
J. Math. Pures Appl. 87 (2007) 193–225

www.elsevier.com/locate/matpur

Asymptotics of resolvent integrals: The suppression of crossings
for analytic lattice dispersion relations

Jani Lukkarinen

Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747 Garching, Germany

Received 2 June 2006

Abstract

We study the so-called crossing estimate for analytic dispersion relations of periodic lattice systems in dimensions three and
higher. Under a certain regularity assumption on the behaviour of the dispersion relation near its critical values, we prove that
an analytic dispersion relation suppresses crossings if and only if it is not a constant on any affine hyperplane. In particular, this
applies to any dispersion relation which is an analytic Morse function. We also provide two examples of simple lattice systems
whose dispersion relations do not suppress crossings in the present sense.
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie la borne de croisement pour des relations de dispersion analytiques de systèmes sur réseaux périodiques en dimension
d � 3. En supposant une certaine régularité de la relation de dispersion au voisinage des valeurs critiques, on démontre qu’une
relation de dispersion analytique élimine les contributions de croisements si et seulement si elle n’est pas constante sur n’importe
quel hyperplan affine. C’est le cas si la relation de dispersion est une fonction de Morse analytique. Enfin, on présente deux
exemples de systèmes simples sur réseau pour lesquels la relation de dispersion n’élimine pas les croisements au sens défini ici.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Time-dependent perturbation theory has proven to be a useful tool in studying the behaviour of systems where a
free, wave-like, evolution in three dimensions is perturbed by a weak random potential. An important set of tools for
rigorous estimation of such a perturbation series was developed by Erdős and Yau in [1] to study the kinetic limit
of the random Schrödinger evolution. These methods have later been extended to cover also the low density limit of
the random Schrödinger evolution [2], as well as the kinetic limits of an electron coupled to a phonon field [3], of
the discrete random Schrödinger equation (the Anderson model) [4,5], and of certain discrete wave equations with a
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weak, random mass-disorder [6]. There is also a recent, remarkable result where the methods have been reworked to
allow going beyond the kinetic time-scales for the continuum and discrete random Schrödinger evolutions [7–9].

An important element in all of these results is an estimate proving that all so called crossing graphs are suppressed.
For the discrete random Schrödinger equation this was proven in [4] by showing that for every sufficiently small
β > 0,

sup
α∈R3, k0∈T3

∫
(T3)2

dk1 dk2
1

|α1 − ω(k1) + iβ||α2 − ω(k2) + iβ|
1

|α3 − ω(k1 − k2 + k0) + iβ| � c1〈lnβ〉n1βγ−1.

(1.1)

Here ω(k) = ∑3
ν=1(1 − cos(2πkν)) is the dispersion relation of the free discrete Schrödinger equation, and c1 > 0,

n1 � 0 and γ > 0 are constants depending only on the function ω.
We call (1.1) the crossing estimate. The validity of the corresponding estimate in the earlier continuum Schrödinger

case (when ω(k) = 1
2k2, k ∈ R3) was fairly straightforward to prove, but the proof turned out to be involved in the

discrete case, ω(k) = ∑3
ν=1(1 − cos(2πkν)). There are now two independent proofs of this result: the bound in (1.1)

was shown to hold with γ = 1/5 and n1 = 2 in Lemma 3.11 of [4] and with γ = 1/4 and n1 = 6 in Appendix A.3
of [7]. The case of more general dispersion relations ω is not covered by the earlier results. However, in a very recent
preprint by Erdős and Salmhofer [10] the related “four denominator estimate”, which involves four resolvent terms
instead of three and which was required in [7], has been studied using an approach different from ours.

For very small β , each of the factors in (1.1) is sharply concentrated around some level set of ω. However, the
arguments of ω in the factors are not allowed to vary independently of each other, and the magnitude of the integral
for small β is thus determined by the overlap of the different level sets depending on the constants αj . Therefore,
to prove (1.1) it will be necessary to consider the worst case scenario for the level sets, and then try to estimate the
overlap between the three levels sets as k1 and k2 are varied.

However, it is not obvious how to carry out such an argument in the general setup. This raises the question: for
what kind of dispersion relations ω is it possible to derive the estimate (1.1)? This question is particularly relevant
in the context of microscopic models for lattice vibrations in a crystal where the dispersion relation is determined by
the elastic couplings, and can be fairly arbitrary (we refer to the survey [11], and for a related mathematical treatment
of the purely harmonic system to [12], for further details on the topic). In an earlier work [6], where the perturbation
methods were applied to a simplified model of the lattice vibrations, the estimate (1.1) was in fact elevated to an
assumption, denoted by (DR4) in the paper.

Here our main aim is to show that the technical assumption (DR4) of the earlier work [6] can be replaced by a much
simpler geometric condition. However, the methods used here should have wider applications in analysis involving
time-dependent perturbation expansions or relying on resolvent techniques. We will introduce the problem in detail
and present the main results in Section 2, with the main notations collected to Section 2.1. Before proceeding to the
more involved proof of validity of the crossing estimate, we first prove the converse and discuss a few counterex-
amples in Section 3. The proofs of the main theorems have been divided into Sections 4–6. Section 4 collects the
main technical lemmas, with some of the more well-known details being reproduced for the sake of completeness in
Appendices A and B. We prove in Section 5 that the technical assumption made about the nature of the set of singular
points of the dispersion relation leads to a property similar to the usual dispersivity. To show that the assumptions
are fairly general, we have also included in Appendix C a proof which shows that real-analytic Morse functions are
covered by the main theorems. The proof of the suppression of crossings is the content of Section 6, where the first
part gives a certain uniform estimate on the minimal curvature of the level sets of ω, and the second part exploits this
to provide for the extra decay of the crossing integral.

2. Main results

Let us call a dispersion relation ω semi-dispersive, if the integral over the modulus of its resolvent diverges at most
logarithmically, that is, if there are c0 ∈ R+ and n0 ∈ N such that for all 0 < β � 1, and α ∈ R,∫

d

dk
1

|α − ω(k) + iβ| � c0〈lnβ〉n0 . (2.1)
T
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We will be here mainly interested in real-analytic dispersion relations which have this property. We aim at prov-
ing (1.1), and thus we need to consider the “three-resolvent1 crossing integrals” defined by:

I3cr(α, k0, β) =
∫

(Td )2

dk1 dk2
1

|α1 − ω(k1) + iβ||α2 − ω(k2) + iβ|
1

|α3 − ω(k1 − k2 + k0) + iβ| , (2.2)

for α ∈ R3, k0 ∈ Td and 0 < β � 1. For any semi-dispersive ω, we immediately obtain a bound for the integral by
estimating the third factor trivially by 1/β , which yields:

sup
α,k0

I3cr(α, k0, β) � c2
0〈lnβ〉2n0β−1. (2.3)

We call this the basic estimate. We shall say that the dispersion relation suppresses crossings, if it is possible to
improve the basic estimate by some positive power of β , i.e., if there are constants γ > 0, c1 ∈ R+, and n1 ∈ N such
that

sup
α,k0

I3cr(α, k0, β) � c1〈lnβ〉n1βγ−1. (2.4)

We note that this implies, in particular, that supα,k0
(βI3cr(α, k0, β)) → 0 when β → 0+.

The following collects the precise assumptions made about ω here.

Assumption 2.1. Let d � 3, and let ω : Rd → R be real-analytic and Z
d -periodic. Define for all s > 0,

fω(s) =
∫
Td

dk
1

|∇ω(k)|3 1
(∣∣∇ω(k)

∣∣ � s
)
. (2.5)

We assume that there are p0, c0 � 0 such that for all s > 0,

fω(s) � c0〈ln s〉p0 . (2.6)

Since obviously fω(s) � s−3, the assumption is in reality only about the nature of the singularity of the integrand
near the set of singular points of ω, i.e., about the behaviour of ω near the points k for which ∇ω(k) = 0.

The first of the following theorems, Theorem 2.2, proves that every such ω is semi-dispersive with n0 = 1. In
particular, this is the case for every real-analytic Morse function ω on T

d , and we have included a proof of this
property in Appendix C. In the assumptions, for d = 3 we then need to take p0 = 1, otherwise p0 = 0 suffices. In
the second theorem, Theorem 2.3, we present a simple geometric classification of whether such a dispersion relation
suppresses crossings or not.

Theorem 2.2. Let Assumption 2.1 be satisfied. Then for every 0 � p � 1 there is a constant Cp with the following
property: for all α ∈ R, 0 < β � 1, if 0 � p < 1,∫

Td

dk

|∇ω(k)|p
1

|α − ω(k) + iβ| � Cp〈lnβ〉, (2.7)

and, if p = 1, ∫
Td

dk

|∇ω(k)|
1

|α − ω(k) + iβ| � C1〈lnβ〉p0+2. (2.8)

Theorem 2.3. Let Assumption 2.1 be satisfied. Then ω suppresses crossings if and only if it is not a constant on any
affine hyperplane.

1 This is to distinguish the estimate from the related integral involving four resolvent factors which was needed in [7] for the analysis going
beyond the kinetic regime.
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Thus, we can now conclude that there is a large class of functions for which the main theorem in [6] is satisfied:

Corollary 2.4. If ω : T3 → R is a Morse function, whose periodic extension to R
3 is real-analytic and the extension is

not a constant on any affine hyperplane, then it satisfies the assumptions (DR3) and (DR4) of [6].

The property called (DR3) was already shown to be valid for Morse functions in [6]. We have included it in the
corollary only to allow for easier use of the result. With some effort, it should now also be possible to generalize the
results about the Anderson model [4] accordingly to more general dispersion relations.

2.1. Notations

We use the standard notations Sd and T
d for the d-dimensional unit sphere and the unit torus, respectively. Sd is the

surface of the unit ball in R
d+1, with the topology and metric inherited from it, and T

d is identified with the topological
space R

d/Z
d . We denote the equivalence class mapping R

d → T
d by [·], and its inverse on (−1/2,1/2]d by [·]′. The

topology of the torus is then compatible with the metric dT defined by dT([y], [x]) = minn∈Zd |y−x+n| = |[[y−x]]′|.
Let us also remark that, in general, we do not make a distinction between a Z

d -periodic function f and its unique
representative as a function on Td , defined by [x] �→ f (x).

The space dimension is denoted by d , and for any r > 0, we denote the ball of radius r in R
d by Br . In addition,

we will reserve the notation ej to the j th coordinate vector of R
d , i.e., (ej )ν = δjν , where δ denotes the Kronecker

delta. An affine hyperplane M ⊂ R
d is a set for which there exists a vector x0 ∈ R

d such that M − x0 is a hyperplane,
i.e., a (d − 1)-dimensional subspace of R

d . Then there are a direction u ∈ Sd−1 and r0 ∈ R such that with x0 = r0u,
M = {x ∈ R

d | x ·u = r0} = {x − (x ·u)u+x0 | x ∈ R
d}. We also denote the projection onto the hyperplane orthogonal

to u by Qu, when explicitly

Qux = x − (u · x)u. (2.9)

We use here the following standard shorthand notation:

〈x〉 =
√

1 + x2, (2.10)

for x ∈ R. This will be the main tool for handling the various power-law dependencies appearing later, and we have col-
lected a few basic properties of 〈·〉 into Appendix B. For any sufficiently many times differentiable function f :X → C,
X an open subset of R

d , we employ the notations:

‖f ‖N = sup
|α|�N

‖∂αf ‖∞ and ‖f ‖′
N = sup

0�n�N

‖Dnf ‖∞ (2.11)

where, for a multi-index α, ∂αf is the corresponding partial derivative of f , and, for a positive integer n,
Dnf |x denotes the linear operator on R

d×n corresponding to the nth derivative of f at x. Then ‖Dnf ‖∞ =
supx,|vk |=1 |∏n

k=1(vj · ∇)f (x)|. In particular, ‖f ‖′
0 = ‖f ‖∞, ‖f ‖′

1 = max(‖f ‖∞, supx |∇f (x)|), and ‖f ‖′
2 =

max(‖f ‖′
1, supx ‖D2f (x)‖), where D2f (x) is the Hessian of f at x and the norm is its matrix norm.

Finally, 1(P ) denotes here a characteristic function of a statement P . That is, it takes the value 1, if P is true, and 0
otherwise.

3. Counterexamples

3.1. Proof of “only if” in Theorem 2.3

For this part of the proof, we do not need the dispersivity properties following from Assumption 2.1, or the full
smoothness of the dispersion relation. Instead of the assumptions of Theorem 2.3, let us consider in this subsection
the following, more general, case: let d � 2 and assume that ω : Rd → R is Z

d -periodic and Lipschitz. Let C′ denote
a Lipschitz constant of ω, i.e., it is positive and |ω(x′) − ω(x)| � C′|x′ − x| for all x′, x ∈ R

d .
To complete the “only if” part of Theorem 2.3, we assume that there is an affine hyperplane M ⊂ R

d and α ∈ R

such that ω(x) = α for all x ∈ M . Then there are u ∈ Sd−1 and r0 ∈ R such that

M = {
x ∈ R

d | x · u = r0
} = {

x − (x · u)u + x0 | x ∈ R
d
}
,
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where x0 = r0u. We shall prove that ω cannot suppress crossings by showing that then there is c > 0 such that for all
0 < β � 1,

I (β) = I3cr
(
(α,α,α), [x0], β

)
� c

β
. (3.1)

By the remark after (2.4), this suffices, as then supα′,k′
0
(βI3cr(α

′, k′
0, β)) � c.

We will derive the bound by considering the integral only over a certain neighbourhood of [M] × [M] ⊂ T
d × T

d .
Let for any δ � 0

M ′
δ = {[x] | x ∈ R

d , |x · u − r0| � δ
}
. (3.2)

Then M ′
0 = [M] ⊂ M ′

β and there is C > 0 such that
∫
M ′

δ
dk � Cδ for all 0 � δ � 1. If k ∈ M ′

δ , there is x such that

k = [x] and |x · u − r0| � δ. Then x′ = x − (x · u − r0)u ∈ M , and∣∣α − ω(k)
∣∣ = ∣∣ω(x′) − ω(x)

∣∣ � C′|x · u − r0| � C′δ. (3.3)

Therefore, |α − ω(k) + iβ| = β〈(α − ω(k))β−1〉 � β〈C′δβ−1〉 for all [x] ∈ M ′
δ . If k1, k2 ∈ M ′

β , then there are x1,

x2 ∈ R
d such that [xj ] = kj and |xj ·u−r0| � β . Since (x1 −x2 +x0) ·u−r0 = x1 ·u−x2 ·u, then [x1 −x2 +x0] ∈ M ′

2β .
Therefore, for all 0 < β � 1,

I (β) �
∫

M ′
β

dk1

∫
M ′

β

dk2
1

〈C′〉2〈2C′〉β
−3 � C2

2〈C′〉3
β−1. (3.4)

This proves (3.1), and finishes the proof of the “only if” part of Theorem 2.3.

