_\lambda = |1-r|^{-\lambda} e^{\lambda \theta} \quad \text{for} \quad 1-\varepsilon < r < 1+\varepsilon$$

$$z^+_\lambda = r(1-r)^{\lambda} e^{\lambda \theta} \quad \text{for} \quad 0 \leq r < 1$$

$$z^-_{1,\lambda} = (r-1)^{-\lambda} e^{-\lambda \theta} \quad \text{for} \quad r > 1$$

$$z^-_{2,\lambda} = \left(\frac{r}{r-1} \right)^{\lambda} e^{-\lambda \theta} \quad \text{for} \quad r > 1.$$

By using the standardness results of the previous sections, the study of the equation $Lu = 0$ can be converted into an equation $Xu = 0$, where X is one
of the vector fields given in (4.2). We can therefore prove the following results.

Theorem 4.1. If u is a C^0 solution of $X_{\varepsilon}u = 0$ in the annulus

$$\Gamma_{\varepsilon} = \{(r, \theta); 1 - \varepsilon < r < 1 + \varepsilon\} \quad \text{with} \quad 0 < \varepsilon < 1$$

then there exist holomorphic functions h^+ and h^- defined in the disc $|z| < e^{-a}$ with $h^+(0) = h^-(0)$ such that

$$u(r, \theta) = h^+ (|1 - r|^{-1} e^{i\theta}) \quad \text{if} \quad 1 - \varepsilon < r < 1,$$

$$u(r, \theta) = h^- (|1 - r|^{-1} e^{i\theta}) \quad \text{if} \quad 1 < r < 1 + \varepsilon.$$ \hspace{1cm} (4.5)

The following result is an easy consequence of Theorem 4.1.

Theorem 4.2. If $\lambda \notin \mathbb{Q}$ and $u \in C^k(\Gamma_{\varepsilon})$ (where Γ_{ε} is the annulus in (4.4)) satisfies $X_{\varepsilon}u = 0$, then

$$u(r, \theta) = c + O(|r - 1|^{-na}) \quad \text{with} \quad -na > k \quad \text{and} \quad c \in \mathbb{C}. \quad (4.6)$$

Since Σ is an orbit on L, then, a priori, it could be support of a distribution solution. It is however proved in [BM2] that, unless $\lambda \in \mathbb{Q}$ no such distributions exist. More precisely, we have the following result.

Theorem 4.3. The equation $Lu = 0$ has a solution $u \in \mathcal{D}(\mathbb{R}^2)$ supported by Σ if and only if $\lambda \in \mathbb{Q}$.

The vector field L defines a parabolic structure in the unit disc D (see Section 3). It follows then, from Liouville’s Theorem, that the constants are the only bounded solutions of $Lu = 0$ in D. The same conclusion holds for the solutions in $\mathbb{R}^2 \setminus D$ when L is equivalent to X_{ε}. We state this as

Theorem 4.4. If $u \in C^0(D)$ is bounded and satisfies $Lu = 0$, then u is constant. If L is equivalent to X_{ε} in $\mathbb{R}^2 \setminus D$ and if $u \in C^0(\mathbb{R}^2 \setminus D)$ is a bounded solution of $Lu = 0$, then u is constant.

In view of this result, it is more appropriate to widen the class of solutions and to consider C-valued solution. Let O be an open subset of \mathbb{R}^2. A C^0 function $u: O \to \mathbb{C}$ is said to be a solution of $Lu = 0$ if $\forall p \in O$ such that $u(p) \neq \infty$, $Lu = 0$ near p, and $\forall p \in O$ such that $u(p) = \infty$, $Lu^{-1} = 0$ near p.

Theorem 4.5. Let $u: \mathbb{R}^2 \to \mathbb{C}$ be a C^0 solution of $Lu = 0$ and let ϕ_+ and ϕ_- be the diffeomorphisms that transform, respectively, L into X^+_ε in D and
Let X_{\pm}^L in $\mathbb{R}^n \setminus \mathcal{D}$ (where $i = 1$ or 2, depending on the structure defined by L). Then there exist meromorphic functions R_+ and R_-, respectively, on \mathbb{C} and $z_{\pm}^L(\mathbb{R}^n \setminus \mathcal{D})$ such that $R_+(0) = R_-(0)$ and

$$u(r, \theta) = R_+ \cdot z_+^L \cdot \phi_+(r, \theta) \quad \text{if} \quad r \leq 1$$

$$u(r, \theta) = R_- \cdot z_-^L \cdot \phi_-(r, \theta) \quad \text{if} \quad r \geq 1.$$ (4.7)

Remark 4.1. It follows from these results that if a solution u vanishes on a sequence of points in $r < 1$ (resp. $r > 1$) and if the sequence has an accumulation point on Σ, then u is constant in $r < 1$ (resp. $r > 1$). It also follows from Theorem 4.5 that there exists an $N > 0$ such that $|1 - r|^N u$ is a bounded function near Σ.

5. THE EQUATION $Lu = f$

In this section, we study the solvability of the equation

$$Lu = f,$$ (5.1)

where L is a vector field in \mathbb{R}^2 satisfying conditions H1, H2, H3, with characteristic set $\Sigma = S^2$, and invariant $\lambda = a + ib$ with $a > 0$. We will prove (Theorem 5.1) that if f is Hölder continuous, then (5.1) has a Hölder continuous solution if and only if

$$\int_{\Sigma} f \, ds = 0.$$ (5.2)

When f is C^∞ and satisfies (5.2), we prove (Theorem 5.2) that for every $k \in \mathbb{Z}^+$ Eq. (5.1) has a C^k solution. It should be noted that there are C^∞ functions f for which (5.1) has no C^∞ solution u (see [BM]). When condition (5.2) fails, then Eq. (5.1) has distribution solutions provided that $f \in L^p$ with $p > \max(2, a^{-1})$ (Theorem 5.3).

