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Abstract APOBEC3G(A3G) is a host cytidine deaminase that incorporates into HIV-1 virions and
efficiently inhibits viral replication. The virally encoded protein Vif binds to A3G and induces its
degradation, thereby counteracting the antiviral activity of A3G. Vif-mediated A3G degradation clearly
represents a potential target for anti-HIV drug development. Currently, there is an urgent need for
understanding the three dimensional structure of full-length A3G. In this work, we use a homology
modeling approach to propose a structure for A3G based on the crystal structure of APOBEC2 (APO2)
and the catalytic domain structure of A3G. Two compounds, IMB26 and IMB35, which have been shown
to bind to A3G and block degradation by Vif, were docked into the A3G model and the binding modes
were generated for further analysis. The results may be used to design or optimize molecules targeting
Vif–A3G interaction, and lead to the development of novel anti-HIV drugs.
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1. Introduction

A3G is a single-stranded DNA (ssDNA) deoxycytidine deaminase
that inhibits HIV-1 replication in strains that lack Vif1,2. In the
absence of Vif, virion encapsidated A3G can deaminate cytosine to
uracil on newly formed viral DNA during reverse transcription of the
viral genome, which leads to hypermutation and inactivation of the
newly synthesized viral DNA3,4. Furthermore, several lines of
evidence showed that A3G also impaired viral DNA synthesis and
integration through an antiviral mechanism distinct from deamina-
tion5,6. As a counter-measure, HIV-1 Vif binds to A3G and recruits a
cellular ubiquitin ligase complex containing cullin-5 (CUL5), elongin
B (ELOB), elongin C (ELOC) and a RING-box protein. This leads to
the ubiquitination of A3G and degradation by the 26S proteasome7–9.

A3G contains two cytosine deaminase domains at the N-terminal
(CD1) and the C-terminal (CD2). The C-terminal domain (CD2) is
responsible for the deaminase activity of A3G10,11. The structure of the
CD2 domain of A3G has been determined by X-ray crystallography
and NMR12–14 and shown to fold into a five-stranded β sheet flanked
by six α helices. While the CD1 domain is catalytically inactive, it is
involved in virion encapsidation and mediates the oligomerization of
A3G15,16. Mutations in the CD1 domain affect multiple aspects of A3G
function including dimerization, virion incorporation and interaction
with Vif17,18. The CD1 domain structure has not been determined,
although several homology models have been proposed for this domain
on the basis of the APO2 tetramer19,20, and a similar head-to-head
interface was proposed for the CD1 domain of A3G21.

As A3G is expressed in human cells infected by HIV-1,
inhibition of Vif-mediated hA3G degradation represents a new
anti-HIV-1 strategy for drug discovery. In our previous work we
identified two small molecules (IMB26 and IMB35) that target the
interface of Vif and A3G, thus protecting A3G from Vif-mediated
degradation22. Although the inhibitors were shown to bind to
A3G, the exact position at which the molecules bind, as well as
binding mode, remains unclear. Here, a more accurate full-length
A3G has been constructed based on APO2 dimer and the newly
reported A3G CD2 domain structure (PDBID: 3IQS). We modeled
the binding position of IMB26 and IMB35 at the A3G CD1
domain and the binding modes were also generated through
molecular docking. The structural information obtained from this
A3G model and the predicted binding mode will facilitate rational
drug design targeting the A3G–Vif interaction.
2. Materials and methods

2.1. Homology modeling and model evaluation

The human A3G sequence (residues 1–384; Uniprot Entry: Q9HC16,
http://www.uniprot.org) was defined as the target sequence. The
crystallized human APO2 dimer23 (PDBID: 2NYT, http://www.pdb.
org) and the crystallized A3G CD2 domain structure (PDBID: 3IQS,
http://www.pdb.org) served as template. The A3G sequence was
aligned to the CD2 domain structure (3IQS) and APO2 dimer (2NYT)
using the “align multiple sequences” module in the molecular
modeling software Discovery Studio (DS).

The target-template alignment was used to build the A3G
structure model using the “build homology” module in DS. To
ensure that the crystal structure coordinates are not modified in the
model building process, the reference template parameter in the
protocol was set to the CD2 domain structure (3IQS). The PDF
total energy and DOPE score were used to select the best model.
The Ramanchandran Plot and Verify 3D in DS were used to
evaluate the A3G structure model.