3.2. The first counterexample: NN-interaction in d = 2

As the first counterexample, we consider the dispersion relation of the standard 2-dimensional classical harmonic
crystal with nearest neighbour (NN) interactions. Although it does not satisfy Assumption 2.1, as d < 3 and ω is not
analytic, it is a standard example used in perturbative analysis of 2-dimensional crystals. We therefore find it worth
the diversion to stress the special nature of this dispersion relation. See, for instance, Sections 2.1 and 6 in [6] for more
details on the subject.

Let ω : R2 → R be defined by:

ω(x) = √
2 − cos(2πx1) − cos(2πx2). (3.5)

It is Z
2-periodic and has a cusp singularity at every x ∈ Z

2, but it is straightforward to check that ω is nevertheless
Lipschitz. On the other hand, if x is any point on the affine hyperplane x1 + x2 = 1

2 , then

ω(x)2 = 2 − cos(2πx1) − cos(π − 2πx1) = 2. (3.6)

Therefore, we can apply the previous proof, and conclude that the dispersion relation ω does not suppress crossings.
The same conclusion naturally holds also for the dispersion relation ω2.

3.3. Second example: A Morse function in d = 3

To show that the extra condition in Theorem 2.3 cannot be dropped, let us also provide an example which satisfies
Assumption 2.1 but which is nevertheless a constant on a certain hyperplane. Define:

ω(x) = 5 − cos(2πx1)
(
3 + cos(2πx2) + cos(2πx3)

)
(3.7)

which is Z
3-periodic, real-analytic, and positive. If we denote sj = sin(2πxj ) and cj = cos(2πxj ), then

1 ∇ω(x) = (
s1(3 + c2 + c3), c1s2, c1s3

)
. (3.8)
2π
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Since 3 + c2 + c3 � 1, ω has 8 critical points which are the points with sj = 0 for all j , i.e., the points xj ∈ {0, 1
2 } for

j = 1,2,3. The Hessian is:

1

(2π)2
D2ω(k) =

(
c1(3 + c2 + c3) −s1s2 −s1s3

−s1s2 c1c2 0
−s1s3 0 c1c3

)
(3.9)

and, since at all critical points |cj | = 1, |detD2ω(x)| � (2π)2 > 0 at every critical point x. Therefore, ω is a Morse
function, and thus satisfies Assumption 2.1. On the other hand, ω(± 1

4 , x2, x3) = 5 for all x2 and x3, and ω is a constant,
for instance, on the hyperplane x1 = 1

4 .
As ω is positive, it is a dispersion relation of a certain classical harmonic crystal. The corresponding elastic cou-

plings of the crystal can be obtained by taking the inverse Fourier transform of ω2. Since ω2 is a trigonometric
polynomial, these elastic couplings correspond to a translation invariant harmonic interaction which is mechanically
stable and has a finite range. Therefore, this example shows that even quite simple elastic couplings can lead to
violation of the condition for suppression of crossings.

4. Main technical lemmas

This section collects the technical material which will be needed in derivation of the main results. We start with a
few straightforward, but frequently applied, estimates. In the second subsection we derive estimates for the asymp-
totics of one-dimensional “resolvent integrals”. The final subsection contains a derivation of the parameterisation of
the level sets of ω, and most of it will be consumed by the more involved estimates about the higher order curvature
induced by the parameterisation.

4.1. Basic estimates

For application of the following lemmas, let us note that if ω satisfies the Assumption 2.1, then it is Z
d -periodic

and smooth, and thus ‖ω‖′
n < ∞ for all n.

Lemma 4.1. Suppose d and ω satisfy Assumption 2.1. Then for all 0 < p < 3,∫
Td

dk
1

|∇ω(k)|p < ∞. (4.1)

Proof. Let M = (‖ω‖′
1)

3−p . Then we can apply a “layer cake representation” to the integral:

∫
Td

dk
1

|∇ω(k)|p =
∫
Td

dk
1

|∇ω(k)|3
M∫

0

ds 1
(∣∣∇ω(k)

∣∣3−p � s
)

=
M∫

0

ds fω

(
s1/(3−p)

)
� c0

〈
1

3 − p

〉p0
M∫

0

ds 〈ln s〉p0 , (4.2)

where we have used Fubini’s theorem and the general property 〈ab〉 � 〈a〉〈b〉. By the change of variables to y = − ln s,
the remaining integral over s is easily shown to be finite, which proves (4.1). �
Lemma 4.2. Let a > 0 and ω : Rd → R, with M2 = ‖ω‖′

2 < ∞, be given. Then for all x, x0 ∈ R
d with |x − x0| �

a
M2

|∇ω(x0)|, ∣∣∇ω(x) − ∇ω(x0)
∣∣ � a

∣∣∇ω(x0)
∣∣. (4.3)

Proof. Let x and x0 be such that |x − x0| � a |∇ω(x0)|. Choose an arbitrary h ∈ Rd , then by Taylor formula:

M2
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∣∣h · (∇ω(x) − ∇ω(x0)
)∣∣ �

1∫
0

dt
∣∣D2ω|x0+t (x−x0)(h, x − x0)

∣∣
� |h||x − x0|‖ω‖′

2 � a
∣∣∇ω(x0)

∣∣|h|. (4.4)

This implies (4.3). �
Lemma 4.3 (Argument shift). Let ω be such that M2 = ‖ω‖′

2 < ∞, and assume that s,p > 0 and 0 < a < 1 are given.
Then for any 0 < λ � as/M2, and x, y ∈ Rd ,

1(|x − y| < λ)1(|∇ω(y)| � s)

|∇ω(y)|p � (1 + a)p
1(|x − y| < λ)1(|∇ω(x)| � (1 − a)s)

|∇ω(x)|p . (4.5)

Proof. Let us assume |x − y| < λ and |∇ω(y)| � s, otherwise the bound in (4.5) is trivial. Since then |x − y| <

a|∇ω(y)|/M2, we can apply Lemma 4.2 and triangle inequality, yielding∣∣∣∣∇ω(x)
∣∣ − ∣∣∇ω(y)

∣∣∣∣ �
∣∣∇ω(x) − ∇ω(y)

∣∣ � a
∣∣∇ω(y)

∣∣. (4.6)

Therefore, |∇ω(x)| � (1 − a)|∇ω(y)| � (1 − a)s, and (1 + a)|∇ω(y)| � |∇ω(x)|, which imply that (4.5) holds. �
Lemma 4.4. For any p � 0 and 0 < β � 1,

1∫
β

ds
〈ln s〉p

s
� 〈lnβ〉p+1. (4.7)

Proof. Now 0 � − ln s � − lnβ for all β � s � 1. Therefore,

1∫
β

ds
〈ln s〉p

s
� 〈lnβ〉p

1∫
β

ds

s
= 〈lnβ〉p| lnβ| � 〈lnβ〉p+1, (4.8)

proving (4.7). �
Lemma 4.5. For any β,μ > 0, and x,h ∈ R such that |h| � 2μβ ,

1

|x + h + iβ| � μ + 〈μ〉
|x + iβ| . (4.9)

Proof. By the triangle inequality, |x + h|2 � (|x| − |h|)2, and thus for any 0 < λ < 1,

|x + h + iβ|2 � x2 − 2|h||x| + h2 + β2

= (
1 − λ2)(x2 + β2) +

(
λ|x| − 1

λ
|h|

)2

−
(

1

λ2
− 1

)
|h|2 + λ2β2

�
(
1 − λ2)(x2 + β2) + β2

((
1 − 1

λ2

)
4μ2 + λ2

)
. (4.10)

By choosing λ2 = 1 − (μ + 〈μ〉)−2 the final term in the parenthesis vanishes. Since then 1 − λ2 = (μ + 〈μ〉)−2, this
proves (4.9). �
4.2. One-dimensional resolvent integrals

We derive here the required estimates for one-dimensional “resolvent” integrals. We start with polynomials, and
then extend these results to functions f which are “almost polynomial” on the integration interval in the sense that
the n0th derivative of f is non-vanishing on the whole interval for some order n0. The proof will be quite simple
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when n0 = 1, and fairly involved when n0 > 1. Although we are not aware of a reference to a derivation of these
estimates in the literature, they could probably be pieced up from the known results. We point out, in particular, the
similarity to Malgrange preparation theorem, see for instance Section 7.5 of [13]. The main point of reproducing the
proofs in detail here is that we need to have some control on how the various constants in the estimates depend on the
function f .

Proposition 4.6. Let n � 1 and let Pn(x) = ∑n
k=0 akx

k , with ak ∈ R and an �= 0. If n � 2, then for all β > 0,

∞∫
−∞

dx

|Pn(x) + iβ| � 2(n + 2)

|an|1/n
β1/n−1. (4.11)

If n = 1, then for β,λ > 0, and x0 ∈ R, ∫
|x−x0|�λ

dx

|Pn(x) + iβ| � 6〈ln〈λa1〉〉
|a1| 〈lnβ〉. (4.12)

Proof. Let first n � 2, and consider (4.11). Since Pn is a polynomial of nth degree, we can find z ∈ C
n such that for

all x, Pn(x) = an

∏n
�=1(x − z�). Fix then x, and let �′ be an integer such that |x − z�| � |x − z�′ | for all �. Then,

|x − z�| � |x − Re z�′ |, and

1

|Pn(x) + iβ| � 1

||an||x − Re z�′ |n + iβ| �
n∑

�=1

1

||an||x − Re z�|n + iβ| . (4.13)

For any y ∈ R,
∞∫

−∞

dx

||an||x − y|n + iβ| = β1/n−1

|an|1/n

∞∫
−∞

dx

〈xn〉 , (4.14)

where
∫ ∞
−∞ dx 〈xn〉−1 � 2(1 + ∫ ∞

1 dx x−n) = 2n/(n − 1) � 2(n + 2)/n, since n � 2. Thus (4.13) implies (4.11).
Assume then n = 1, when Pn(x) = a0 + a1x. Changing variables to y = (a0 + a1x)/β , we get:

∫
|x−x0|�λ

dx

|Pn(x) + iβ| = 1

|a1|

y0+λ′∫
y0−λ′

dy

|y + i| , (4.15)

with y0 = (a0 + a1x0)/β and λ′ = |a1|λ/β . By differentiation with respect to y0, we find that the second integral has
a maximum at y0 = 0. Therefore,∫

|x−x0|�λ

dx

|Pn(x) + iβ| � 2

|a1|
λ′∫

0

dy

|y + i| � 2

|a1|
(
1 + | lnλ′|) � 2

√
2

|a1| 〈lnλ′〉. (4.16)

If β � λ|a1|, then 0 � lnλ′ � ln〈λ|a1|〉 + | lnβ|, and, since 2
√

2 < 3, (4.16) implies:∫
|x−x0|�λ

dx

|Pn(x) + iβ| � 3

|a1|2
〈
ln〈λa1〉

〉〈lnβ〉, (4.17)

where we have used the properties of 〈·〉 given in Appendix B. This proves (4.12) for β � λ|a1|. If β > λ|a1|, then we
can estimate trivially: ∫

|x−x0|�λ

dx

|Pn(x) + iβ| � 2λ

β
<

2

|a1| <
6

|a1|
〈
ln〈λa1〉

〉〈lnβ〉, (4.18)

which proves (4.12) also for the remaining values of β . �
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Proposition 4.7. (n0 = 1) Suppose a, b ∈ R, with a < b. Denote I = (a, b), and assume f ∈ C(1)(I,R) is such that
|f ′(x)| � ε0 for some ε0 > 0 and all x ∈ I , and that m0 = supx∈I |f (x)| < ∞. Then for all β > 0 and α ∈ R,

b∫
a

dx

|f (x) − α + iβ| � 6〈ln〈m0〉〉
ε0

〈lnβ〉. (4.19)

Proof. Since f ′ is continuous, either f ′ � ε0 or f ′ � −ε0, and we only need to prove the result in the first case
(applying it to −f then proves the result in the second case). Since f ′ > 0, f is strictly increasing. In addition,
f (I) = (a′, b′), where a′ = limx→a+ f (x) and b′ = limx→b− f (x) exist and are bounded by m0 < ∞. Thus there is
g :f (I) → I , g = f −1, for which g′(y) = 1/f ′(g(y)) ∈ (0,1/ε0]. Therefore,

b∫
a

dx

|f (x) − α + iβ| =
b′∫

a′
dy

g′(y)

|y − α + iβ| � 1

ε0

b′∫
a′

dy

|y − α + iβ| . (4.20)

By Lemma 4.6, this is bounded by 6〈ln〈(b′ − a′)/2〉〉〈lnβ〉/ε0. However, as |b′ − a′|/2 � m0, this bound implies also
(4.19). �
Proposition 4.8. (n0 > 1) Suppose a, b ∈ R, with a < b, and n0 � 2 are given. Denote I = (a, b), and assume
f ∈ C(n0+1)(I,R) is such that |f (n0)(x)| � n0!ε0 for some ε0 > 0 and all x ∈ I , and that m0 = supx∈I |f (n0+1)(x)|/
(n0 + 1)! < ∞. Define M = max(m0,1), Cn0 = 2n0+1(n0 + 1)n0 , and

ε′ = ε0

MCn0

> 0. (4.21)

If 0 < β � (ε′)n0+1, then

b∫
a

dx

|f (x) + iβ| � Cn0

(
b − a

ε0
β1/(n0+1)−1 + Mε

−1/n0
0 β1/n0−1

)
. (4.22)

Proof. We need to find the local minima of |f |, which coincide with the local minima of f 2. Since f (n0) has no
zeroes, f (m) has maximally n0 − m zeroes for m � n0. Let X be the union of the set of zeroes of f , of the zeroes of
f ′ and of the end-points a and b, when |X| � n0 + n0 − 1 + 2 = 2n0 − 1. Since d(f 2)/dx = 2ff ′, X partitions (a, b)

into subintervals on which f 2—and thus also |f |—is strictly monotonic: if a′ < b′ are such that (a′, b′) ⊂ (a, b) \ X,
then f 2 is either strictly increasing or decreasing on [a′, b′] ∩ (a, b).