Before we proceed further, note that the study of Eq. (5.1) can be reduced to the study of the equation

$$T_\lambda u = f,$$ (5.3)

where

$$T_\lambda = \frac{\partial}{\partial \theta} - i r \frac{\partial}{\partial r}.$$ (5.4)
is defined on $\mathbb{R} \times S^1$, and where the function f can be assumed to have compact support in the cylinder

$$A_\varepsilon = (-\varepsilon, \varepsilon) \times S^1 \quad \text{(with } 0 < \varepsilon < 1). \quad (5.5)$$

Theorem 5.1. Let $f \in C_0^\sigma(A_\varepsilon)$, with $0 < \sigma < 1$. Then Eq. (5.3) has a solution $u \in C^\sigma(A_\varepsilon)$, for some $0 < \tau < 1$, if and only if

$$\int_0^{2\pi} f(0, \theta) \, d\theta = 0. \quad (5.6)$$

Proof. Necessity. Suppose that there exist $0 < \tau < 1$ and $u \in C^\tau(A_\varepsilon)$ that solves (5.3). Then, the $C^\sigma(S^1)$ function $u(0, \theta) = u(0, \theta)$ solves

$$\lambda \frac{du}{d\theta}(0) = f(0, \theta). \quad (5.7)$$

It is easily seen that (5.7) has a $(2\pi$-periodic) solution if and only if (5.6) holds.

Sufficiency. Suppose that (5.6) holds. Define $u_0 \in C^{\tau+1}(S^1)$ by

$$u_0(\theta) = \frac{1}{\lambda} \int_0^\theta f(0, s) \, ds. \quad (5.8)$$

Then $T_\lambda u_0 = f(0, \theta)$. Write

$$f(r, \theta) - f(0, \theta) = r^\sigma g(r, \theta), \quad (5.9)$$

with $g \in C^\sigma(A_\varepsilon \setminus \{0\} \times S^1)$ bounded. Consider the equation

$$T_\lambda v(r, \theta) = r^\sigma g(r, \theta). \quad (5.10)$$

To solve (5.10), we use the first integral

$$z_\lambda(r, \theta) = r^\lambda e^{i\theta} \quad (5.11)$$

of T_λ to transform (5.10) into a CR equation in the disc $D(e^\lambda)$ with radius e^λ and center 0 in \mathbb{C}. Let

$$A_\lambda^+ = A_\varepsilon \cap \{r \geq 0\} \quad \text{and} \quad A_\lambda^- = A_\varepsilon \cap \{r \leq 0\}. \quad (5.12)$$

It follows from $T_\lambda z_\lambda = -2\lambda z_\lambda$ that the Eq. (5.11) is equivalent to the pair of equations

$$-2\lambda z \frac{\partial \tilde{g}}{\partial z} = |z|^\sigma \tilde{g}(z) \quad (5.13)$$
in the disc $D(a)$, where

\[
\begin{align*}
v(r, \theta) &= \tilde{v}^\pm(z_j(r, \theta)) \quad \text{in } A_*^\pm \\
g(r, \theta) &= \tilde{g}^\pm(z_j(r, \theta)) \quad \text{in } A_*^\pm.
\end{align*}
\] (5.14)

The functions \tilde{g}^\pm are bounded in $C^\sigma(D(a)\setminus0)$. Therefore,

\[
|z|^{(\sigma/\alpha)-1} \tilde{g}^\pm \in L^p(D(a)),
\] (5.15)

for any $p > 2$ if $\sigma > \alpha$ and for $2 < p < (2\alpha/(\alpha - \sigma))$ if $\sigma < \alpha$. Hence, if $\alpha = \frac{\sigma + \alpha}{p}$, the solutions

\[
\tilde{v}^\pm(z) = \frac{1}{2\pi i} \int_{D(e^\zeta)} \frac{|\zeta|^{(\sigma/\alpha)-1} \tilde{g}^\pm(\zeta) e^{\theta \zeta}}{\zeta - z} d\zeta \wedge d\bar{\zeta}
\] (5.16)

are in $C^\sigma(D(a))$ and in $C^{1, \sigma}(D(a)\setminus0)$ (see for example [CH] or [V]). We can therefore write

\[
\tilde{v}^\pm(z) = c^\pm + |z|^\sigma \tilde{w}^\pm(z),
\] (5.17)

with $c^\pm \in C$ and \tilde{w}^\pm bounded and in $C^{1, \sigma}(D(a)\setminus0)$. The functions

\[
v^\pm(r, \theta) = |r|^\sigma \tilde{w}^\pm(z_j(r, \theta))
\] (5.18)

satisfy Eq. (5.10) and A_*^\pm. Define

\[
u(r, \theta) = u_d(\theta) + v^\pm(r, \theta) \quad \text{in } A_*^\pm.
\] (5.19)

Then $u \in C^m(A_\ast)$ solves (5.3).

Theorem 5.2. Suppose that $\lambda \notin Q$. Let $f \in C^0_0(A_\ast)$. If f satisfies (5.6), then for every $k \in \mathbb{Z}^+$, there exists $u \in C^k_0(A_\ast)$ such that

\[
T_\lambda u = f.
\] (5.20)

Proof. Let $n \in \mathbb{Z}^+$. Expand $f(r, \theta)$ as

\[
f(r, \theta) = \sum_{j=0}^{n} f_j(\theta) r^j + r^{n+1} f_{n+1}(r, \theta),
\] (5.21)

where

\[
f_j(\theta) = \frac{1}{j!} \frac{\partial^j f}{\partial r^j}(0, \theta).
\] (5.22)
For each $j \leq n$, let
\[u_j(\theta) = \frac{1}{\lambda} \int_{0}^{\theta} f_j(s) \exp \left(\frac{i j}{\lambda} (\theta - s) \right) \, ds + K_j \exp \left(\frac{i j}{\lambda} \theta \right), \] (5.23)

where
\[K_j = \left(1 - \exp \left(\frac{i j}{\lambda} 2\pi \right) \right)^{-1} \frac{1}{\lambda} \int_{0}^{2\pi} f_j(s) \exp \left(\frac{i j}{\lambda} (2\pi - s) \right) \, ds. \] (5.24)