2.2. Molecular docking

The binding mode for IMB26 and IMB35 to the binding site of the
homology model A3G was generated by molecular docking using
the Genetic Optimization for Ligand Docking (GOLD) software
from Cambridge Crystallographic Data Center, UK24. The binding
sites on the A3G model were located by LIGSITE (http://projects.
biotec.tu-dresden.de/pocket/) and the site finder module implemen
ted in the Molecular Operating Environment (MOE). The
ligand-binding region was defined as a sphere of 10 Å radius
around the binding site. Molecular interactions were observed
using LigX implemented in MOE. The interactions of the ligand
and the receptor were evaluated and ranked via GOLD score
implemented in GOLD, and the orientation with the highest
docking score was returned for further analysis.
3. Results and discussion

3.1. Establishment and evaluation of a homology model of
full-length A3G

To construct the A3G full-length structure, the APO2 dimer (PDBID:
2NYT) and the CD2 domain structure (PDBID: 3IQS) served as the
templates. We aligned the sequence of the CD2 domain structure to
the A3G sequence. The sequence from the CD2 domain structure is
almost identical to that of the A3G sequence. The identity was 29.1%
and the similarity was 51.4% as a result of the APO2 and A3G
sequence alignment (Fig. 1A). The model of full-length A3G was
then built based on the structures, and the results are shown in Fig. 1.
Both the CD1 and CD2 domains have a core platform composed of
six α-helices and five β-strands (Fig. 1B). In the APO2 crystal
structure, APO2 dimerizes via direct interactions between the
β2-strands23. However, the CD1 domain in the A3G structure exhibits
a discontinuous β2-strand that is different from a continuous
well-ordered β2-strand observed in APO2 structure, which may be
caused by the low sequence identity at the region between target
protein and the templates. Molecular dynamics simulations predict
that the β2 strand of the CD2 domain may be able to adopt a more
extended β-strand conformation to allow interactions between two
β2-strands25. This result supports a different dimer configuration
between the β2-strands of the CD2 and CD1 domains. The new A3G
structure captured information from the APO2 protein and the
catalytic domain structure of A3G, and the CD2 domain remained
stable during the homology modeling. The superimposition of the
catalytic domain structure on the A3G model gave a RMSD value of
2.20 Å, which means that the two structures are very similar. Thus,
consideration of the 3D information of A3G CD2 domain suggests
that the A3G structural model proposed here is more reliable than that
previous reported19, which was built based only on the APO2 dimer
3D structure.

The accuracy of the obtained A3G structural model was evaluated
by Ramachandran Plot analysis and Verify 3D in DS (Fig. 1C).
According to Ramanchandran Plot analysis, most of the residues had Φ
and ψ angles in the core (93.9%) and allowed (4.5%) regions, and only
a small part of non-glycine residues (1.6%) were in disallowed regions.
Moreover, the Verify Score of the A3G structure (153.86) was very
close to the Verify Expected High Score (173.24). These results
suggest that the quality of the A3G structural model is high.



Figure 2 Structural mapping of the critical residues on the A3G model. (A) The electrostatic potential of A3G. The accessible surface area is
colored according to the calculated electrostatic potential from −0.7 kTle (red) to 0.7 kTle (blue). The ASP128–ASP130 motif is crucial for the
direct interaction with Vif. (B) Surface representation of the critical amino acids (Tyr19, Tyr22, Trp94, Tyr124, Tyr125, Phe126, and Trp127)
for A3G dimerization as shown in yellow.

Figure 1 Homology modeling of the A3G structural model. (A) Alignment of the target sequence and templates. (B) The A3G structural model,
shown as a ribbon; the Zn coordination is within the CD2 domain. A bulge occurs in the β2 segment of the CD2 domain, and a discontinuous β2
segment is shown in the CD1 domain. (C) Ramachandran plot of the proposed A3G structure.
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3.2. Structural mapping of the critical amino acids of the A3G
structure model

To further evaluate the A3G model, we mapped the critical amino
acids that are important to the biological function of A3G. Amino
acids 128–130 of A3G have been identified as essential for the
interaction of Vif and A3G using alanine-scanning mutations and
multiple different substitutions at key residues21. The electrostatic
surface potential analysis revealed a negatively charged interface
in this motif (Fig. 2A), which is an important feature for HIV-1 Vif
binding. This structural region notably encompasses a series of
amino acids, Tyr19, Tyr22, Trp94, Tyr124, Tyr125, Phe126, and
Trp127 (Fig. 2B), that are involved in A3G dimerization and
virion incorporation11,21,23. The dimer interface was expected to be



Table 1 GOLD scores of the compounds docked into the
predicted binding site.

Compound Structure GOLD score

IMB26 66.17

IMB35 67.89

IMB261 49.87

IMB262 51.54

IMB263 54.10
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a shallow cavity composed of hydrophobic or aromatic amino
acids predicted to mediate the monomer contacts through a series
of hydrophobic and π–π interactions. Thus, for both important
interfaces within A3G involved in either binding to Vif or hA3G
dimerization, the predictions of our model are quite reasonable.