Let us define λ = β1/(n0+1) when by assumption 0 < λ � ε′. Suppose x0 ∈ (a, b), and let I = I (x0) = {x ∈ (a, b) |
|x − x0| < λ}. We claim that, if x0 − λ > a, then there is x−

0 ∈ I , x−
0 < x0 such that |f (x−

0 )| � Mε′λn0 , and similarly,
if x0 + λ < b, then there is x+

0 ∈ I , x+
0 > x0 such that |f (x+

0 )| � Mε′λn0 . Consider the Taylor expansion of f around
x0 to degree n0,

f (x) =
n0∑

n=0

an(x − x0)
n + Rn0(x;x0) where an = f (n)(x0)

n! . (4.23)

For any x there is a point ξ between x and x0, such that the remainder is:

Rn0(x;x0) = f (n0+1)(ξ)

(n0 + 1)! (x − x0)
n0+1, (4.24)

implying that |Rn0 | � Mλn0+1 on I . On the other hand, since |an0 | � ε0 > 0, there is z ∈ C
n0 such that

Pn0(x;x0) =
n0∑

an(x − x0)
n = an0

n0∏
(x − zj ). (4.25)
n=0 j=1
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Let yj = Re zj , when by |x − zj | � |x − yj |, we have for all x ∈ I ,

∣∣f (x)
∣∣ �

∣∣Pn0(x)
∣∣ − ∣∣Rn0(x)

∣∣ � ε0

n0∏
j=1

|x − yj | − Mλn0+1. (4.26)

Consider the set Y which consists of the endpoints of I and of all those yj which are in I . Then 2 � |Y | � n0 + 2. The
set [x0 − λ,x0] \ Y ⊂ I consists of maximally n0 + 1 intervals. If x0 − λ � a, one of them must be at least of length
λ/(n0 + 1), and let x−

0 be a middle point of such an interval. Then x−
0 < x0 and |x−

0 − yj | � 1
2λ/(n0 + 1) for all j .

Therefore, by (4.26) and λ � ε′,∣∣f (x−
0 )

∣∣ � ε0

(
λ

2(n0 + 1)

)n0

− Mλn0+1 � (2Mε′ − Mε′)λn0 = Mε′λn0 . (4.27)

If x0 + λ � b, we can similarly find x+
0 ∈ (x0, x0 + λ] with |f (x+

0 )| � Mε′λn0 .
For each x0 ∈ X, we can thus find x±

0 with the property that x0 ∈ [x−
0 , x+

0 ] ⊂ I (x0), and either x±
0 ∈ {a, b} or

|f (x±
0 )| � Mε′λn0 . Let,

X′ = {
x0 ∈ X | ∣∣f (x0)

∣∣ < Mε′λn0
}

and J =
⋃

x0∈X′

(
x−

0 , x+
0

)
. (4.28)

We claim that if x ∈ I \ J , then |f (x)| � Mε′λn0 .
Suppose x ∈ I \ J . It then belongs to an interval I ′ whose endpoints lie in the set

⋃
x0∈X′ {x±

0 } ∪ {a, b}. Assume x′

is a local minimum point of |f | on the closure of I ′. If x′ is not an endpoint of I ′, it must be a critical point of f 2, and
thus x′ ∈ X, when by construction, |f (x′)| � Mε′λn0 . The same holds if x′ ∈ {a, b} ⊂ X. The only possibility left is
that x′ is one of the points x±

0 , when again by construction |f (x′)| � Mε′λn0 . This proves that |f | � Mε′λn0 on I ′,
in particular, also at x.

Therefore,

b∫
a

dx
1

|f (x) + iβ| =
∫

I\J
dx

1

|f (x) + iβ| +
∫
J

dx
1

|f (x) + iβ| � b − a

Mε′λn0
+

∑
x0∈X′

x+
0∫

x−
0

dx
1

|f (x) + iβ| . (4.29)

Consider one of the terms in the sum over X′, i.e., let x0 ∈ X′. Denote R(x) = Rn0(x;x0) and P(x) = Pn0(x;x0) =
an0

∏n0
j=1(x − zj ). Since (x−

0 , x+
0 ) ⊂ I (x0), for all x ∈ (x−

0 , x+
0 ),∣∣f (x) − P(x)

∣∣ = ∣∣R(x)
∣∣ � Mλn0+1 = Mβ. (4.30)

Therefore, by Lemma 4.5, on the whole integration region:

1

|f (x) + iβ| �
1
2M + 〈 1

2M〉
|P(x) + iβ| � 2M

|P(x) + iβ| (4.31)

to which we can apply Lemma 4.6 with |an0 | � ε0. Since |X| � 2n0 − 1, the results proven so far can be collected into
the estimate:

b∫
a

dx

|f (x) + iβ| � b − a

Mε′ β1/(n0+1)−1 + (2n0 − 1)2Mβ1/n0−1ε
−1/n0
0 2(n0 + 2). (4.32)

To get the bound in (4.22), we only need to use the fact that, as n0 � 2, Cn0 � 23(n0 + 1)2 � 22(2n0 − 1)(n0 + 2). �
4.3. Parameterisation of the level sets

The first of the results in this subsection states that, apart from the critical points, there exists a local diffeomorphism
which transforms the level sets of ω into hyperplanes orthogonal to e1. Although this is a straightforward consequence
of the inverse mapping theorem, we need fairly detailed information about the inverse function, and we have included
also some details of the proof here.
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In all of the results in this subsection we assume that d � 2 and ω : Rd → R is a smooth function such that
‖ω‖′

n < ∞ for all n. In particular, this covers all dispersion relations satisfying Assumption 2.1.

Lemma 4.9. Let x0 ∈ R
d and λ > 0 be such that ∇ω(x0) �= 0, and λ � 1

8
|∇ω(x0)|

‖ω‖′
2

. Then there is an open set U ⊂ R
d

and a diffeomorphism ψ :B2λ → U with the following properties:

(1) ψ(0) = x0 and x0 + Bλ ⊂ ψ(B2λ) ⊂ x0 + B4λ.
(2) For all y with |y| < 2λ,

ω
(
ψ(y)

) = ω(x0) + ∣∣∇ω(x0)
∣∣y1, (4.33)

and ∣∣∇ω
(
ψ(y)

) − ∇ω(x0)
∣∣ <

1

2

∣∣∇ω(x0)
∣∣. (4.34)

(3) Denote A = Dψ(0) and u0 = ∇ω(x0)/|∇ω(x0)|. Then A is a rotation of R
d such that u0 = Ae1. In addition,

2
3 � |det(Dψ)| � 2 on B2λ, and

Dψ |yAT v = v − u0
∇ω(x) · v
∇ω(x) · u0

∣∣∣∣
x=ψ(y)

whenever v · u0 = 0. (4.35)

Proof. Let us denote Ua = x0 + Ba8λ, and define f : Rd → R
d by the formula:

f (x) = ∇ω(x) − ∇ω(x0)

|∇ω(x0)| . (4.36)

Then f (x0) = 0 and, by Lemma 4.2, |f (x)| < a for all x ∈ Ua , a > 0. As before, let Qu0 be the projection onto
the subspace orthogonal to u0, and let O to be a rotation of R

d for which Ou0 = e1; in particular, OT = O−1 and
detO = 1. Define ϕ :U1 → R

d by:

ϕ(x) = ω(x) − ω(x0)

|∇ω(x0)| e1 + OQu0(x − x0). (4.37)

Since Qu0O
T e1 = Qu0u0 = 0, then

ϕ(x)1 = ω(x) − ω(x0)

|∇ω(x0)| . (4.38)

By an explicit computation,

Dϕ(x) = O + e1 ⊗ f (x) = O
(
1 + u0 ⊗ f (x)

)
. (4.39)

Since O is orthogonal and u0 ⊗ f (x) has rank one, the determinant of Dϕ(x) can be computed explicitly: with
u = f (x), detDϕ(x) = det(1 + e1 ⊗ (Ou)) = 1 + (Ou)1 = 1 + u0 · u and thus for all x ∈ Ua ,

1 − a <
∣∣detDϕ(x)

∣∣ < 1 + a. (4.40)

Therefore, Dϕ(x) is invertible on U1, and by the inverse function theorem, ϕ is a local diffeomorphism on U1. Where
we need to do the extra work here, is to show that we can find a neighbourhood U on which the inverse has the
properties stated in the lemma.

Consider then the case a = 1/2 in the above estimates. Let φ(x) = OT ϕ(x) − (x − x0) for x ∈ Ua , when
‖Dφ(x)‖ < a. By the standard arguments used in the proof of the inverse function theorem (see for instance the proof
of Theorem 10.39 in [14]), it follows that ϕ is one-to-one on Ua , B2λ ⊂ ϕ(Ua), and ψ = ϕ−1|B2λ

is a diffeomorphism
from B2λ to an open set U ⊂ Ua = x0 + B4λ. Also, for all y,

Dψ(y) = Dϕ
(
ψ(y)

)−1 =
(

1 − 1

1 + u0 · uu0 ⊗ u

)
u=f (ψ(y))

OT . (4.41)

We now only need to check that ψ has all the properties mentioned in the lemma. Since ϕ(x0) = 0, now ψ(0) = x0
and we already proved U ⊂ x0 + B4λ. To complete item (1), we need to prove that U1/8 = x0 + Bλ ⊂ U . Since



204 J. Lukkarinen / J. Math. Pures Appl. 87 (2007) 193–225
U1/8 ⊂ U1/2, on which ϕ is one-to-one, it is enough to prove ϕ(U1/8) ⊂ B2λ. This however holds now, since
‖Dϕ(x)‖ < 1 + 1

8 for all x ∈ U1/8, and thus |ϕ(U1/8)| � 9
8λ < 2λ. Of the two statements in item (2), (4.33) follows

from (4.38) by bijectivity of ψ , and, since ψ(B2λ) ⊂ U1/2, (4.34) also holds. For item (3), we note that A = Dψ(0)

is equal to the rotation OT , and thus Ae1 = u0, and (4.41) implies (4.35). Finally, by (4.40) and U ⊂ U1/2, we have
2
3 � |det(Dψ(y))| � 2 for all y. �
Corollary 4.10. Let f : Rd → [0,∞] be measurable. Then for any x0, λ, and ψ as in the previous lemma,∫

|x−x0|<λ

dx f (x) � 2
∫

|y|<2λ

dy f
(
ψ(y)

)
. (4.42)

Proof. By the properties of the diffeomorphism ψ stated in the lemma,∫
|x−x0|<λ

dx f (x) �
∫

ψ(B2λ)

dx f (x) =
∫

|y|<2λ

dy
∣∣det

(
Dψ(y)

)∣∣f (
ψ(y)

)
(4.43)

which is bounded by the right-hand side of (4.42). �
The final result in this section concerns the curvature induced on straight lines by the “level set diffeomorphism” ψ .

In the following proposition we show that, if all derivatives of ω at x0 in the direction of the curve are small up to
a certain order, then also the corresponding “bending” of the curve remains small up to the same order. The main
difficulty in deriving these estimates lies in finding sufficiently sharp estimates also when the parameterisation is
nearly singular, i.e., when |∇ω(x0)| � 1.

Proposition 4.11. Let ω, x0 and λ satisfy the assumptions of Lemma 4.9, and let ψ , A, and u0 be defined as in the
conclusions of the lemma. Consider also some given |y| < 2λ and v ∈ Sd−1, with v · u0 = 0.

Let v′ = AT v and define:

γ (t;y, v) = ψ(y + tv′) and Γ (t;y, v) = γ (t;y, v) − tv − ψ(y), (4.44)

for all t with |y + tv′| < 2λ. Then for any such t , and n � 1,

1

n!
dn

dtn
Γ (t) = −gn(t)u0, (4.45)

where

gn(t) = gn(t;y, v) = 1

n!
dn−1

dtn−1
g
(
γ (t;y, v)

)
with g(x) = v · ∇ω(x)

u0 · ∇ω(x)
, x ∈ R

d . (4.46)

Denote Mn = ‖ω‖′
n, and a0 = max(1,8M2). If N � 2, 0 < ε � 1, μ > 0 and r0 > 0 are such that μ � (1 + 2N +

MN+122N+1)−1, r0 � min(1, |∇ω(x0)|), λ � ε(r0μ)Na−1
0 , and for all 2 � n < N ,

1

n!
∣∣(v · ∇)nω(x0)

∣∣ � 1

2
ε(μr0)

N−n, (4.47)

then, with C = 1 + MN

N ! ,

∣∣∣∣ 1

n!
dn

dtn
Γ (t)

∣∣∣∣ �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εμNrN−1

0 , for n = 1,

2εμN−nrN−1−n
0 , for 2 � n < N,

2Cr−1
0 , for n = N,

2Cμ−1r−2
0 , for n = N + 1.

(4.48)

The proof will be essentially a corollary of the following lemma, whose proof we will postpone until the end of
this section:
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Lemma 4.12. Let the assumptions and definitions of the first paragraph of Proposition 4.11 be satisfied. Denote
Mn = ‖ω‖′

n, a0 = max(1,8M2), and assume 0 < r0 � min(1, |∇ω(x0)|) is given. If λ � r0a
−1
0 , then all of the follow-

ing results are valid:

(1) |Γ (t)| � |t | < 2λ.
(2) Let us define g̃n = g̃n(x0, v) by the following iterative procedure: Let g̃1 = 0, g̃2 = 1

2 |∇ω(x0)|−1(v · ∇)2ω(x0),
and for n > 2, define

g̃n = 1

|∇ω(x0)|

[
1

n! (v · ∇)nω(x0)

+
n−1∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
k−1∏
j=1

mj∑k
j ′=j mj ′

k∏
j=1

mj >1

g̃mj
(−u0 · ∇)k−�(v · ∇)�ω(x0)

∣∣
�=|{j |mj =1}|

]
. (4.49)

Then gn(0;0, v) = g̃n for all n � 1.
(3) Suppose 0 < ε,μ � 1 and N � 2 are such that for all 2 � n < N , inequality (4.47) is satisfied. If μ � 2−NM−1

N−1,
then for all 2 � m < N ,

|g̃m| � εμN−mrN−m−1
0 � 1, (4.50)

and, with C = 1 + MN

N ! defined as in (4.48),

|g̃N | � Cr−1
0 and |g̃N+1| � MN+1

(
1 + 2NC

)
r−2

0 . (4.51)

Furthermore, if also b � 1 + 2N + MN+122N+1, then for all 1 � n � N and allowed t ,∣∣gn(t) − g̃n

∣∣ � a0b
n−1λr−n

0 , (4.52)

and ∣∣gN+1(t) − g̃N+1
∣∣ � 5Ca0b

Nλr−N−2
0 . (4.53)

Proof of Proposition 4.11. By Lemma 4.9,

d

dt
γ (t) = v − g

(
γ (t)

)
u0 (4.54)

which implies (4.45). For the results in the second paragraph, let us note that under the assumptions of the proposition,
we have λ � r0/a0, so that items (1) and (2) of Lemma 4.12 are immediately applicable. In addition, also 0 < μ � 1
with μ−1 � 2NMN−1, so that if we define b = μ−1, then b and μ are small enough for applying the conclusions in
item (3). Therefore, for n = 1, we have |Γ ′(t)| = |g1(t)| � a0r