Note that K_j is well defined since $\lambda \notin \mathbb{Q}$. The functions $u_j \in C^\infty$ satisfy
\[T_s(u_j(\theta) r') = f_j(\theta) r'. \] (5.25)

As in the proof of the previous theorem, the equation
\[T_s v = r^{n+1} f_{n+1}(r, \theta) \] (5.26)
is transformed, via the first integral z_1 of (5.11), into the following CR equations in the disc $D(e^\theta)$
\[\frac{\partial \tilde{v}}{\partial z} = \frac{i}{2a} |z|^{l(n+1)+1} \tilde{f}_{n+1}(z) \exp \theta. \] (5.27)

The solutions
\[\tilde{v}(z) = \frac{1}{2\pi i} \int_{D(e^\theta)} \frac{i z^{l(n+1)+1} \tilde{f}_{n+1}(\zeta) \exp \theta}{\zeta - z} \, d\zeta \] (5.28)
are in $C^l(D(e^\theta))$ with $l \geq n+1$. We can then write
\[\tilde{v}(z) = \sum_{j=0}^{l-1} \tilde{v}_j z^j + |z|^l \tilde{v}_l(z), \] (5.29)
where \tilde{v}_j are continuous and C^∞ outside 0. The functions $|z|^l \tilde{v}_l(z)$ satisfy also Eq. (5.27). Finally, the function u defined in A_ϵ by
\[u(r, \theta) = \sum_{j=0}^{n} u_j(\theta) r^j + |r|^m \tilde{w}(r^m \exp \theta) \quad \text{in } A_\epsilon^\pm, \] (5.30)
satisfies equation $T_s u = f$ and is in C^k for n large enough. \[\blacksquare \]
Theorem 5.3. Let \(f \in L^p(A) \) with \(p > \max(2, a^{-1}) \). Then for each \(q < \min(p, 2a) \), there exists \(w \in C^\infty(A) \) with \(0 < \sigma < 1 \) such that the function
\[
u(r, \theta) = r^\sigma w(r, \theta) \quad \text{with} \quad \tau = \frac{2a}{q}
\]
is in \(L^q(A) \) with \(l < q/2a \) and satisfies Eq. (5.3).

Before we proceed with the proof of the Theorem, we need the following lemma.

Lemma 5.1. Let \(f \in L^p(A) \) and let \(\tilde{f}^\pm \) be the pushforwards to \(D(e^a) \), via \(z_\lambda \), of \(f \) in \(A^\pm \), respectively. Then,
\[
\tilde{f}^\pm \in L^p(D(e^a)) \quad \text{if} \quad 2a < 1;
\tilde{f}^\pm \in L^q(d(e^a)) \quad \text{for any} \quad q < 2ap \quad \text{if} \quad 2a > 1.
\]

Proof. By the change of variable formula, we have
\[
\int_{D(e^a)} |\tilde{f}^\pm|^q \, dz \, d\bar{z} = -2a \int_{A^\pm} |f|^q \, r^{2a-1} \, dr \, d\theta. \quad (5.31)
\]
Thus, if \(2a > 1 \), then \(r^{2a-1} \) is a continuous function in \(A^\pm \) and \(\tilde{f}^\pm \in L^p(D(e^a)) \), since \(f \in L^p(A) \). If \(2a < 1 \), let \(0 < \delta < 1 - 2a \) and let
\[
s = \frac{1 - \delta}{2a} \quad \text{and} \quad t = \frac{1 - \delta}{(1 - 2a) - \delta}. \quad (5.32)
\]
We have
\[
s > 1 \quad \text{and} \quad \frac{1}{l} + \frac{1}{s} = 1.
\]
For any \(0 < q < 2ap \) we have
\[
qs < p \quad \text{and} \quad (2a - 1) \, t > -1. \quad (5.33)
\]
It follows at once from (5.31), (5.33), and the Hölder’ inequality that
\[
\int_{D(e^a)} |\tilde{f}^\pm|^q \, dz \, d\bar{z} \leq 2a \left(\int_{A^\pm} |f|^q \, dr \, d\theta \right)^{1/s} \left(\int_{A^\pm} r^{(2a-1)\, t} \, dr \, d\theta \right)^{1/t} < \infty.
\]
That is, \(\tilde{f}^\pm \in L^q(D(e^a)) \).
Proof of Theorem 5.3. Consider the equation

\[T_\lambda v = z_\lambda f. \]

(5.34)

This equation is transferred via \(z_\lambda \) into equations

\[\tilde{v}^\pm \left(\frac{1}{2\pi i} \int_{D(\rho)} \frac{ie^{2a\theta} \tilde{f}^\pm(\zeta)}{2a(\zeta - z)} d\zeta \wedge d\zeta^* \right), \]

(5.35)

where the right hand side is in \(L^q(D(e^\sigma)) \), with \(2 < q < \min(\rho, 2\alpha p) \). Hence the solutions

\[\tilde{v}^\pm(z) = \frac{1}{2\pi i} \int_{D(\rho)} \frac{ie^{2a\theta} \tilde{f}^\pm(\zeta)}{2a(\zeta - z)} d\zeta \wedge d\zeta^* \]

(5.36)

are in \(C^\sigma(D(e^\sigma)) \) with \(\sigma = 1 = \frac{3}{4} \). The functions

\[\tilde{v}^\pm(z) - \tilde{v}^\pm(0) = |z|^\sigma \tilde{w}^\pm(z), \]

where \(\tilde{w}^\pm \) are bounded and in \(C^\sigma(D(e^\sigma)) \), also satisfies (5.35). The function \(v(r, \theta) \) defined in \(A_\sigma \) by

\[v(r, \theta) = |r|^\sigma w(r^\sigma e^{i\theta}), \]

(5.36)

where \(w(r^\sigma e^{i\theta}) = \tilde{w}^\pm(r^\sigma e^{i\theta}) \) in \(A_\sigma^\pm \), satisfies (5.34). Let

\[u(r, \theta) = \frac{v(r, \theta)}{z_\lambda} = |r|^\sigma w(r, \theta) = \frac{w(r, \theta)}{|r|^{2\alpha q}}. \]

(5.37)

The function \(u \) is in \(L^l(A_\sigma) \) for each \(l < \frac{2q}{\alpha} \). Now we will verify that \(u \) satisfies Eq. (5.3).