3.3. Identification of binding sites

We predicted the binding sites for the A3G model using
LIGSITE26 and the site finder module implemented in MOE
separately27. The results are shown in Fig. 3. For the LIGSITE
method, three binding sites were located (Fig. 3A). The Site Finder
module identified the first-ranked binding site (Fig. 3B). Interest-
ingly, this is rather similar to the one identified by the LIGSITE
method, and the binding region was very close to the segment
Tyr124–ASP130, which was critical for A3G dimerization and
interaction with Vif. Thus, this binding site was selected as the
binding site for the binding mode analysis of IMB26 and IMB35.
The binding region for molecular docking was defined as a sphere
of 12 Å radius around the binding site (shown as red ball in
Fig. 3).

3.4. Binding mode prediction and targeting A3G/Vif interaction
for novel anti-HIV-1 agents

IMB26 and IMB35 were shown to target the interface of Vif and
A3G axis, thereby protecting A3G from Vif-mediated degrada-
tion22. These two small molecules were reported to bind to A3G
using an SPR assay22. The exact position at which the two
molecules bind as well as binding mode of the two molecules
remains unclear. To predict their binding modes toward A3G,
IMB26 and IMB35, as well as another 3 analogs with little or no
inhibitory effect were docked into the predicted binding site of the
A3G model using GOLD. The two active compounds have much
better scores than the analogs (Table 1). The orientation of
protein–ligand complex with the highest GOLD score was chosen
for further analysis. The results are shown in Fig. 4. The binding
mode of IMB26 (Fig. 4A and B) and IMB35 (Fig. 4C and D) was
very similar. Both IMB26 and IMB35 interact with Tyr22 through
a π–π interaction and have hydrophobic interactions with Phe17,
Trp94, and Ala121. These aromatic or hydrophobic amino acids
were predicted to mediate A3G dimerization, and also played an
important role in interaction with Vif21. The region to which
Figure 3 Prediction of the A3G binding region. (A) Defined by LIGSITE
depiction), and may be the most likely binding site. (B) Prediction of the A3
binding site is also close to the critical TYR124-ASP130 motif.
IMB26 and IMB35 binds is close to the surface that interacts with
Vif, and thus these compounds may block Vif binding to A3G and
therefore protect A3G from Vif-mediated degradation.

Studies of these molecules targeting the A3G and Vif interac-
tion may lead to the development of novel anti-HIV-1 agents.
To date, in addition to IMB26 and IMB35, several small molecules
have been reported to inhibit Vif-mediated A3G degradation
through different mechanisms. The small molecular compound
RN-18 could specifically degrade Vif in presence of A3G, which
means RN-18 only degrades Vif in the Vif/A3G complex, thus
blocking the Vif-mediated degradation of A3G and strongly
inhibiting the growth of the HIV-1 virus. However, the precise
mechanism remains unclear28. A zinc chelate TPEN was shown to
impair the ability of Vif to degrade A3G29, but the essential role
. One of these sites is close to the critical TYR124-ASP130 motif (stick
G binding site as defined by site finder module in MOE. The predicted



Figure 4 The predicted binding mode of IMB26 and IMB35. (A) The binding mode of the IMB26 (stick model) with A3G (ribbon);
(B) the A3G–IMB26 interaction as predicted by the LigX module in MOE; (C) the binding mode of the IMB35 (stick) with A3G (ribbon) and
(D) the A3G–IMB35 interaction as predicted by the LigX module in MOE.
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for zinc in cells limits the opportunity to modulate its levels, and
thus potential as anti-HIV drug. Recently Yu et al.30 reported a
small molecule, VEC-5, that targets the interface of Vif and
ELOC, which inhibits Vif-mediated degradation of A3G and
replication of HIV-1 in A3G-positive cells. It should be noted
that a compound specifically targeting the BC-box of Vif might be
very difficult to obtain, since the BC-box is a highly conserved
sequence and is present in many important cell proteins. Therefore,
the most efficient strategy, in principle, would be to use a small-
molecular inhibitor that could selectively block the interaction
between Vif and APOBEC3G, as IMB26 and IMB35 do.

4. Conclusions

The three-dimensional structure of A3G was predicted using the
APO2 protein (2NYT) and the crystallized A3G CD2 domain
structure (3IQS) as templates. Structure validation by Ramanchandran
plot and Verify 3D confirmed the reliability of the structural model.
Molecular docking results for IMB26 and IMB35 toward the A3G
model suggested the possible binding mode of these two active
compounds. The predicted binding modes of IMB26 and IMB35 will
be helpful for the better understanding of the mechanism of action of
these two compounds, and thus will benefit the optimization of the
lead compound and the search for other active compounds with novel
scaffolds that target A3G–Vif interaction.
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