−1
0 λ � εμNrN−1

0 , and if 2 � n < N , then∣∣∣∣ 1

n!
dn

dtn
Γ (t)

∣∣∣∣ = ∣∣gn(t)
∣∣ �

∣∣gn(t) − g̃n

∣∣ + |g̃n| � a0b
n−1λr−n

0 + εμN−nrN−n−1
0 � 2εμN−nrN−n−1

0 . (4.55)

For n = N , we get similarly a bound a0μ
1−Nλr−N

0 + Cr−1
0 � 2Cr−1

0 . Finally, for n = N + 1, we have:∣∣∣∣ 1

n!
dn

dtn
Γ (t)

∣∣∣∣ � 5Ca0μ
−Nλr−N−2

0 + μ−1Cr−2
0 � 2Cμ−1r−2

0 , (4.56)

where we have used C′ � bC = μ−1C and μ � 1
5 . This proves that all of the bounds given in (4.48) are valid. �

Proof of Lemma 4.12. For any x = γ (t), we have in the definition of g:∣∣u0 · ∇ω(x)
∣∣ = ∣∣∣∣∇ω(x0)

∣∣ + u0 · (∇ω(x) − ∇ω(x0)
)∣∣ � 1

2

∣∣∇ω(x0)
∣∣, (4.57)

by (4.34). Similarly, v · u0 = 0 implies:∣∣v · ∇ω(x)
∣∣ = ∣∣v · (∇ω(x) − ∇ω(x0)

)∣∣ �
∣∣∇ω(x) − ∇ω(x0)

∣∣ � 4λM2. (4.58)
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Therefore (using the definition of a0 and the assumption made on λ)∣∣g1(t)
∣∣ � a0λr−1

0 � 1, (4.59)

which implies |Γ ′(t)| � 1. Since Γ (0) = 0, item (1) holds now.
Consider then item (2). In (4.49), the sum over mj is restricted by k � 2 so that always mj � n−m1 � n− 1. Thus

the right-hand side depends only on g̃m with 2 � m � n − 1, and the sequence g̃n is thus uniquely determined from
g̃2 and it depends only on x0 and v (and naturally also on ω). To complete the proof of the item, we need to show
that g̃n = gn(0;0, v). We do this by induction: Since g1(0;0, v) = 0 = g̃1, this holds for n = 1. Let us assume that the
result is true for 1 � m < n. By Lemma 4.9, we have for all t , ω(γ (t)) = ω(x0) + |∇ω(x0)|y1, which is independent
of t . By Lemma A.1 the nth derivative of ω ◦ γ , which is zero, can be expressed in terms of differentials of γ . We
separate the k = 1 term in the resulting sum, yielding:

−γ (n)(t)

n! · ∇ω
(
γ (t)

) =
n∑

k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
k−1∏
j=1

mj∑k
j ′=j mj ′

k∏
j=1

[
1

mj !γ
(mj )(t) · ∇

]
ω

∣∣∣∣
γ (t)

. (4.60)

At t = 0 and y = 0, γ (t) = x0 and γ (1)(t) = v, and the left hand side evaluates to gn(0;0, v)|∇ω(x0)|. Since the
induction assumption can be applied to all derivatives of γ in the right-hand side, we find that it evaluates to right-
hand side of (4.49) times |∇ω(x0)|. This completes the induction step and proves gn(0;0, v) = g̃n.

We next prove the statements in item (3). If N = 2, then (4.50) is vacuously true, and (4.51) holds by an explicit
computation. Consider then N > 2, when again an explicit computation proves that (4.50) holds for n = 2. We will
prove its validity for higher values of n by induction. Let us thus assume that 2 � n � N is given and that (4.50) is
valid for all 2 � m < n. Suppose 2 � k � n − 1 and

∑k
j=1 mj = n, and let � = |{j | mj = 1}|. Then 0 � � � k − 1,

and
∑

j,mj >1(1 − mj) = ∑
j (1 − mj) = k − n. Therefore, since 0 < ε,μ, r0 � 1, and k � 2,∣∣∣∣∣

k∏
j=1, mj >1

g̃mj

∣∣∣∣∣ �
(
εμN−1rN−2

0

)k−�
(μr0)

∑
j,mj >1(1−mj ) � εμN−1+k−nrN−2+k−n

0 � εμN+1−nrN−n
0 . (4.61)

Using this estimate in (4.49) yields:∣∣∣∣g̃n − 1

|∇ω(x0)|
1

n! (v · ∇)nω(x0)

∣∣∣∣ � 1

r0

n−1∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
εμN+1−nrN−n

0 Mk

� εμN−nrN−n−1
0 μMN−12n−1 � 1

2
εμN−nrN−n−1

0 , (4.62)

where we have applied the assumption made on μ, and the following equality, valid for all n � 1 and 1 � k � n (and
provable, e.g., by induction, or by a combinatorial argument)∑

m∈N
k+

1

(
k∑

j=1

mj = n

)
=

(
n − 1

k − 1

)
. (4.63)

If n < N , we can then apply the assumption (4.47) to (4.62) and obtain the bound:

|g̃n| � 1

r0

1

2
ε(μr0)

N−n + 1

2
εμN−nrN−n−1

0 � εμN−nrN−n−1
0 . (4.64)

This completes the induction step and proves (4.50) for 2 � m < N . However, then (4.62) is valid also for n = N , and
thus also,

|g̃N | � 1

r0

MN

N ! + 1

2
εr−1

0 �
(

MN

N ! + 1

2

)
r−1

0 . (4.65)

Finally, then for any 2 � k � N and m ∈ N
k+ such that

∑
j mj = N + 1,∣∣∣∣∣

k∏
j=1, m >1

g̃mj

∣∣∣∣∣ � Cr−1
0 . (4.66)
j
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To see this, note that |g̃N | can appear in the product only once, and the other factors are always less than one. Therefore,
as in (4.62), we find:

|g̃N+1| � 1

r0

MN+1

(N + 1)! + 1

r0

N∑
k=2

(
N

k − 1

)
MNCr−1

0 (4.67)

which yields the bound in (4.51).
We still need to prove (4.52). By (4.59), it holds for n = 1, so let us assume that n � 2. By (4.45), the left-hand side

of (4.60) is then equal to gn(t)u0 · ∇ω(γ (t)), implying:∣∣∣∣gn(t)
∣∣∇ω(x0)

∣∣ + γ (n)(t)

n! · ∇ω
(
γ (t)

)∣∣∣∣ �
∣∣gn(t)

∣∣∣∣∇ω(x0) − ∇ω
(
γ (t)

)∣∣ �
∣∣gn(t)

∣∣M24λ

� M24λ|g̃n| + 1

2

∣∣∇ω(x0)
∣∣∣∣gn(t) − g̃n

∣∣. (4.68)

Therefore, by employing the triangle inequality to change gn(t) to g̃n in the leftmost expression, we find that∣∣gn(t) − g̃n

∣∣ � 8M2

r0
λ|g̃n| + 2

r0

∣∣∣∣∣∣∇ω(x0)
∣∣g̃n + γ (n)(t)

n! · ∇ω
(
γ (t)

)∣∣∣∣. (4.69)

We next need to bound the right-hand side of (4.60) minus |∇ω(x0)|g̃n. Using the definition of g̃n, we get a bound:

n∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
k−1∏
j=1

mj∑k
j ′=j mj ′

×
∣∣∣∣∣

k∏
j=1

[
1

mj !γ
(mj )(t) · ∇

]
ω

∣∣∣∣∣
γ (t)

−
k∏

j=1
mj >1

(−g̃mj
u0 · ∇)

k∏
j=1

mj =1

(v · ∇)ω(x0)

∣∣∣∣∣. (4.70)

Here the absolute value remains to be bounded, and we do this in two steps: first we shift γ ′(t) to v and higher
derivatives to g̃ by using the induction assumption, and then we shift the evaluation point from γ (t) to x0.

To illustrate this, let us perform the estimates first for the case k = n, when the induction assumption is not needed,
and we can therefore apply the result for any n. Then the absolute value is explicitly:∣∣[(v − g1(t)u0

) · ∇]n
ω
(
γ (t)

) − (v · ∇)nω(x0)
∣∣

�
∣∣[(v − g1(t)u0

) · ∇]n
ω
(
γ (t)

) − (v · ∇)nω
(
γ (t)

)∣∣ + ∣∣(v · ∇)nω
(
γ (t)

) − (v · ∇)nω(x0)
∣∣

�
n∑

j=1

(
n

j

)∣∣g1(t)
∣∣jMn + Mn+1

∣∣γ (t) − x0
∣∣ � Mn+1

[
n∑

j=1

(
n

j

)∣∣g1(t)
∣∣ + 4λ

]
� a0λr−1

0 Mn+12n+1 (4.71)

where we have used the Leibniz rule. But now (4.69) implies that for n = 2,∣∣g2(t) − g̃2
∣∣ � a0λr−1

0 |g̃2| + 2a0λr−2
0 M323. (4.72)

If N = 2, (4.51) implies then that∣∣g2(t) − g̃2
∣∣ � a0λr−2

0

(
1

2
(1 + M2) + M324

)
� a0λr−2

0 b|N=2. (4.73)

If N > 2, by (4.50) |g̃2| � 1, and thus∣∣g2(t) − g̃2
∣∣ � a0λr−2

0

(
1 + M323) � a0λr−2

0 b. (4.74)

This proves that (4.52) holds always for n = 2.
Let us then make the induction assumption that 2 < n � N and (4.52) holds for all 2 � m < n. The case k = n

has already been treated above, so let us assume k < n. We begin by estimating the result from the second step. Let
� = |{j | mj = 1}|, which now satisfies � < k. Since k > 1, we also have mj � n − 1 for all j , and by (4.50), now∏k

j=1 |g̃mj
| � 1. Therefore,
mj >1
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∣∣∣∣∣
k∏

j=1
mj >1

(−g̃mj
u0 · ∇)(v · ∇)�ω

(
γ (t)

) −
k∏

j=1
mj >1

(−g̃mj
u0 · ∇)(v · ∇)�ω(x0)

∣∣∣∣∣
�

∣∣γ (t) − x0
∣∣Mk+1

k∏
j=1

mj >1

|g̃mj
| � 4λMn � bλ � a0b

n−2λ. (4.75)

To estimate the result from the first step, let Ik = {1,2, . . . , k}. Using the commutativity of partial derivatives, the
result can be bounded by:

∑
I⊂Ik
I �=∅

∣∣∣∣∏
j∈I

(
gmj

(t) − g̃mj

) ∏
j /∈I

mj >1

(−g̃mj
u0 · ∇)

∏
j /∈I

mj =1

(−v · ∇)(−u0 · ∇)|I |ω
(
γ (t)

)∣∣∣∣
� Mk

∑
I⊂Ik
I �=∅

∏
j∈I

∣∣gmj
(t) − g̃mj

∣∣ � Mk

∑
I⊂Ik
I �=∅

(
a0λr−1

0

)|I | ∏
j∈I

(
br−1

0

)mj −1

� Mn−1

∑
I⊂Ik
I �=∅

a0λr−1
0

(
br−1

0

)n−2 � Mn−12ka0λr1−n
0 bn−2, (4.76)

where we have applied,

∑
j∈I

(mj − 1) �
k∑

j=1

(mj − 1) = n − k � n − 2, (4.77)

and, as I �= ∅ and aλ � r0, we have also (aλ/r0)
|I | � aλ/r0. Combining the above estimates, we then have obtained

the following bound for (4.70):

n∑
k=2

(
n − 1

k − 1

)
a0b

n−2λr1−n
0

(
1 + Mn2n

)
� a0b

n−2λr1−n
0 2n−1(1 + Mn2n

)
. (4.78)

Therefore, (4.69) now implies that for any n < N ,∣∣gn(t) − g̃n

∣∣ � a0

r0
λ + a0b

n−2λr−n
0 2n

(
1 + Mn2n

)
� 1 + 2n + Mn22n

b
a0b

n−1λr−n
0 � a0b

n−1λr−n
0 , (4.79)

by our choice of b. This completes the induction step and proves that (4.52) is valid for all 2 � n < N . However, then
we can still use the bound (4.78), together with (4.51), in (4.69) which shows that∣∣gN(t) − g̃N

∣∣ � MN + 1 + 2N + MN 22N

b
a0b

N−1λr−N
0 � a0b

N−1λr−N
0 . (4.80)

This proves that b is large enough for (4.52) to hold also for n = N . For n = N + 1, we repeat the above steps using
(4.66), and the fact that (4.52) holds also for n = N . Then the left-hand sides of Eqs. (4.75) and (4.76) can be bounded
by 4λMN+1Cr−1

0 and 2N+1MN+1Cr−1−N
0 λa0b

N−1, respectively. This yields a bound 22N+2MN+1a0b
N−1Cr−1−N

0 λ

for (4.70). Then using the bound for |g̃N+1| given in (4.69) proves that∣∣gN+1(t) − g̃N+1
∣∣ � a0

r0
λC′r−2

0 + Cr−2−N
0 λa0b

N−122N+3MN+1, (4.81)

where C′ = MN+1(1 + 2NC) � bC. Finally, using 22N+1MN+1 � b, proves (4.53). �
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5. Semi-dispersivity (proof of Theorem 2.2)

Let 0 � p � 1, α ∈ R, and 0 < β � 1 be arbitrary, and denote Mn = ‖ω‖′
n for all n. Let us define further

q = 1 + 1
2 (1 − p), so that, if p = 1, also q = 1, and otherwise q + p + 1 < 3. We then apply the layer cake rep-

resentation as

∫
Td

dk

|∇ω(k)|p
1

|α − ω(k) + iβ| =
M

q
1∫

0

ds

∫
Td

dk

|α − ω(k) + iβ|
1(|∇ω(k)| � s1/q)

|∇ω(k)|p+q

�
β∫

0

ds

β

∫
Td

dk

|∇ω(k)|p+q
+

M
q
1∫

β

ds

∫
Td

dk

|α − ω(k) + iβ|
1(|∇ω(k)| � s1/q)

|∇ω(k)|p+q
. (5.1)

Since p + q � 2, the first term is bounded by a β-independent constant by Lemma 4.1. To analyse the second term,
let us define the following cut-off function G : Rd × (0,1/2] → R,

G(x,λ) = Nd

λd
1
(|x| < λ

)
(5.2)

where Nd = d/|Sd−1| is a normalisation constant such that
∫

Rd dx G(x,λ) = 1 for all λ. We have restricted the range
of λ in the above manner so that for all k ∈ T

d and λ we still have
∫

Td dx G([x − k]′, λ) = 1 (we recall the definition
of [·]′ in Section 2.1).