The transpose of \(T_\lambda \) is

\[T_\lambda^t = -\lambda \frac{\partial}{\partial \theta} + ir \frac{\partial}{\partial r} + 2i. \]

(5.38)

For \(0 < \delta < \varepsilon \), let

\[A^+_{r, \delta} = A_\varepsilon \cap \{ r > \delta \} \quad \text{and} \quad A^-_{r, \delta} = A_\varepsilon \cap \{ r < -\delta \}. \]

(5.39)

Then for \(\phi \in C_0^\infty(A_\varepsilon) \) we have

\[\langle T_\lambda u, \phi \rangle = \langle u, T_\lambda^t \phi \rangle \]

\[= \lim_{\delta \to 0} \int_{A^+_{r, \delta}} uT_\lambda^t \phi r \, dr \, d\theta + \lim_{\delta \to 0} \int_{A^-_{r, \delta}} uT_\lambda^t \phi r \, dr \, d\theta. \]

(5.40)
An integration by parts shows that
\[\int_{A_{\xi \eta}} u T' \phi r \, dr \, d\theta = \int_{A_{\xi \eta}} f \phi r \, dr \, d\theta = \int_{A_{\xi \eta}} f \phi \, dr \, d\theta. \]

Since \(2 + a(\sigma - 1) > 0 \), then
\[\lim_{\delta \to 0} \int_{A_{\xi \eta}} u T' \phi r \, dr \, d\theta = \int_{A_{\xi \eta}} f \phi \, dr \, d\theta. \]

Similarly,
\[\lim_{\delta \to 0} \int_{A_{\xi \eta}} u T' \phi r \, dr \, d\theta = \int_{A_{\xi \eta}} f \phi \, dr \, d\theta. \]

This shows that \(T_{\xi} u = f \).

6. THE EQUATION \(Lu = pu \)

Let \(L \) be a vector field in \(\mathbb{R}^2 \) satisfying conditions H1, H2, H3, with invariant \(\lambda = a + ib \) and \(a > 0 \). The study of the equation \(Lu = pu \) can be reduced to that of an equation of the form
\[T_{\xi} u = pu \quad \text{in} \quad A_{\xi}, \quad (6.1) \]
where \(T_{\xi} \) is the vector field defined in (5.4) and \(A_{\xi} \) is the ring defined in (5.5).

Theorem 6.1. Let \(p \in C^0(A_{\xi}) \) (with \(\lambda = \alpha - \xi \eta \)). Then Eq. (6.1) has a solution \(u \in C^0(A_{\xi}) \) (for some \(\lambda < \xi < 1 \)) with \(u \neq 0 \) on the characteristic set \(\Sigma \) if and only if the function \(p \) satisfies
\[\frac{1}{2\pi i} \int_{0}^{2\pi} p(0, \theta) \, d\theta \in \lambda \mathbb{Z}. \quad (6.2) \]

Furthermore, when \(p \) satisfies (6.2), any other continuous solution \(u' \) of (6.1) can be written as
\[u'(r, \theta) = u(r, \theta) H^\pm(r^\xi e^{i\theta}) \quad \text{in} \quad A_{\xi}^\pm, \quad (6.3) \]
where \(H^\pm \) are holomorphic functions defined in the disc \(D(e^\alpha) \).
Proof. Necessity. If \(u \) is a Hölder continuous solution of (6.1) such that \(u \neq 0 \) on \(\Sigma \), then \(u_0(\theta) = u(0, \theta) \) satisfies
\[
\lambda u_0(\theta) = p(0, \theta) u_0(\theta). \tag{6.4}
\]
Equation (6.4) has a nontrivial solution if and only if (6.2) holds.

Sufficiency. Suppose that \(p \) satisfies (6.2). Let
\[
w_0(\theta) = \frac{1}{\lambda} \int_0^\theta p(0, s) \, ds. \tag{6.5}
\]
Consider the equation
\[
T_* w = p(r, \theta) - p(0, \theta) = p_1(r, \theta). \tag{6.6}
\]
Since \(p_1 \) is Hölder continuous and \(p_1 \equiv 0 \) on \(\Sigma \), then (6.6) has a Hölder continuous solution \(w(r, \theta) \) with \(w \equiv 0 \) on \(\Sigma \) (see Section 5). The function
\[
u(r, \theta) = \exp(w_0(\theta) + w(r, \theta)) \tag{6.7}
\]
satisfies (6.1) and \(u(0, \theta) \neq 0 \) for all \(\theta \).

To prove the second part of the theorem, suppose that \(p \) satisfies (6.2) and that \(u' \) is any solution of (6.1). The function \(v = \frac{u'}{u} \) (where \(u \) is the solution defined in (6.7)) satisfies \(T_* v = 0 \). The results in Section 4 imply that \(u' \) has the form given in (6.3).

Theorem 6.2. Suppose that \(p \in C^\infty(A_i) \) satisfies (6.2). Then for every \(k \in \mathbb{Z}^+ \), Eq. (6.1) has a solution \(u \in C^k(A_i) \) such that \(u \neq 0 \) on \(\Sigma \).

Proof. Let \(n \in \mathbb{Z}^+ \). Consider the Taylor expansion of \(p \) with respect to \(r \)
\[
p(r, \theta) = \sum_{j=0}^n p_j(\theta) r^j + r^{n+1}p_{n+1}(r, \theta). \tag{6.8}
\]
For each \(j \geq 1 \), there is a \(C^\infty \) function \(w_j(\theta) \) such that
\[
T_j(w_j(\theta) r^j) = p_j(\theta) r^j \tag{6.9}
\]
(see Section 5). If \(n \) is large enough, the equation
\[
T_j(w_{n+1}) = r^{n+1}p_{n+1}(r, \theta) \tag{6.10}
\]
has a solution that vanishes to order \(k \) along \(\Sigma \). The function

\[
u(r, \theta) = \exp \left(w_0(\theta) + \sum_{j=1}^{n} w_j(\theta) r^j + w_{n+1}(r, \theta) \right),\]

(6.11)

where \(w_0 \) is given by (6.4) is a \(C^k \) solution of (6.1) and \(u \) is nowhere 0 on the characteristic circle \(\Sigma \).

Theorem 6.3. Let \(p \) be a Hölder continuous function in \(A_* \). Suppose that

\[
\frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) d\theta \not\in \mathbb{Z}.
\]

(6.12)

Then there exist a Hölder continuous function \(v \) in \(A_* \), with \(v \) nowhere 0 on \(\Sigma \), and a unique \(\mu \in \mathbb{C} \) with

\[
0 < \Re \mu \leq a
\]

(6.13)

such that the function \(u = r^\mu v \) satisfies Eq. (6.1). Furthermore, any other Hölder continuous solution \(u' \) of (6.1) can be written as

\[
u'(r, \theta) = \nu(r, \theta) H^\pm(r^\mu \theta) \quad \text{in} \ A^\pm_*,
\]

(6.14)

where \(H^\pm \) are holomorphic functions defined in the disc \(D(e^a) \).

Proof. Let

\[
\alpha + i\beta = \frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) d\theta \in \mathbb{C}.
\]

(6.15)

Since \(p \) satisfies (6.12), then \(\alpha + i\beta \not\in \mathbb{Z} \). Let \(k = \left\lfloor \frac{\alpha}{2} \right\rfloor + 1 \in \mathbb{Z} \), where \(\left\lfloor x \right\rfloor \) denotes the integer part of the real number \(x \). Define the complex number \(\mu \) as

\[
\mu = (ka - \alpha) + i(kb - \beta) = k\lambda - (a + ib).
\]

(6.16)

Note that \(\mu \) satisfies (6.13). With this choice of \(\mu \), the function

\[
\hat{p}(r, \theta) = p(r, \theta) - i\mu
\]

(6.17)

satisfies condition (6.2). Let \(\nu \) be a Hölder continuous solution of \(T_\nu = \hat{p} \nu \) such that \(\nu \) is nowhere 0 on \(\Sigma \) (see Theorem 6.1). The function \(u = r^\mu \nu \) satisfies (6.1).

Now, suppose that \(u' \) is a Hölder continuous solution of (6.1). Then necessarily \(u'(0, \theta) \equiv 0 \), and so \(u' = r^\mu \nu' \) for some \(t > 0 \), and some bounded
function v' not identically 0 on Σ. If $t \geq \text{Re} \mu$, then an argument similar to that used in the proof of Theorem 6.1 shows that u' has the desired form (6.14). To finish the proof, we will show that the condition

$$0 < t < \text{Re} \mu$$

(6.18)
cannot occur. Indeed, if t satisfies (6.18), then the function $w = \frac{z}{2}$ is a continuous solution of $T_*w = 0$. The function w has therefore the form $H^+(r^2e^{i\theta})$ in A_+^* with H^+ holomorphic in $D(e^a)$. It follows that

$$r^2u(r, \theta) = u(r, \theta) H^+(r^2e^{i\theta}) = r^2v'(r, \theta) H^+(r^2e^{i\theta}).$$

(6.19)

This together with (6.18) implies that $H^+(0) = 0$ and thus

$$\text{Re} \mu \geq t + \text{Re} \lambda > a.$$

This contradicts the choice of μ satisfying (6.13).

Theorem 6.4. Let p be a function defined in A_ε such that $r^{-\delta}p \in L^t(A_\varepsilon)$ for some $\delta > 0$ and $t > 2$. Then Eq. (6.1) has a H"older continuous solution u with $u(0, \theta) \neq 0$ for all θ. Furthermore, any other continuous solution u' of (6.1) can be written as

$$u'(r, \theta) = u(r, \theta) H^+(r^2e^{i\theta}), \quad \text{in } A_+^*,$$

(6.20)

where H^+ are holomorphic functions defined in the disc $D(e^a)$.

Proof. Equation (6.1) leads, via $z = r^2e^{i\theta}$ to equations

$$\frac{\partial \tilde{u}^\pm}{\partial z} = \frac{i \tilde{v}^\pm}{2az} \tilde{w}^\pm$$

(6.21)
in the disc $D(e^a)$. Since $r^{-\delta}p \in L^t(A_\varepsilon)$, then $\frac{\partial \tilde{v}^\pm}{\partial z} \in L^t(D(e^a))$ for some $t > 2$. The equations

$$\frac{\partial \tilde{u}^\pm}{\partial z} = \frac{i \tilde{v}^\pm}{2az}$$

(6.22)
have then H"older continuous solutions. We can assume that $\tilde{w}^\pm(0) = 0$.

The function u defined in A_ε by

$$u(r, \theta) = \exp \langle \tilde{w}^\pm(r^2e^{i\theta}) \rangle \quad \text{in } A_+^*$$

(6.23)
is a H"older continuous solution of (6.1). The proof of the second part of the Theorem is similar to that of Theorem 6.1. \blacksquare
7. THE EQUATION \(Lu = pu + f \)

We will study in this section the equation
\[
T_z u = pu + f \quad \text{in } A_z,
\]
(7.1)

where \(T_z \) is the vector field defined in (5.4), \(A_z \) is the ring defined in (5.5), and \(p \) and \(f \) are \(C^\infty \) functions in \(A_z \). Although the results given here can be generalized to a wider class of data, we will limit the study to only the smooth case.