By choosing λ = λ(s) = min( 1
4 , s1/q/(9M2)), we then find:∫

Td

dk

|α − ω(k) + iβ|
1(|∇ω(k)| � s1/q)

|∇ω(k)|p+q
=

∫
Td

dx

∫
Td

dk
G([x − k]′, λ)

|α − ω(k) + iβ|
1(|∇ω(k)| � s1/q)

|∇ω(k)|p+q
. (5.3)

Applying Lemma 4.3 with a = 1
9 shows that this is bounded by:

(1 + a)q
∫
Td

dx
1(|∇ω(x)| � (1 − a)s1/q)

|∇ω(x)|p+q

Nd

λd

∫
Rd

dk
1(|[x]′ − k| < λ)

|α − ω(k) + iβ| . (5.4)

Let x0 = [x]′. Then inside the integral λ � |∇ω(x0)|
8M2

since 9(1−a) = 8. Therefore, Lemma 4.9 yields a diffeomorphism
ψ , such that we can apply Corollary 4.10. This shows that

Nd

λd

∫
|x0−k|<λ

dk

|α − ω(k) + iβ| � 2Nd

λd

∫
|y|<2λ

dy

|α − ω(ψ(y)) + iβ|

� 2dNd

λ

|Sd−2|
d − 1

2λ∫
−2λ

dy1

|α − ω(x0) − |∇ω(x0)|y1 + iβ|

� 2dNd

Nd−1

6〈ln〈2λ|∇ω(x0)|〉〉
λ|∇ω(x0)| 〈lnβ〉 � 2dNd

Nd−1

6〈ln〈M1〉〉
λ|∇ω(x0)| 〈lnβ〉, (5.5)

where we have applied Lemma 4.6, and the properties of 〈·〉 given in Appendix B together with 0 � 2λ|∇ω(x0)| � M1.
Combining this with (5.4) and (5.3), we have proven that there is a constant c′ � 1, which depends only on M1 = ‖ω‖′

1,
such that ∫

d

dk

|α − ω(k) + iβ|
1(|∇ω(k)| � s1/q)

|∇ω(k)|p+q
� (1 + a)qc′

λ(s)
〈lnβ〉

∫
d

dx
1(|∇ω(x)| � (1 − a)s1/q)

|∇ω(x)|p+q+1
. (5.6)
T T



210 J. Lukkarinen / J. Math. Pures Appl. 87 (2007) 193–225
If p < 1, then p + q + 1 < 3 and, by Lemma 4.1, the remaining integral over x can be bounded by a constant
independent of s. After this, the integral over s only yields a factor:

M
q
1∫

β

ds

λ(s)
�

M
q
1∫

0

ds

λ(s)
< ∞, (5.7)

since s−1/q is integrable at zero, due to q > 1. This proves (2.7).
If p = 1, then p + q + 1 = 3, and, by Assumption 2.1, the integral over x is bounded by

c0
〈
ln(1 − a) + ln s

〉p0 � c02p0
〈
ln(1 − a)

〉p0〈ln s〉p0 .

Then the integral over s can be estimated by:
M1∫
β

ds

λ(s)
〈ln s〉p0 � 2〈M1 − sc〉max

(〈lnM1〉p0 , 〈ln sc〉p0
) + 2sc〈sc − 1〉〈ln sc〉p0 +

1∫
β

ds
2sc

s
〈ln s〉p0 , (5.8)

where sc = 9M2/2. By Lemma 4.4, the final integral can be bounded by a constant times 〈lnβ〉p0+1. Collecting the
powers of 〈lnβ〉 together, and denoting the remaining factor by C0 proves (2.8).

6. Suppression of crossings (proof of “if” in Theorem 2.3)

6.1. Uniform minimal curvature

Theorem 6.1. Let d � 2, and let ω : Rd → R be real-analytic and Z
d -periodic. Then one and only one of the following

alternatives is true:

(1) There is an affine hyperplane M ⊂ R
d such that ω is constant on M .

(2) There are an integer n0 � 2 and a constant ε0 > 0 with the following property: for any k ∈ R
d and u ∈ Sd−1,

there is an integer n with 2 � n � n0, and a direction v ∈ Sd−1 orthogonal to u, such that

1

n!
∣∣(v · ∇)nω(k)

∣∣ > ε0. (6.1)

We will use the remainder of the subsection for the proof. From now on, let d and ω satisfy the assumptions of
the theorem. Let X = C∞(Rd,C) denote the topological vector space of smooth functions equipped with its usual
Fréchet topology. The topology is uniquely determined by the local base given by the sets:

B(N) =
{
f ∈ X

∣∣∣ pN(f ) <
1

N

}
, (6.2)

with N ∈ N+ and pN denoting the seminorm,

pN(f ) = max
{∣∣Dαf (x)

∣∣ | |α| � N, |x| � N
}
. (6.3)

For more details, see [14, Section 1.46].
We recall that if X and Y are two topological vector spaces with local bases BX and BY , respectively, then a

function F :X → Y is continuous if and only if it has the following property: For all B ∈ BY and x ∈ X there is
B ′ ∈ BX such that F(x + B ′) ⊂ F(x) + B . From this, it is straightforward to prove the continuity of the following
two basic mappings: for any v ∈ R

d , the mapping f �→ v · ∇f is a continuous linear map X → X, and for any x ∈ R
d

the functional f �→ f (x) is continuous on X. Therefore, also the functional f �→ (v · ∇)nf (0) is always continuous
on X. This implies the following result:

Lemma 6.2. For any n ∈ N0, v ∈ R
d and ε � 0, let

Un,v,ε =
{
f ∈ X

∣∣∣ 1

n!
∣∣(v · ∇)nf (0)

∣∣ > ε

}
. (6.4)

Then every such Un,v,ε is open in X.
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The proof of Theorem 6.1 will rely on compactness of Sd−1 × T
d and on the continuity of the following auxiliary

mapping.

Definition 6.3. Let F :Sd−1 × T
d → X be defined, for any x0 ∈ R

d , by

F
(
u, [x0]

)
(x) = ω

(
x − (x · u)u + x0

) = ω(Qux + x0). (6.5)

Since ω is periodic, F(u, [x0]) does not depend on the choice of x0, and, by smoothness of ω, F(u, [x0]) is also
always smooth. Thus F is a well-defined function Sd−1 × Td → X, as claimed above. In addition, F(u, k) is always
real-analytic and constant in the direction u: F(u, k)(x + su) = F(u, k)(x) for all s ∈ R. Moreover, we have:

Proposition 6.4. F is continuous.

Proof. To prove the continuity of F , it is enough to show that for all u0 ∈ Sd−1, k0 ∈ R
d and N ∈ N+ there is δ > 0

such that

pN

(
F(u, k) − F(u0, k0)

)
<

1

N
(6.6)

for all u ∈ Sd−1 and k ∈ R
d with |k − k0| < δ and |u − u0| < δ. In order to prove this property, we first note that for

any multi-index α there is a finite collection of constants cβ,γ (α), such that for all x,u, k,

DαF(u, k)(x) =
∑

β: |β|=|α|

∑
γ : |γ |�2|α|

cβ,γ (α)uγ Dβω
(
x − (x · u)u + k

)
, (6.7)

which can be proven by straightforward induction in |α|. Therefore,∣∣DαF(u, k)(x) − DαF(u0, k0)(x)
∣∣ �

∑
β,γ

∣∣cβ,γ (α)
∣∣|uγ − u

γ

0 |‖ω‖′|α|

+
∑
β,γ

∣∣cβ,γ (α)
∣∣∣∣Dβω

(
x − (x · u)u + k

) − Dβω
(
x − (x · u0)u0 + k0

)∣∣. (6.8)

Let δ > 0, and choose any |k − k0| < δ, |u − u0| < δ. Then by the Leibniz rule and |u|, |u0| = 1, we find
|uγ − u

γ

0 | � 2|γ |δ. By expressing the difference as an integral over a derivative in the direction of the line connecting
the points, we obtain the estimate:∣∣Dβω

(
x − (x · u)u + k

) − Dβω
(
x − (x · u0)u0 + k0

)∣∣ � ‖ω‖′|β|+1

∣∣(x · u)u − (x · u0)u0 + k − k0
∣∣, (6.9)

where, for all |x| � N ,∣∣(x · u)u − (x · u0)u0 + k − k0
∣∣ � 2|x||u − u0| + |k − k0| � (2N + 1)δ. (6.10)

By (6.8), then

pN

(
F(u, k) − F(u0, k0)

)
� δ

(
4N‖ω‖′

N + (2N + 1)‖ω‖′
N+1

)
max
|α|�N

∑
β,γ

∣∣cβ,γ (α)
∣∣. (6.11)

Since ω is periodic, ‖ω‖′
n < ∞ for all n ∈ N, which implies that the factor multiplying δ on the right-hand side is

always finite. Thus by choosing a small enough δ, the bound can be made less than 1/N . �
Lemma 6.5. Let u ∈ Sd−1, k ∈ R

d be given, and denote f = F(u, k). Then either f is constant, or there is n � 2,
v ∈ Sd−1, and ε > 0, such that |(v · ∇)nf (0)| > n!ε.

Proof. Suppose f is not constant. Then there is x0 �= 0 such that f (x0) �= f (0). Let us define v = x0/|x0|, when
v ∈ Sd−1, and let g : R → R be defined by g(t) = f (tv) − tv · ∇f (0) − f (0). Then g is real-analytic with g(0) = 0
and g′(0) = 0. If g(n)(0) = 0 for all n � 2, then g = 0 everywhere, i.e., f (tv) = tv · ∇f (0) + f (0) for all t ∈ R.
Since f (|x0|v) �= f (0), then necessarily v · ∇f (0) �= 0, and thus limt→∞ |f (tv)| = ∞. However, this contradicts the
obvious bound ‖f ‖0 � ‖ω‖′

0 < ∞, and thus we can conclude that there is n � 2 such that g(n)(0) = (v · ∇)nf (0) �= 0.
Thus, for instance, ε = |(v · ∇)nf (0)|/(2n!) > 0 suffices for the bound in the lemma. �
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Proof of Theorem 6.1. Let us first note that for any u ∈ Sd−1, x0 ∈ R
d , the image of x �→ x − (x ·u)u+ x0 is exactly

the affine hyperplane {x ∈ R
d | x ·u = x0 ·u}. Thus the first alternative is true if and only if there is u ∈ Sd−1, x0 ∈ R

d

such that F(u, k), k = [x0], is constant. On the other hand, then also gv(t) = F(u, k)(tv) = ω(tQuv + x0) is constant
for any v ∈ Sd−1, and thus 0 = g

(n)
v (0) = (Quv · ∇)nω(k) for all n � 2. This proves that the second alternative is false

when the first is true.
Suppose that the first alternative is false and let K = Sd−1 × T

d . Then F(u, k) is never a constant function. Thus
by Lemma 6.5,

F(K) ⊂
⋃
n,v,ε

Un,v,ε, (6.12)

where Un,v,ε is defined by (6.4), and the union is taken over all n ∈ N, with n � 2, and v ∈ Sd−1, ε > 0. Since K is
compact and, by Proposition 6.4, F is continuous, F(K) is compact. Using Lemma 6.2, we can thus conclude that
Un,v,ε form an open cover of the compact set F(K), and thus there is a finite sequence (ni, vi, εi) such that (Uni ,vi ,εi

)

cover the whole image of F . Let

ε0 = min
i

εi > 0 and n0 = max
i

ni � 2. (6.13)

Let u ∈ Sd−1, x0 ∈ R
d be arbitrary, and let k = [x0]. There is an index i such that f = F(u, k) ∈ Un,v′,εi

, with v′ = vi ∈
Sd−1 and n = ni . Then 2 � n � n0, and |(v′ · ∇)nf (0)| > n!εi � n!ε0. Since (v′ · ∇)nf (x) = (Quv

′ · ∇)nω|Qux+x0 ,
we have also |(v · ∇)nω(x0)| > n!ε0 with v = Quv

′/|Quv
′| (note that obviously |Quv

′| �= 0). As v · u = 0, the pair
n, v has the properties required by the second alternative. �
6.2. Crossing estimate

Let us assume that ω is not a constant on any affine hyperplane. Then we can find constants n0 � 2 and 0 < ε0 � 1
2 ,

for which the second alternative in Theorem 6.1 holds. As in Proposition 4.11, let Mn = ‖ω‖′
n, a0 = max(1,8M2),

and define:

μ = 1

1 + 2n0+3 + Mn0+124n0+1
, (6.14)

when 0 < μ � 1
33 , and μ satisfies the conditions of the proposition for any 2 � N � n0. We also define for any given

0 < r � 1 and 2 � N � n0,

ε(r,N) = ε0(rμ)n0−N � ε0 � 1

2
. (6.15)

Consider arbitrary given k0 ∈ T
d , α ∈ R

3, and 0 < β � 1. We need to estimate:

I = I3cr(α, k0, β) =
∫

(Td )2

dk1 dk2

3∏
j=1

1

|αj − ω(kj ) + iβ| (6.16)

where k3 = k3(k1, k2) = k1 − k2 + k0. By using a layer cake representation,

I =
M1∫
0

ds

∫
(Td )2

dk1 dk2

3∏
j=1

1

|αj − ω(kj ) + iβ|
1(minj |∇ω(kj )| � s)

minj |∇ω(kj )|

� 3

βγ∫
0

ds

β

∫
Td

dk′

|α − ω(k′) + iβ|
∫
Td

dk

|∇ω(k)|
1

|α − ω(k) + iβ|

+
M1∫

βγ

ds

∫
d 2

dk1dk2

3∏
j=1

1

|αj − ω(kj ) + iβ|
1(minj |∇ω(kj )| � s)

minj |∇ω(kj )| , (6.17)
(T )
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where, to get the first term, we have used 1
minj |∇ω(kj )| �

∑
j

1
|∇ω(kj )| and then estimated one of the factors trivially,

followed by a change of variables. Using Theorem 2.2, the first term is bounded by:

3C0C1〈lnβ〉p0+3β−(1−γ ), (6.18)

and so it is “harmless” for any γ > 0.
To estimate the second term, let us define for any s > 0,

r0(s) = min

(
1,

s

2

)
, λ(s) = 1

4
min

(
1

2
,
ε0

a0

(
r0(s)μ

)n0

)
and δ(s) = λ(s). (6.19)

By employing the cut-off function G introduced in Section 5 inside the k integrals,

I2 =
∫

(Td )2

dk1 dk2

3∏
j=1

1

|αj − ω(kj ) + iβ|
1(minj |∇ω(kj )| � s)

minj |∇ω(kj )|

=
∫

(Td )2

dx1 dx2

∫
(Td )2

dk1dk2

2∏
j=1

G(xj − kj , λ(s))

|αj − ω(kj ) + iβ|
1

|α3 − ω(k3) + iβ|
1(minj |∇ω(kj )| � s)

minj |∇ω(kj )| . (6.20)

Let x3 = x1 − x2 + k0, when inside the integral, for j = 1,2,3,∣∣∣∣∇ω(kj )
∣∣ − ∣∣∇ω(xj )

∣∣∣∣ � |kj − xj |M2 � 2λM2 � s

2
� |∇ω(kj )|

2
, (6.21)

since |kj − xj | � λ < 2λ for j = 1,2, and |k3 − x3| � 2λ. Therefore, we have: |∇ω(xj )| � 1
2 |∇ω(kj )| � s

2 and
2|∇ω(kj )| � |∇ω(xj )|, for all j , and thus

I2 � 2
∫

(Td )2

dx1 dx2
1(minj |∇ω(xj )| � 1

2 s)

minj |∇ω(xj )|
∫

(Td )2

dk1 dk2

2∏
j=1

G(xj − kj , λ)

|αj − ω(kj ) + iβ|
1

|α3 − ω(k3) + iβ| . (6.22)

In particular, now inside the x integrals r0(s) � min(1, |∇ω(xj )|), for all j = 1,2,3, and, since λ(s) � r0(s)/a0, we
can apply the results of Proposition 4.11 around any of the points xj .