Theorem 7.1. Let \(p, f \in C^\infty(A_z) \). Suppose that
\[
\frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) d\theta \notin \mathbb{Z}.
\]
(7.2)

Then for every \(k \in \mathbb{Z}^+ \), Eq. (7.1) has a solution \(u \in C^k(A_z) \).

Proof. For \(n \in \mathbb{Z}^+ \), consider the Taylor expansions with respect to \(r \)
\[
p(r, \theta) = \sum_{j=0}^n p_j(\theta) r^j + r^{n+1} p_{n+1}(r, \theta)
\]
(7.3)

\[
f(r, \theta) = \sum_{j=0}^n f_j(\theta) r^j + r^{n+1} f_{n+1}(r, \theta).
\]

Define
\[
u_0(\theta) = \left\{ \int_0^\theta f_0(s) \exp \left(-\frac{1}{\lambda} \int_0^s p_0(t) dt \right) ds + K_0 \right\} \exp \left(\frac{1}{\lambda} \int_0^\theta p_0(t) dt \right),
\]
(7.4)

where
\[
K_0 = \left[1 - \exp \left(\frac{1}{\lambda} \int_0^{2\pi} p_0(t) dt \right) \right]^{-1} \times \int_0^{2\pi} f_0(s) \exp \left(-\frac{1}{\lambda} \int_0^s p_0(t) dt \right) ds.
\]
(7.5)

Define functions \(u_j(\theta) \) (\(1 \leq j \leq n \)) inductively by
\[
u_j(\theta) = \left\{ \int_0^\theta g_j(s) \exp \left(-\frac{1}{\lambda} \int_0^s p_0(t) dt + \frac{ij\theta}{\lambda} \right) ds + K_j \right\} \times \exp \left(\frac{1}{\lambda} \int_0^\theta p_0(t) dt + \frac{ij\theta}{\lambda} \right),
\]
(7.6)
where
\[K_j = \left[1 - \exp \left(\frac{1}{2\pi} \int_0^{2\pi} \frac{1}{2\pi} \right) \right]^{-1} \]
\[\times \int_0^{2\pi} g_j(s) \exp \left(\frac{1}{2\pi} \int_0^s p_i(t) \, dt + \frac{ijn}{2\pi} \right) \, ds \]
(7.7)

and
\[g_j(s) = f_j(s) + \sum_{i=1}^J p_i(s) u_{ij}(s). \]
(7.8)

Note that the constants \(K_j \)'s have been chosen so that the functions \(u_j \)'s are \(2\pi \)-periodic. Moreover the functions \(u_j \) satisfy the differential equations
\[iu_j'(\theta) - ju_j(\theta) = p_j(\theta) u_j(\theta) + \sum_{i=1}^J p_i(\theta) u_{ij}(\theta) + f_j(\theta). \]
(7.9)

The function \(v_n \) defined in \(A_n \) by
\[v_n(r, \theta) = \sum_{j=0}^n u_j(\theta) r^j \]
(7.10)

satisfies
\[T_j v_n = \left(\sum_{j=0}^n p_j(\theta) r^j \right) v_n + \left(\sum_{j=0}^n f_j(\theta) r^j \right). \]
(7.11)

Since the function \(p \) satisfies (7.2), then there exists \(\mu \in \mathbb{C} \) with \(0 < \text{Re} \mu \leq \alpha \) such that the equation
\[T_j \phi = -p \phi \]
(7.12)

has a solution of the form \(\phi_l = r^l \psi_l \) with \(\psi_l \in C^l(A_n) \) and \(\psi_l \) is nowhere zero on \(\Sigma \), where \(l \) is any preassigned integer (see Theorem 6.3). The equation
\[T_j w = \frac{r^{n+1} + f_{n+1}}{\phi_l} \]
(7.13)

has a \(C^m \) solution (for any given \(m \)) provided that \(n \) and \(l \) are large enough. Moreover, a solution \(w \) of (7.13) can be chosen to vanish to an order \(> k + 1 + \text{Re} \mu \) on \(\Sigma \) (provided that \(n \) is large). The function
\[u = \phi_l w + v_n \]
(7.14)

is a \(C^k \) solution of (7.1).
Theorem 7.2. Let $p, f \in C^\alpha(A_x)$. Suppose that

$$
\frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) d\theta \in \lambda \mathbb{Z}.
$$

(7.15)

Then Eq. (7.1) has a Hölder continuous solution if and only if

$$
\int_0^{2\pi} f(0, s) \exp \left[-\frac{1}{\lambda} \int_0^s p(0, t) dt \right] ds = 0.
$$

(7.16)

Moreover, when (7.16) holds, then for every $k \in \mathbb{Z}^+$, Eq. (7.1) has a solution $u \in C^k(A_x)$.

Proof. Suppose that (7.1) has a solution $u \in C^\tau(A_x)$ ($0 < \tau < 1$). If $f \equiv 0$ on Σ, then (7.16) holds. If $f \not\equiv 0$ on Σ, then the function $u_0(\theta) = u(0, \theta)$ satisfies

$$
\lambda u_0'(\theta) = p(0, \theta) u_0(\theta) + f(0, \theta).
$$

(7.17)

A direct integration shows that (7.17) has a 2π-periodic solution if and only if (7.16) holds.

Conversely, suppose that (7.16) holds. Define

$$
u_0(\theta) = \int_0^\theta f(0, s) \exp \left[\frac{1}{2} \int_s^\theta p(0, t) dt \right] ds.
$$

(7.18)

The function u_0 is a 2π-periodic solution of (7.17). Arguments analogous to those used in the proof of Theorem 7.1 can be adapted to construct a C^k solution of (7.1).

8. THE EQUATION $Lu = pu + q\bar{u}$

In this section we will study the structure of the solutions of the equation

$$
T_x u = pu + q\bar{u} \quad \text{in } A_x,
$$

(7.1)

where T_x and A_x are defined in (5.4) and (5.5). We will show that a generalized form of the similarity principle holds for this type of equations.

Theorem 8.1. Let $p, q \in C^\alpha(A_x)$ with $q = 0$ on Σ. Suppose that

$$
\frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) d\theta \in \lambda \mathbb{Z}.
$$

(8.2)
Then every continuous solution of (8.1) has the form
\[u(r, \theta) = e^{\alpha r, \theta} w(r, \theta), \]
where \(s \) is Hölder continuous and \(w \) satisfies
\[T_s w = 0 \quad \text{in} \ A_\epsilon. \]

Furthermore, for every continuous solution \(w \) of (8.4) there exists a continuous function \(s \) such that the function \(e^s w \) satisfies (8.1).

Remark 8. This Theorem together with the results in Section 4 imply that a solution of (8.1) has the form
\[u(r, \theta) = e^{i \alpha r, \theta} H^\pm(r^2 e^{i \theta}) \quad \text{in} \ A_\epsilon, \]
where \(H^\pm \) are holomorphic functions defined in the disc \(D(e^\alpha) \).

Proof of Theorem 8.1. Let \(\phi \in \mathcal{C}^1(A_\epsilon) \) such that \(\phi \neq 0 \) on \(\Sigma \) and
\[T_s \phi = p \phi \]
(see Theorem 6.2). Consider the equation
\[T_s v = g \phi \phi^{-1} \]
where
\[g(r, \theta) = \frac{g(r, \theta)}{r} \frac{\phi(r, \theta)}{\phi(r, \theta)} \in \mathcal{C}^1(A_\epsilon). \]

The transfer of equation (8.7), via the first integral \(z = r^2 e^{i \theta} \) to the disc \(D(e^\alpha) \), gives rise to equations
\[\frac{\partial \tilde{v}^\pm}{\partial z} = \frac{|z|^{1/a}}{z} \tilde{g}^\pm \tilde{v}^\pm. \]

Since \(\tilde{g}^\pm \) is bounded and
\[\frac{|z|^{1/a}}{z} \in L^t(D(e^\alpha)) \]
for any \(t > 0 \) if \(a \leq 1 \) and for \(2 < t < \frac{2a}{a-1} \) if \(a > 1 \), then Eqs. (8.8) have \(\mathcal{C}^\sigma \) solution with \(\sigma = \frac{t-1}{t} \). Moreover, the solutions \(\tilde{v}^\pm \) have the form
\[\tilde{v}^\pm(z) = e^{z^{1/a}} H^\pm(z), \]
where $s^\pm \in C^\alpha$ with $s^\pm(0) = 0$ and H^\pm are holomorphic (see [CH] or [V]). Conversely, for given holomorphic functions H^\pm, there exist s^\pm as above so that the functions defined in (8.9) satisfy (8.8). In particular, if $H^+(0) = H^-(0)$, then the function

$$w(r, \theta) = H^+(r^4 e^{i\theta})$$

in A^+_\pm (8.10)
satisfies (8.4) and the function

$$u(r, \theta) = \exp(s^\pm(r, \theta) + \log \phi(r, \theta)) w(r, \theta)$$

satisfies (8.1).

Theorem 8.2. Let $p, q \in C^\alpha(A_\pm)$ with $q = 0$ on Σ. Suppose that

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0, \theta) \, d\theta \notin \mathbb{Z}. \quad (8.12)$$

Then there exists a unique $\mu \in \mathbb{C}$ with

$$0 < \Re \mu \leq a$$

(8.13)
such that every continuous solutions u of (8.1) has the form

$$u(r, \theta) = r^a e^{\alpha r, \theta} w(r, \theta), \quad (8.14)$$

where s is Hölder continuous and w satisfies (8.4). Furthermore, for every continuous solution w of (8.4) there exists a continuous function s such that the function u defined in (8.14) satisfies (8.1).

Proof. Let μ be the unique complex number defined in Theorem (6.3). Define

$$\phi(r, \theta) = r^a \psi(r, \theta),$$

with $\psi \in C^1(A_\pm), \psi$ nowhere zero on Σ, such that

$$T_x \phi = p \phi$$

(8.15)

(see Theorem 6.3). Consider the equation

$$T_x v = q \frac{\phi}{\psi},$$

(8.16)

It follows from the proof of the previous theorem that

$$v(r, \theta) = e^{\alpha r, \theta} w(r, \theta)$$

(8.17)
for some continuous functions \(s \) and \(w \) with \(w \) satisfying (8.4) and \(s \equiv 0 \) on \(\Sigma \). The function

\[
u(r, \theta) = r^\mu \exp(s(r, \theta) + \log \psi(r, \theta)) w(r, \theta) \tag{8.18}\]

is a continuous solution of (8.1) of the form (8.14).

If \(\nu' \) is any other solution of (8.1) such that \(r^{-\mu} \nu' \) is a bounded function, then

\[
u'(r, \theta) = \frac{\nu'(r, \theta)}{\phi(r, \theta)} = \frac{\mu'(r, \theta)}{r^\mu \psi(r, \theta)} \tag{8.19}\]

satisfies Eq. (8.16). Thus \(\nu' \) has the form (8.17) and therefore \(\nu' = \phi \nu' \) has the form (8.14).