We next need to estimate, for given α ∈ R
3 and xj ∈ T

d the integral,

J =
∫

(Td )2

dk1 dk2

2∏
j=1

G(xj − kj , λ)

|αj − ω(kj ) + iβ|
1

|α3 − ω(k3) + iβ| , (6.23)

assuming minj |∇ω(xj )| � s/2 � βγ /2 > 0. Since then ∇ω(xj ) �= 0, we can define for all j = 1,2,3,

uj = ∇ω(xj )

|∇ω(xj )| ∈ Sd−1. (6.24)

We apply different estimates depending on whether all uj are almost parallel or not. A sufficient degree of separation
turns out to be determined by the parameter δ defined in (6.19), for which in particular 0 < δ � 1

2 . The first of the
estimates is applied, if

|u1 · u3| �
√

1 − δ2 or |u2 · u3| �
√

1 − δ2, (6.25)

and otherwise the second estimate is used.
In Section 6.2.1 we shall prove that in the first case there is a constant C′

1, depending only on ω, such that

J � 〈lnβ〉3

δ(s)λ(s)3

C′
1∏3

j=1 |∇ω(xj )|
. (6.26)

The other, more involved estimate, is done in Section 6.2.2. There we prove that, if we choose

γ = 1
, (6.27)
3n0(n0 + 1)
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then in the second case there are constants C′
2 and β0, depending only on ω, such that for all 0 < β � β0,

J � 〈lnβ〉2

λ(s)3
β1/(n0+1)−1 C′

2∏3
j=1 |∇ω(xj )|

. (6.28)

After applying either one of the inequalities, the remaining integral over xj can be estimated using the Young inequal-
ity, ∫

(Td )2

dx1 dx2
1(minj |∇ω(xj )| � 1

2 s)

minj |∇ω(xj )|
1∏3

j=1 |∇ω(xj )|

�
3∑

j=1

∫
(Td )2

dx1 dx2
1(|∇ω(xj )| � 1

2 s)

|∇ω(xj )|2
3∏

j ′=1; j ′ �=j

1

|∇ω(xj ′)|

� 3

(∫
Td

dx
1(|∇ω(x)| � 1

2 s)

|∇ω(x)|3
)2/3(∫

Td

dx
1

|∇ω(x)|3/2

)4/3

. (6.29)

Thus by Lemma 4.1 and Assumption 2.1, there is a constant C′ such that for all sufficiently small β

I2(s) � C′〈lnβ〉2p0/3+3(λ(s)−4 + λ(s)−3β1/(n0+1)−1). (6.30)

If s � 2, then r0 = 1 and λ(s) is equal to a non-zero constant, implying that the bound in (6.30) is independent of s,
and the integral over 2 � s � M1 is thus easily estimated. If 0 < s � 2, we have r0 = s/2, and thus for these s,

λ(s) = ε0

4a0
(μs/2)n0 � 2−2−n0ε0μ

n0sn0 . (6.31)

Therefore, there is C′′ such that

2∫
βγ

ds I2(s) � C′′〈lnβ〉2p0/3+3(β−γ (4n0−1) + β−γ (3n0−1)+1/(n0+1)−1), (6.32)

where, by our choice of γ ,

1 − γ (4n0 − 1) = γ
(
3n2

0 − n0 + 1
)
� γ and −γ (3n0 − 1) + 1

n0 + 1
= γ. (6.33)

Collecting all the results together, we have now proven that there are constants β0 and C, depending only on ω, such
that for all 0 < β � β0, α ∈ R, and k0 ∈ T

d ,

I3cr(α, k0, β) � C〈lnβ〉p0+3βγ−1. (6.34)

For β � β0, we can trivially estimate I3cr(α, k0, β) � β−3
0 , which allows us to conclude that the dispersion relation

suppresses crossings with a power of (at least) γ . Therefore, we only need to derive the estimates (6.26) and (6.28) to
complete the proof of Theorem 2.3.

We proved the result for γ defined in (6.27). This value is not optimal, as shown by the one example for which
the power has previously been estimated, that is, for the nearest neighbour interaction in d = 3. The corresponding
dispersion relation is a Morse function, but there are points at which its Hessian vanishes. Thus we need to take at
least n0 = 3 above, which would yield γ � 1

36 . However, in [7] it has been proven that a power γ = 1
4 can be allowed

for this case.

6.2.1. Non-parallel gradients
We assume in this subsection that (6.25) holds, meaning that u3 is not nearly parallel to one of the vectors u1 or

u2, say to the vector u1. This will allow us to estimate the k3-factor in the crossing integral by integrating it out in the
direction determined by the projection of u3 orthogonal to the level set of ω at k1. As we will show next, this yields
the estimate given in (6.26).
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Let us consider the integral defining J in (6.23). We change the integration variables in the following manner: if
|u1 ·u3| �

√
1 − δ2, we define k′

1 = k1 −x1 and k′
2 = k2 −x2, when k3 = k′

1 −k′
2 +x3. Otherwise, |u2 ·u3| �

√
1 − δ2,

and we define k′
1 = k2 −x2 and k′

2 = k1 −x1, when k3 = −(k′
1 − k′

2)+x3. It is thus enough derive the bound assuming
|u1 · u3| �

√
1 − δ2, if we allow slightly more general dependence of k3 on the integration variables, namely if we

assume k3 = x3 +σ(k′
1 − k′

2), with σ = ±1 (swapping the indices 1 ↔ 2 in the result then produces the corresponding
bound for the second case).

As mentioned in Section 6.2, λ is small enough that we can apply Lemma 4.9 and obtain two diffeomorphisms ψ1
and ψ2 such that Corollary 4.10 holds. This shows that

J � 22
∫

|y|<2λ

dy

∫
|y′|<2λ

dy′ N2
d

λ2d

1

|α1 − ω(x1) − |∇ω(x1)|y1 + iβ|

× 1

|α2 − ω(x2) − |∇ω(x2)|y′
1 + iβ|

1

|α3 − ω(x3 + γ (y′, y)) + iβ| , (6.35)

where

γ (y′, y) = σ
(
ψ1(y) − x1 − (

ψ2(y
′) − x2

))
. (6.36)

By Lemma 4.9, always ∣∣γ (y′, y)
∣∣ �

∣∣ψ1(y) − x1
∣∣ + ∣∣ψ2(y

′) − x2
∣∣ < 8λ. (6.37)

Let us denote A = Dψ1(0), which is a rotation in R
d with AT u1 = e1. Let v = Qu1u3 and v′ = AT v. By assump-

tion, then

|v|2 = 1 − (u1 · u3)
2 > δ2, (6.38)

implying that |v′| = |v| > δ > 0. Also, v′
1 = 0 since v · u1 = 0. Thus there is a rotation O of R

d for which Oe1 = e1
and Ov′ = |v′|e2. We change the integration variable y to z = Oy, yielding:

J �
22N2

d

λ2d

∫
|z|<2λ

dz

∫
|y′|<2λ

dy′ 1

|α1 − ω(x1) − |∇ω(x1)|z1 + iβ|

× 1

|α2 − ω(x2) − |∇ω(x2)|y′
1 + iβ|

1

|α3 − ω(x3 + γ (y′,OT z)) + iβ|

�
22N2

d

λ2d

(2λ)2d−3

Nd−2Nd−1

∫
|z1|<2λ

dz1
1

|α1 − ω(x1) − |∇ω(x1)|z1 + iβ|
∫

|y′
1|<2λ

dy′
1

1

|α2 − ω(x2) − |∇ω(x2)|y′
1 + iβ|

× sup
|z|,|y′|<2λ

z2=0

∫
t2<(2λ)2−z2

dt
1

|α3 − ω(x3 + γ (y′,OT (z + te2))) + iβ| . (6.39)

Let us first estimate the final term, of the form ∫
|t |<R

dt
1

|α3 − f (t) + iβ| , (6.40)

where

f (t) = ω
(
x3 + Γ (t)

)
, with Γ (t) = γ

(
y′,OT z + tOT e2

)
. (6.41)

Clearly, |f | � M0 < ∞, and we shall later show that∣∣f ′(t)
∣∣ � 1 ∣∣∇ω(x3)

∣∣δ > 0. (6.42)

4
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This allows applying Lemma 4.7, and proves that∫
|t |<R

dt
1

|α3 − f (t) + iβ| � 4 · 6〈ln〈M0〉〉
|∇ω(x3)|δ 〈lnβ〉. (6.43)

Therefore, applying Proposition 4.6 to (6.39), yields the bound,

J �
22d+1N2

d

Nd−2Nd−1

63〈lnβ〉3

δλ3

〈ln〈M0〉〉〈ln〈M1〉〉2∏3
j=1 |∇ω(xj )|

. (6.44)

Collecting all the constants into C′
1 proves that (6.26) is valid in this case.

We still need to prove (6.42). From the definition of f ,

f ′(t) = Γ ′(t) · ∇ω
(
x3 + Γ (t)

)
. (6.45)

Since OT e2 = v′/|v′| = AT v/|v|,
Γ (t) = σ

(
ψ1

(
OT z + tAT v/|v|) − x1

) − σ
(
ψ2(y

′) − x2
)
, (6.46)

which, together with (4.35), implies:

Γ ′(t) = σ

|v|Dψ1|OT z+tv′/|v|AT v = σ

|v|
(

v − ∇ω(x) · v
∇ω(x) · u1

u1

)
, (6.47)

where x = x(t) = ψ(OT z + tAT v/|v|), and |∇ω(x) − ∇ω(x1)| � 1
2 |∇ω(x1)|. Therefore,

f ′(t) = σ

|v|
(

v · ∇ω(x3) + v · [∇ω
(
x3 + Γ (t)

) − ∇ω(x3)
] − ∇ω(x) · v

∇ω(x) · u1
u1 · ∇ω

(
x3 + Γ (t)

))
. (6.48)

Here v · ∇ω(x3) = |∇ω(x3)|v · u3, and v · u3 = 1 − (u1 · u3)
2 = v2. Thus∣∣f ′(t)

∣∣ �
∣∣∇ω(x3)

∣∣|v| −
(∣∣∇ω

(
x3 + Γ (t)

) − ∇ω(x3)
∣∣ + |∇ω(x) · v|

|v||∇ω(x) · u1|
∣∣u1 · ∇ω

(
x3 + Γ (t)

)∣∣). (6.49)

By (6.37), |Γ (t)| < 8λ, and thus∣∣∇ω
(
x3 + Γ (t)

) − ∇ω(x3)
∣∣ � M2

∣∣Γ (t)
∣∣ < 8M2λ = λ′. (6.50)

In addition,

u1 · ∇ω
(
x3 + Γ (t)

) = ∣∣∇ω(x3)
∣∣u1 · u3 + u1 · [∇ω

(
x3 + Γ (t)

) − ∇ω(x3)
]
, (6.51)

yielding |u1 · ∇ω(x3 + Γ (t))| � |∇ω(x3)| + λ′. As u1 · v = 0, now ∇ω(x) · v = [∇ω(x) − ∇ω(x1)] · v, and so∣∣∇ω(x) · v∣∣ � |v||x − x1|M2 < |v|1

2
λ′. (6.52)

Similarly, |∇ω(x) · u1| � |∇ω(x1)| − 1
2λ′. Since λ′ = 8M2λ � δs

8 � δ
4 |∇ω(xj )|, we can conclude that

|∇ω(x) · v|
|v||∇ω(x) · u1| � λ′

|∇ω(x1)| � δ

4
. (6.53)

Therefore, ∣∣f ′(t)
∣∣ �

∣∣∇ω(x3)
∣∣|v| − δ

4

∣∣∇ω(x3)
∣∣ − δ

4

∣∣∇ω(x3)
∣∣(1 + δ

4

)
�

∣∣∇ω(x3)
∣∣(|v| − 3

4
δ

)
�

∣∣∇ω(x3)
∣∣1

4
δ > 0, (6.54)

and we have arrived at the estimate (6.42).
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6.2.2. Nearly parallel gradients
We assume here that (6.25) is not true, i.e., that all three of the vectors uj are nearly parallel to each other. In this

case, we cannot integrate the k3-term in the direction of its gradient. Instead, we will show that there is a direction
essentially orthogonal to the gradient in which the k3-resolvent can be integrated leading to some degree of additional
decay. The additional decay will be induced by the higher order curvature of the level sets. However, we need to
choose the point kj and the direction of integration carefully, in order to make sure that the known curvature is the
dominant effect. In particular, we cannot any more consider the two d-dimensional integrals independently, but we
have to choose the direction in the full 2d-dimensional space. Since we need to inspect higher order curvature effects,
we will need the full machinery of the technical lemmas here.

By assumption, |uj · u3| >
√

1 − δ2 for both j = 1,2. For any u,v ∈ Sd−1, by direct computation

|Quv| =
√

1 − (u · v)2. (6.55)

Since

u1 · u2 = (
(u1 · u3)u3 + Qu3u1

) · u2 = (u1 · u3)(u2 · u3) + (Qu3u1) · (Qu3u2), (6.56)

and |Qu3uj | =
√

1 − (u3 · uj )2 < δ, we have:

|u1 · u2| � |u1 · u3||u2 · u3| − |Qu3u1||Qu3u2| > 1 − 2δ2. (6.57)

As
√

1 − x � 1 − 2x for all 0 � x � 1
4 , we can conclude that for all j, j ′ ∈ {1,2,3},

|uj · uj ′ | > 1 − 2δ2 � 1

2
. (6.58)

Since ω is not a constant on any affine hyperplane, the second alternative of Theorem 6.1 is valid, and we can thus
find v3 ∈ Sd−1 such that v3 · u3 = 0 and for some 2 � n̄ � n0,

1

n̄!
∣∣(v3 · ∇)n̄ω(x3)

∣∣ > ε0 � ε
(
r0(s), n̄

)
. (6.59)

Let v̄j = Quj
v3 for j = 1,2. Since

|uj · v3| = |Qu3uj · v3| � |Qu3uj | =
√

1 − (uj · u3)2 < δ, (6.60)

then |v̄j | =
√

1 − (uj · v3)2 >
√

1 − δ2 > 0. Therefore, we can define further vj = v̄j /|v̄j | ∈ Sd−1, when vj · v3 =
|v̄j | >

√
1 − δ2. This implies, by the same argument as for uj , that for all j, j ′ ∈ {1,2,3}, vj · vj ′ > 1 − 2δ2, and thus

also:

|vj − vj ′ | =
√

2(1 − vj · vj ′) < 2δ. (6.61)

We have now constructed unit vectors vj , j = 1,2,3, such that uj · vj = 0. For each j let us associate an integer
nj the smallest of integers n � 2 for which

1

n!
∣∣(vj · ∇)nω(xj )

∣∣ > ε(r0(s), n), (6.62)

if no such integer exists, let nj = ∞. Let j0 be an index which has the smallest nj , and denote N = nj0 . Since
n3 � n̄ � n0, then 2 � N � n0 < ∞. Let ε = 2ε(r0,N) = 2ε0(r0μ)n0−N � 1. For any 2 � n < N and j = 1,2,3, we
have by construction:

1

n!
∣∣(vj · ∇)nω(xj )

∣∣ � ε(r0, n) = 1

2
ε(r0μ)N−n, (6.63)

and 1
N ! |(vj0 · ∇)Nω(xj0)| > 1

2ε.
Let π be the unique cyclic permutation of the indices (1,2,3) for which π(3) = j0, and let us define k′

j = kπ(j), and
permute α, x, u and n similarly to yield α′, x′, u′ and n′. We change the integration variables from (k1, k2) to (k′

1, k
′
2).

This modifies the functional dependence of k′ on the integration variables: for j0 = 3, k′ = k′ − k′ + k0, for j0 = 2,
3 3 1 2
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k′
3 = k′

2 − k′
1 + k0, and for j0 = 1, k′

3 = k′
1 + k′

2 − k0. (The dependence of x′
3 on x′

1, x′
2, and k0, changes accordingly

with j0.) On the other hand, since |kj − xj | < λ, the new integration region is contained in |k′
1 − x′

1|, |k′
2 − x′

2| < 2λ.
Suppose we can find a bound for J ′ = supσ∈{±1}3 J ′(σ ), where

J ′(σ ) = N2
d

λ2d

∫
(Td )2

dk′
1 dk′

2

2∏
j=1

1(|k′
j − x′

j | < 2λ)

|α′
j − ω(k′

j ) + iβ|
1

|α′
3 − ω(k′

3) + iβ| , (6.64)

assuming j0 = 3, k3 = σ1k1 + σ2k2 + σ3k0, and x3 = σ1x1 + σ2x2 + σ3k0. Then a bound for J can be obtained by
undoing the permutation of the indices appropriately in the bound for J ′.

Since 2λ � |∇ω(xj )|/a0, for all j = 1,2,3, we can apply Lemma 4.9 and Corollary 4.10 to both of the k-integrals.
We denote the corresponding diffeomorphisms by ψ1 and ψ2, and obtain the bound:

J ′(σ ) �
22N2

d

λ2d

∫
|y|<4λ

dy

∫
|y′|<4λ

dy′ 1

|α1 − ω(x1) − |∇ω(x1)|y1 + iβ|

× 1

|α2 − ω(x2) − |∇ω(x2)|y′
1 + iβ|

1

|α3 − ω(x3 + γ (y′, y)) + iβ| , (6.65)

where

γ (y′, y) = σ1
(
ψ1(y) − x1

) + σ2
(
ψ2(y

′) − x2
)
, (6.66)

and by Lemma 4.9, always ∣∣ψ1(y) − x1
∣∣, ∣∣ψ2(y

′) − x2
∣∣ < 23λ and

∣∣γ (y′, y)
∣∣ < 24λ. (6.67)

For j = 1,2, let us denote the rotation Dψj(0) by Aj and define ṽj = AT
j vj . Then ṽj · e1 = vj · uj = 0, and there

is a rotation Oj of R
d for which Oje1 = e1 and Oj ṽj = e2. We change variables to z = O1y and z′ = O2y

′, and
evaluate first the z2 and z′

2 integrals. This yields:

J ′(σ ) �
22N2

d

λ2d

∫
|z|<4λ

dz

∫
|z′|<4λ

dz′ 1

|α1 − ω(x1) − |∇ω(x1)|z1 + iβ|

× 1

|α2 − ω(x2) − |∇ω(x2)|z′
1 + iβ|

1

|α3 − ω(x3 + γ (OT
2 z′,OT

1 z)) + iβ|

�
22N2

d

λ2d

(4λ)2(d−2)

N2
d−2

∫
|z1|<4λ

dz1
1

|α1 − ω(x1) − |∇ω(x1)|z1 + iβ|

×
∫

|z′
1|<4λ

dz′
1

1

|α2 − ω(x2) − |∇ω(x2)|z′
1 + iβ|

× sup
|z|,|z′|<2λ

z2,z
′
2=0

∫
t2
1 <(2λ)2−z2

dt1

∫
t2
2 <(2λ)2−(z′)2

dt2
1

|α3 − f (t1, t2; z′, z) + iβ| , (6.68)

where

f (t1, t2; z′, z) = ω
(
x3 + γ

(
OT

2 (z′ + t2e2),O
T
1 (z + t1e1)

)) = ω
(
x3 + γ (z̃2 + t2ṽ2, z̃1 + t1ṽ1)

)
, (6.69)

with z̃2 = OT
2 z′ and z̃1 = OT

1 z. Let us denote the final supremum by J ′′. Applying Proposition 4.7, we find the bound:

J ′(σ ) �
24d−6N2

d

N2
d−2

62〈ln〈M1〉〉2

|∇ω(x1)||∇ω(x2)|
〈lnβ〉2

λ4
J ′′. (6.70)

We still need to estimate J ′′. To do this we need to make a diversion and first prove the following lemma:
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Lemma 6.6. Let an integer n � 2 and a, b, c ∈ R be given and suppose |c| � ε′ > 0. Then there is ν ∈ R, with
|ν|, |1 − ν| � 2, for which ∣∣νna + (1 − ν)nb + c

∣∣ � ε′

2
. (6.71)

Proof. Let f (ν) = νna + (1 − ν)nb + c, and let us first assume that a � |b|. Then, if a � |c| − ε′/2, we have
|f (1)| � |c| − |a| � ε′/2, and choosing ν = 1 suffices. Alternatively, if a > |c| − ε′/2, we have a > ε′/2 and thus

f (2) � 2na − |b| − |c| > a(2n − 2) − ε′

2
� ε′

2
(2n − 3) � ε′

2
. (6.72)

Therefore, the estimate holds then for either ν = 1 or ν = 2. If a � −|b|, we have −a � |b|, and after swapping the
signs of a, b, c, we can apply the above result to conclude that again |f (ν)| � ε′/2 at either ν = 1 or ν = 2. We have
then proven the result for |a| � |b|. Finally, if |a| < |b|, we apply the above result for ν′ = 1 − ν, and conclude that
in this case either |f (0)| or |f (−1)| is greater than or equal to ε′/2. Thus the bound is attained at one of the points
ν ∈ {−1,0,1,2}, which implies |ν|, |1 − ν| � 2. �

For both j = 1,2, let g̃j,n = g̃n(xj , vj ) be defined as in item (2) of Lemma 4.12. Then we employ Lemma 6.6 with
n = N , and

a = −σN+1
1 g̃1,Nu1 · ∇ω(x3),

b = −σN+1
2 g̃2,Nu2 · ∇ω(x3),

c = 1

N ! (v3 · ∇)Nω(x3). (6.73)

As |c| > 1
2ε, this yields a ν ∈ R such that |ν|, |1 − ν| � 2, and |c̃| � 1

4ε with

c̃ = (−νNσN+1
1 g̃1,Nu1 − (1 − ν)NσN+1

2 g̃2,Nu2
) · ∇ω(x3) + 1

N ! (v3 · ∇)Nω(x3). (6.74)

Now |z̃1| = |z| < 2λ, |z̃2| = |z′| < 2λ, and also z̃j · ṽj = 0, with the tj -integration going over values with
|tj |2 < (2λ)2 − |z̃j |2. We make the final change of variables (t1, t2) → (t, t ′), given by:

t1 = σ1(−t ′ + νt) and t2 = σ2
(
t ′ + (1 − ν)t

)
, (6.75)

where ν is the constant found above. The Jacobian of the transformation is always 1, and it has the inverse:

t = σ1t1 + σ2t2 and t ′ = νσ2t2 − (1 − ν)σ1t1, (6.76)

and thus inside the new integration region,

|t | � |t1| + |t2| < 23λ and |t ′| < (|ν| + |1 − ν|)4λ � 24λ. (6.77)

Therefore, ∫
t2
1 <(2λ)2−z2

dt1

∫
t2
2 <(2λ)2−(z′)2

dt2
1

|α3 − f (t1, t2; z′, z) + iβ| �
∫

dt ′
∫

I (t ′)

dt
2

|α3 − F(t; t ′) + iβ|

� 26λ sup
t ′

∫
I (t ′)

dt
1

|α3 − F(t; t ′) + iβ| , (6.78)

where the integration region over t , that is I (t ′), depends on t ′, but it always is an interval of a length less than 24λ.
The final integral contains the function,

F(t; t ′) = f (t1, t2; z′, z) = ω
(
x3 + γ (z̃2 + t2ṽ2, z̃1 + t1ṽ1)

)
= ω

(
x̃3 + σ1

(
ψ1(ỹ1 + σ1νtṽ1) − ψ1(ỹ1)

) + σ2
(
ψ2

(
ỹ2 + σ2(1 − ν)t ṽ2

) − ψ2(ỹ2)
))

, (6.79)
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where

ỹ1 = ỹ1(t
′) = z̃1 − t ′σ1ṽ1 and ỹ2 = z̃2 + t ′σ2ṽ2, (6.80)

and

x̃3 = x̃3(t
′) = x3 + σ1

(
ψ1(ỹ1) − x1

) + σ2
(
ψ2(ỹ2) − x2

)
. (6.81)

Let us then define, as in Proposition 4.11,

γj (τ ) = ψj(ỹj + τ ṽj ) and Γj (τ) = γj (τ ) − τvj − ψj (ỹj ). (6.82)

As σ1v1(σ1νt) + σ2v2(σ2(1 − ν)t) = (νv1 + (1 − ν)v2)t , then F(t) = ω(Γ (t)) with

Γ (t) = x̃3 + tv0 + σ1Γ1(σ1νt) + σ2Γ2
(
σ2(1 − ν)t

)
. (6.83)

Here v0 = νv1 + (1 − ν)v2, and it thus satisfies:

|v0 − v3| � 2
(|v1 − v3| + |v2 − v3|

)
< 4δ. (6.84)

By Lemma A.1,

1

N !
∣∣∣∣ dN

dtN
F (t)

∣∣∣∣ � 1

N !
∣∣Γ (N)(t) · ∇ω

(
Γ (t)

) + (
Γ (1)(t) · ∇)N

ω
(
Γ (t)

)∣∣
−

N−1∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = N

)
Mk

k∏
j=1

[
1

mj !
∣∣Γ (mj )(t)

∣∣]. (6.85)

Here Γ (1)(t) = v0 +νΓ
(1)

1 (σ1νt)+(1−ν)Γ
(1)

2 (σ2(1−ν)t), and, by (6.84) and Proposition 4.11, it satisfies the bound:∣∣Γ (1)(t) − v3
∣∣ � 4δ + 4εμN � 1, (6.86)

which implies in particular that |Γ (1)(t)| � 2. Note that we can apply the Proposition, since ε, μ, and N are clearly in
the right range, and also the expansion radius satisfies 2λ � 1

2a−1
0 ε0(r0μ)n0 = a−1

0 ε(r0μ)N . For all n � 2, we similarly
get:

Γ (n)(t) = σn+1
1 νnΓ

(n)
1 (σ1νt) + σn+1

2 (1 − ν)nΓ
(n)

2

(
σ2(1 − ν)t

)
, (6.87)

satisfying, with C̃ = 1 + Mn0 � 1 + MN

N ! , the bounds

∣∣∣∣ 1

n!Γ
(n)(t)

∣∣∣∣ �

⎧⎪⎨⎪⎩
2n+2εμN−nrN−1−n

0 , for 2 � n < N,

2N+2C̃r−1
0 , for n = N,

2N+3C̃μ−1r−2
0 , for n = N + 1.