To complete the proof, we will show that whenever \(\nu' \) is a solution of (8.1), then \(r^{-\mu} \nu' \) is bounded. By contradiction, suppose that \(\nu' \) is a solution of (8.1) such that

\[
|r|^{-\mu} |\nu'| \geq c \quad \text{for some} \quad c > 0 \quad \text{and} \quad 0 < t < \Re \mu. \tag{8.20}\]

The continuous function

\[
\nu(r, \theta) \quad \text{is such that} \quad |r|^{-\Re \mu} |\nu| \geq M > 0 \tag{8.22}\]

for some \(M > 0 \). Moreover, \(\nu \) is a solution of the equation

\[
T \nu = q |\nu|^2 \quad \text{for some bounded function} \quad g \quad (\text{we are using the fact that} \quad q = 0 \quad \text{on} \quad \Sigma). \quad \tag{8.23}\]

for some bounded function \(g \). If \(\tilde{\nu}^+ \) is defined in \(D(e^z) \) such that \(\tilde{\nu}^+ = \nu^+ \circ \widetilde{z} \) in \(A^+ \), then \(\tilde{\nu}^+(0) = 0 \) and it satisfies a CR equation

\[
\frac{\partial \tilde{\nu}^+}{\partial \bar{z}} = |z|^\alpha A(z) \tag{8.24}\]

with \(A \) a bounded function and \(\nu = \frac{1 + \Re \mu - t}{\mu} - 1 \). Therefore

\[
\tilde{\nu}^+(z) = H^+(z) + \frac{1}{2\pi i} \int_{\partial \nu(v)} \frac{|z'|^\alpha A(z)}{z' - z} \, d\zeta' \wedge \bar{d\zeta}' \tag{8.25}\]
with H holomorphic. Since the integral appearing in (8.25) is in C' with $\tau = \frac{2-n}{p}$ for any $p > 2$ if $v > 0$ and $2 < p < \frac{2-n}{2v}$ if $v < 0$, then

$$\int\int_{D(z,\tau)} |z|^n A(z) \left(\frac{1}{z-z} + \frac{1}{z} \right) d\zeta \wedge d\bar{\zeta} = O(|z|^\tau).$$

(8.26)

It follows from (8.26), (8.25), and the definition of \bar{F} that

$$F = O(|\tau|^{\Re p - \frac{1}{2}})$$

(8.27)

which contradicts (8.22).

9. THE EQUATION $Lu = pu + q\bar{u} + f$

Consider the equation

$$T_s u = pu + q\bar{u} + f \quad \text{in} \ A_s,$$

(9.1)

where T_s and A_s are defined in (5.4) and (5.5). The general solution of (9.1) has the form $u + w$, where u is a particular solution of (9.1) and w is the general solution of (8.1). In this section, we construct a particular solution of (9.1) when $a < \frac{1}{2}$ (recall that $a = \Re \lambda$).

Theorem 9.1. Suppose that $a < \frac{1}{2}$. Then for every p, $q \in C^\infty(A_s)$ with $q = 0$ on Σ and such that

$$\int_0^{2\pi} f(0, \theta) \exp \left[-\frac{1}{\lambda} \int_0^\theta p(0, s) \, ds \right] d\theta = 0$$

(9.2)

whenever

$$\int_0^{2\pi} \frac{1}{2\pi i} \int_0^{2\pi} \frac{p(0, \theta)}{\lambda + 0} \, d\theta \in i \mathbb{Z},$$

(9.3)

Eq. (9.1) has a Hölder continuous solution in A_s.

Proof. Let $u_0(\theta)$ be a C^∞ solution of

$$\lambda u_0(\theta) = p(0, \theta) u_0(\theta) + f(0, \theta).$$

(9.4)

Such a solution exists since f satisfies (9.2), when p satisfies (9.3) (see Section 7). Let

$$g(r, \theta) = f(r, \theta) - f(0, \theta) + (p(r, \theta) - p(0, \theta)) u_0(\theta) + q(r, \theta) \overline{u_0(\theta)}$$

(9.5)
Note that \(g(r, \theta) = r g_1(r, \theta) \) with \(g_1 \in C^\infty(A_\varepsilon) \). Let \(\phi \) be a Hölder continuous solution of

\[
T_{\lambda} \phi = p \phi. \quad (9.6)
\]

We can take \(\phi \) so that \(\phi \neq 0 \) on \(\Sigma \) if (9.3) does not hold and \(\phi = r^a \psi \) with \(\psi \neq 0 \) on \(\Sigma \) if (9.3) holds (see Section 6) with \(0 < \Re \mu \leq a \). Since \(a < \frac{1}{2} \), then \(\frac{\lambda}{\phi} \) is Hölder continuous and vanishes on \(\Sigma \). Consider the equation

\[
T_{\lambda} v = q \frac{\phi}{\phi} \ddot{v} + \frac{R}{\phi}. \quad (9.7)
\]

This equation is transferred, via the first integral \(z_1 = r^a e^{i\theta} \) into the disc \(D(e^a) \), into equations of the form

\[
\frac{\partial \ddot{v}^\pm}{\partial z^2} = A^\pm \ddot{v}^\pm + B^\pm, \quad (9.8)
\]

where \(A^\pm \) and \(B^\pm \) are Hölder continuous and vanish at 0 (that \(A^\pm \) and \(B^\pm \) vanish at 0 follows from the fact that \(q \) and \(\frac{\lambda}{\phi} \) vanish to order 1 and \(\Re \mu \), respectively, and from the hypothesis that \(a < \frac{1}{2} \)) Equations (9.8) have then solutions \(\ddot{v}^\pm \) with \(\ddot{v}^\pm(0) = 0 \). Equation (9.7) has then a Hölder continuous solution \(v \) with \(v = 0 \) on \(\Sigma \). Finally, the function

\[
u(r, \theta) = \nu_0(\theta) + \phi(r, \theta) v(r, \theta)
\]

is a Hölder continuous solution of (9.1).}

\[\text{ACKNOWLEDGMENT}\]

The author thanks the referee for making several useful suggestions.

\[\text{REFERENCES}\]

A. Meziani, On real analytic planar vector fields near the characteristic set, *Contemp. Math.*, to appear. [A volume in honor of Leon Ehrenpreis]