(6.88)

Consider then the sum over k in (6.85). Since k � 2, inside the sum always mj � N − 1. Denoting, as before,
� = |{j | mj = 1}| � k − 1, we thus have

k∏
j=1

[
1

mj !
∣∣Γ (mj )(t)

∣∣] � 2�+3(k−�)+∑
j (mj −1)

(
εμN−1)k−�

μ
∑

j (1−mj ) � 22k+NεμN−1+k−N � 23N−2εμ. (6.89)

Therefore, the sum over k is bounded by:

23N−2εμ

N−1∑
k=2

(
N − 1

k − 1

)
MN−1 � 24N−3εμMN−1 � 1

24
ε. (6.90)

To estimate the first term in (6.85), we use the estimates in item (3) of Lemma 4.12, with b = μ−1 � 1 + 2N +
MN+122N+1. Firstly,
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∣∣∣∣ 1

N !Γ
(N)(t) · ∇ω

(
Γ (t)

) − (−νNσN+1
1 g̃1,Nu1 − (1 − ν)NσN+1

2 g̃2,Nu2
) · ∇ω(x3)

∣∣∣∣
�

∣∣∣∣ 1

N !Γ
(N)(t)

∣∣∣∣M2
∣∣Γ (t) − x3

∣∣ + ∣∣∇ω(x3)
∣∣2N

(∣∣g1,N (σ1νt) − g̃1,N

∣∣ + ∣∣g2,N

(
σ2(1 − ν)t

) − g̃2,N

∣∣)
� 24λM22N+2C̃r−1

0 + M12N+1a0μ
1−Nλr−N

0 � 2N+3ε(r0μ)NC̃r−1
0 + M12N+1εμ

� εμ
(
μ2N+3C̃ + M12N+1) � εμ

(
1 + M12n0+1) � 2−n0−2ε � 2−4ε. (6.91)

Secondly, by (6.86),

∣∣(Γ (1)(t) · ∇)N
ω
(
Γ (t)

) − (v3 · ∇)Nω(x3)
∣∣ �

N∑
k=1

(
N

k

)∣∣Γ (1)(t) − v3
∣∣kMN + MN+124λ

� 4
(
λ + εμN

)
MN2N + MN+124λ � εμNMN+1

(
2N+3 + 24)

� εμ2MN+12N+4 � 2−4ε. (6.92)

Therefore, ∣∣∣∣ 1

N !Γ
(N)(t) · ∇ω

(
Γ (t)

) + 1

N !
(
Γ (1)(t) · ∇)N

ω
(
Γ (t)

) − c̃

∣∣∣∣ � 2−3ε, (6.93)

which can be combined with the previous estimate for the sum over k in (6.85) to prove that for all allowed t ,

1

N !
∣∣∣∣ dN

dtN
F (t)

∣∣∣∣ � |c̃| − 3

24
ε � 1

24
ε. (6.94)

On the other hand, applying Lemma A.1 once more proves that

1

(N + 1)!
∣∣F (N+1)(t)

∣∣ �
N+1∑
k=1

∑
m∈N

k+

1

(
k∑

j=1

mj = N + 1

)
k−1∏
j=1

mj∑k
j ′=j mj ′

k∏
j=1

[ 1

mj !
∣∣Γ (mj )(t)

∣∣]Mk

� |Γ (N+1)(t)|
(N + 1)! + C̃r−1

0

N+1∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = N + 1

)
2
∑

j (mj +2)
MN+1

� 2N+3C̃μ−1r−2
0 + C̃r−1

0

N+1∑
k=2

(
N

k − 1

)
2N+1+2kMN+1

� 2N+3C̃μ−1r−2
0

(
1 + μ23NMN+1

)
� 2N+4C̃μ−1r−2

0 , (6.95)

where we have used the fact that mj = N can appear only once in the product over j . Since r0 � 1
2βγ , we have also:

ε′ = ε

24

1

2N+1(N + 1)N

r2
0μ

2N+4C̃
� ε0r

n0−N+2
0

μn0−N+1

C̃

1

22n0+8(n0 + 1)n0

� βγn0ε0
μn0−1

C̃

1

23n0+8(n0 + 1)n0
. (6.96)

If this is raised to the power N + 1, the result is bounded from below by an (n0-dependent) constant times βγn0(n0+1).
Therefore, as long as γ −1 > n0(n0 + 1), there is β0 > 0, such that we can apply the conclusion of Proposition 4.8 for
all 0 < β � β0. For such values of β and all allowed t ′, we have:∫
I (t ′)

dt
1

|α3 − F(t; t ′) + iβ| � 2N+1(N + 1)N
(

24λ

ε2−4
β1/(N+1)−1 + 2N+4C̃μ−1r−2

0 24/Nε−1/Nβ1/N−1
)

� 2n0+1(n0 + 1)n0

(
28 ε0

4a0
(r0μ)n0

1

2ε0
(r0μ)N−n0β1/(N+1)−1 + 2n0+6C̃μ−1r−2

0

(
2ε0(r0μ)n0−N

)−1/N
β1/N−1

)
� 23n0+8(n0 + 1)n0C̃μ−n0/Nε

−1/N (
β1/(N+1)−1 + β−γ (1+n0/N)+1/N−1). (6.97)
0
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Since we have not aimed at optimal estimates here, we do not try to optimise the extra decay arising from the crossing.
Instead, let us prove that the choice given in (6.27) is sufficient. Then we can also choose explicitly,

β0 =
(

ε0
μn0−1

C̃

1

23n0+8(n0 + 1)n0

)3(n0+1)/2

, (6.98)

since, for all 0 < β � β0, then β � β1/3β
2/3
0 � (ε′)N+1.

With these choices, the power of β in the second term in (6.97) is:

−γ

(
1 + n0

N

)
+ 1

N
− 1 = 1

3n0(n0 + 1)N

(−N − n0 + 3n0 + 3n2
0

) − 1 � n0

(n0 + 1)N
− 1 � 1

n0 + 1
− 1. (6.99)

Therefore, by (6.78), we have proved:

J ′′ � λ23n0+15(n0 + 1)n0C̃μ−n0/2ε
−1/2
0 β1/(n0+1)−1. (6.100)

Combining this with (6.70) proves the validity of (6.28) for

C′
2 = 23n0+9+4d(n0 + 1)n0C̃μ− n0

2 ε
−1/2
0

N2
d

N2
d−2

62〈ln〈M1〉
〉2

M1 (6.101)

when γ is chosen as in (6.27) and β is sufficiently small. For notational simplicity, we have added the missing
gradient factor |∇ω(x3)| to the denominator: this makes the estimate invariant under permutations of the indices, and
thus allows to use it directly for the original integral. This completes the proof of Theorem 2.3.
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Appendix A. Differentials of composite functions

Lemma A.1. Let d,n ∈ N+, an open interval I , Γ ∈ C(n)(I,R
d), and f ∈ C(n)(Rd ,R) be given. Then for all t ∈ I ,

1

n!
dn

dtn
f
(
Γ (t)

) =
n∑

k=1

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
k−1∏
j=1

mj∑k
j ′=j mj ′

k∏
j=1

[
1

mj !Γ
(mj )(t) · ∇

]
f

∣∣∣∣
Γ (t)

. (A.1)

Proof. The result holds for n = 1. For the induction step, let us assume it holds for values up to n. Then

d

dt

1

n!
[

dn

dtn
f
(
Γ (t)

)] =
n∑

k=1

∑
m∈N

k+

1

(
k∑

j=1

mj = n

)
k−1∏
j=1

mj∑k
j ′=j mj ′

×
{

k∑
�=1

k∏
j=1, j �=�

[
1

mj !Γ
(mj )(t) · ∇

][
1

m�!Γ
(m�+1)(t) · ∇

]
f

∣∣∣∣
Γ (t)

+
k∏

j=1

[
1

mj !Γ
(mj )(t) · ∇

][
Γ (1)(t) · ∇]

f

∣∣∣∣
Γ (t)

}
. (A.2)

In the first term, we take out the sum over �, and then change variables from m to M so that M� = m� + 1 and
otherwise Mj = mj . This yields a term:
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n∑
k=1

k∑
�=1

∑
M∈N

k+

1

(
k∑

j=1

Mj = n + 1

)
1(M� � 2)

k−1∏
j=�+1

Mj∑k
j ′=j Mj ′

× M�

M� − 1∑k
j ′=� Mj ′ − 1

�−1∏
j=1

Mj∑k
j ′=j Mj ′ − 1

k∏
j=1

[
1

Mj !Γ
(Mj )(t) · ∇

]
f

∣∣∣∣
Γ (t)

. (A.3)

For the second term, we add one more sum over m = 1, and then shift the k sum accordingly. This yields:
n+1∑
k=2

∑
m∈N

k+

1

(
k∑

j=1

mj = n + 1

)
1(mk = 1)

k−1∏
j=1

mj∑k
j ′=j mj ′ − 1

k∏
j=1

[
1

mj !Γ
(mj )(t) · ∇

]
f

∣∣∣∣
Γ (t)

. (A.4)

It is then an explicit computation to check that the k = 1 term in (A.3) is equal to the k = 1 term in (A.1) times n + 1
(after setting n → n + 1), and that the same holds for k = n + 1 term in (A.4).

For 2 � k � n we need to sum the corresponding terms in (A.3) and (A.4). Their sum can be written as∑
m∈N

k+

1

(
k∑

j=1

mj = n + 1

)
k−1∏
j=1

mj∑k
j ′=j mj ′

k∏
j=1

[
1

mj !Γ
(mj )(t) · ∇

]
f

∣∣∣∣
Γ (t)

×
{

k∑
�=1

1(m� � 2)(m� − 1)

�∏
j=1

∑k
j ′=j mj ′∑k

j ′=j mj ′ − 1
+ 1(mk = 1)

k−1∏
j=1

∑k
j ′=j mj ′∑k

j ′=j mj ′ − 1

}
. (A.5)

For the computation of the term in the curly brackets, let us separate � = k term. When � < k, all the terms in the
denominator are non-zero, as for j < k, we have

∑k
j ′=j mj ′ − 1 > 0 due to m� � 1. Therefore, we can apply the

property:

(m� − 1)1(m� � 2) = m� − 1 =
k∑

j ′=�

mj ′ − 1 −
k∑

j ′=�+1

mj ′ , (A.6)

which shows that the sum over � < k is equal to,
k−1∑
�=1

∏�
j=1

∑k
j ′=j mj ′∏�−1

j=1(
∑k

j ′=j mj ′ − 1)
−

k−1∑
�=1

∏�+1
j=1

∑k
j ′=j mj ′∏�

j=1(
∑k

j ′=j mj ′ − 1)
=

k∑
j ′=1

mj ′ − mk

k−1∏
j=1

∑k
j ′=j mj ′∑k

j ′=j mj ′ − 1
. (A.7)

The second term here is cancelled by the remaining terms in the curly brackets. (If mk > 1, the � = k term in the sum
cancels it and the last term in (A.5) is zero; if mk = 1, the opposite happens.) Therefore, the term in the curly brackets
is equal to

∑k
j=1 mj = n + 1. This proves (A.1). �

Appendix B. Properties of 〈x〉

Proposition B.1. Let 〈x〉 = √
1 + x2. Then for all x, y ∈ R,

(1) |x| < 〈x〉.
(2) If |x| � |y|, then 〈x〉 � 〈y〉 and 〈ln〈x〉〉 � 〈ln〈y〉〉.
(3) 〈x + y〉 < 〈x〉 + 〈y〉 � 2〈x〉〈y〉.
(4) 〈xy〉 � 〈x〉〈y〉, and, if |x| � 1, 〈xy〉 � |x|〈y〉.

Proof. Items (1) and (2) are obvious. The first inequality of item (3) is proven by

〈x〉 + 〈y〉 − 〈x + y〉 = (〈x〉 + 〈y〉)2 − 〈x + y〉2

〈x〉 + 〈y〉 + 〈x + y〉 = 2〈x〉〈y〉 + 1 + x2 + 1 + y2 − (1 + x2 + y2 + 2xy)

〈x〉 + 〈y〉 + 〈x + y〉

= 1 + 2〈x〉〈y〉(1 − x
〈x〉

y
〈y〉 )

〈x〉 + 〈y〉 + 〈x + y〉 > 0. (B.1)

The proofs of the remaining inequalities in (3) and (4) are very similar, and we will skip them. �
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Appendix C. Morse functions

We prove here the following result which shows that Morse functions are covered by the main results given in the
text.

Proposition C.1. Let d � 3, and assume ω is a real-analytic and Z
d -periodic Morse function on R

d . Then ω satisfies
Assumption 2.1, and we can take p0 = 0 for d � 4 and p0 = 1 for d = 3.

Proof. Define fω by (2.5). Let X = [−1/2,1/2]d , and let xj , j = 1, . . . , n, enumerate the critical points of ω in
X (as ω is a Morse function, there can be no accumulation of its critical points, and thus n < ∞). Let also Aj =
D2ω(xj ) be the Hessian of ω at xj , let λ

(i)
j denote its eigenvalues, and define aj = mini |λ(i)

j | and bj = maxi |λ(i)
j |.

By assumption, Aj is invertible, and thus we have 0 < aj � bj < ∞.
By Taylor’s formula, now for any x ∈ R

d and j ,

∇ω(x) = ∇ω(x) − ∇ω(xj ) = Aj(x − xj ) + Rj(x), (C.1)

where |Rj (x)| � 1
2‖ω‖′

3|x − xj |2. Here, by using an orthogonal transformation which diagonalises the Hermitian
matrix Aj , we find:

aj |x − xj | �
∣∣Aj(x − xj )

∣∣ � bj |x − xj |. (C.2)

Let rj = aj /‖ω‖′
3 which is non-zero, as ‖ω‖′

3 is finite. Then we can conclude, by using the triangle inequality, that
whenever |x − xj | � rj ,

aj

2
|x − xj | �

∣∣∇ω(x)
∣∣ � 3bj

2
|x − xj |. (C.3)

Let Uj = {x | |x − xj | < rj }, j = 1, . . . , n, and denote K = X \ (
⋃

j Uj ). Then K is compact, and contains no
critical points of ω. Therefore, by continuity of ∇ω, we have c = minx∈K |∇ω(x)| > 0. We split the integration region
into parts by removing the balls Uj , which yields for all 0 < s � c,

fω(s) =
∫
X

dx
1

|∇ω(x)|3 1
(∣∣∇ω(x)

∣∣ � s
)
�

∫
K

dx
1

c3
+

n∑
j=1

∫
Uj

dx
1

|∇ω(x)|3 1
(∣∣∇ω(x)

∣∣ � s
)

� 1

c3
+

n∑
j=1

2−3a3
j

∣∣Sd−1
∣∣ rj∫
2s/(3bj )

dr rd−1−3. (C.4)

If d > 3, the final integral over r is less than
∫ rj

0 dr rd−1−3 = 1
d−3 rd−3

j . Therefore, we can conclude that then
infs>0 fω(s) < ∞, as claimed in the proposition. Otherwise, d = 3, and

rj∫
2s/(3bj )

dr rd−1−3 = ln

(
3bj rj

2s

)
= ln

(
3bj rj

2

)
+ ln s−1. (C.5)

Then (C.4) implies that fω(s) � c0〈ln s〉 for some finite constant c0, proving the validity of Assumption 2.1 with
p0 = 1. �
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[3] L. Erdős, Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field, J. Stat. Phys. 107 (2002)
1043–1127.



J. Lukkarinen / J. Math. Pures Appl. 87 (2007) 193–225 225
[4] T. Chen, Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3, J. Stat. Phys. 120 (2005)
279–337.

[5] T. Chen, Convergence in higher mean of a random Schrödinger to a linear Boltzmann evolution, Commun. Math. Phys. 267 (2006) 355–392.
[6] J. Lukkarinen, H. Spohn, Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal. 183 (2007) 93–162, online at

http://dx.doi.org/10.1007/s00205-006-0005-9.
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[10] L. Erdős, M. Salmhofer, Decay of the Fourier transform of surfaces with vanishing curvature, Preprint, 2006, URL http://arxiv.org/abs/

math-ph/0604039.
[11] H. Spohn, The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics, J. Stat. Phys. 124 (2006) 1041–1104.
[12] A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner–Husimi transforms, Arch. Ration. Mech.

Anal. 181 (2006) 401–448.
[13] L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin,

1983.
[14] W. Rudin, Functional Analysis, Tata McGraw–Hill, New Delhi, 1974.


