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We consider a multivariate point process with a parametric intensity process which splits into a stochastic factor 

b, and a trend function a, of a squared polynomial form with exponents larger than - f. Such a process occurs in 

a situation where an underlying process with intensity b, can be observed on a transformed time scale only. On 

the basis of the maximum likelihood estimator for the unknown parameter a detrended (or residual) process is 

defined by transforming the occurrence times via integrated estimated trend function. It is shown that statistics 

(mean intensity, periodogram estimator) based on the detrended process exhibit the same asymptotic properties 

as they do in the case of the underlying process (without trend function), Thus trend removal in point processes 

turns out to be an appropriate method to reveal properties of the (unobservable) underlying process - a concept 

which is well established in time series. A numerical example of an earthquake aftershock sequence illustrates the 

performance of the method. 

AMS 1980 Subject classification: Primary 62M09; Secondary 62F12 
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1. Introduction 

In time-series analysis the method of estimating and removing a trend and of analyzing the 

detrended series is well established. Let a time series model 

X,=a,(a) +z,, t=O, 1, . , 

be given where 

a,(a) = 5 ajPy rO’>>-$3 
,=o 

is a trend component and Z,, t = 0, 1, . . , a stationary linear process (MA( 00) process). The 

detrended (or residual) time series is formed by 
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2r=xr-a,(6,), t=O, 1, . ..) 

with & being an estimator (e.g. least squares estimator) of (Y based on the time interval 

[ 0, T] . Properties of the (unobservable) time series 2, are intended to be revealed by using 

the detrended series 2, at least asymptotically. Some results support this intention. Take as 

an example the periodogram estimator 

I,(w) = f Zrepi"' ‘/(mz), I I wE(O, TTT) 3 

r= I 

which fulfills under some conditions (Fuller, 1976, Theorem 7.1.2) 

Z,(w) /f(w) 3 E (Exponential with parameter 1) 

As a substitute for the unavailable estimator Z,(o) we use 

1 I 
2 

i,,(w) = 2 .f, e-‘& l(nIz), WE (0, T) 9 
f=l 

based on the detrended series .& =X, - a,( 6,). From Fuller ( 1976, Section 9.3) one derives 

such that for this limit 

That means, that the estimator based on the detrended series exhibits the same limit law as 

the estimator based on the (unobservable) stationary time series. In what follows we are 

concerned with related problems in multivariate point processes where - contrary to time 

series - the state space is discrete and the time parameter continuous. A trend in a point 

process is defined by a trend function multiplied to the intensity, and a trend is removed by 

transforming the occurrence times via the estimated integrated trend function. Multiplying 

a trend function a, to the intensity amounts to a time change t - a(t) ( c the inverse function 

of A(t) = j&us ds, 12 0). Hence it affects the distribution of the intervals between events 

and so the whole probability structure of the process. Thus the related time-series methods 

cannot be transferred to our point process context. 

The standpoint of the paper can be sketched in this way: The observed point process is 

obtained from an (unobservable) underlying process by a transformation of the time scale. 

Asymptotical statistical results which apply to the underlying process (in its own time 

scale) are no longer valid for the observed process. The paper will show, however, that 

these results will also apply to the observed process after estimating the trend a, (by 8,, say) 

and recovering the original time scale sufficiently accurately by a time change t -+ A^ ( t) = 

/L&x ds. 

The main results of this paper are the following: Some asymptotic properties of point 
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process statistics (mean intensity estimator, periodogram estimator) which are known to 

hold true for the underlying model are established for the detrended point process (see 

Proposition 5, Theorems 6 and 8). At least in the case of an underlying Poisson process we 

obtain qualitatively the same results as mentioned above for time series. In the proofs a 

result on the transformation of point process distributions is steadily used, which is stated 

in Theorem 4 below and was proved in Pruscha ( 1988), a paper to which we will refer by 

[P] in the following. 

To derive our results some assumptions are to be made: (i) The evolution of the under- 

lying process depends on the history of types (marks) of events, not on the history of 

occurrence times. (ii) The underlying process obeys an ergodic-type law, while stationarity 

is not explicitly demanded. (iii) The trend coefficients are to be calculated from a larger 

time interval than the statistics in consideration. 

2. Estimation of a parametric trend function 

We start with a canonical multivariate point process model 

N(p) : (N,, 9, P,) with intensity 6,( /3) 

where N, = (N,,,, i E I), t > 0, I finite set, is a multivariate counting process on the canonical 

space (0, F) of all multivariate point process realizations, 

fulfills the requirements of an intensity process (nonnegative, left-continuous, adopted to 

the N, history) and P, is the corresponding probability on (0, 9) according to the existence 

theorem of Jacod ( 1975). We introduce the following assumptions on N(p) (writing 

c+ = &, and denoting by ( T,,, &,), II > 1, the double sequence of occurrence times and 

types of event) : 

(AO) h+,,>Oandb,.,=b1”‘(5,, . . . . &,) forr,,<t<r,,+,. 

(Al) ( llt)l;b+,,Y ds+ p (pp.a.s., t + m), where p = p(p) is a positive constant. 

( AO) is a jump-type condition and says that on the nth interval b,,, depends only on the 

earlier types not on the earlier occurrence times. (Al ) is an ergodic-type law implying 

N+,,/t + p (P, - a.s.) by Lepingle’s ( 1978) strong convergence results. 

(A2) b,,,(p) and log b,,J p) have continuous second-order derivatives w.r.t. p E Wd, the 

derivatives form left-continuous processes; the differentiations dldp and d’/dp* are inter- 

changeable with the integral C;/&b,,( j3) ds. 

Let a function (trend function) a,( a) = (p,(a) )*, t> 0, a E Wq+ ‘, be given with 
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p,(a) = e ajty -1<y(O)<...<y(q), a,>O, 
j=O 

and a canonical multivariate point process model 

N( (Y, p): (N,, 9, p,.,) with intensity h,( CX, p) , 

where 

Arta, PI = (Ada, P), iE0, f&O, Ai,t(c-u, P> =a,(~)bi,,(p) . 

N( /3) and N( (Y, p) play the roles of the underlying and of the trend affected point process 

model, respectively. In the following we will write 6= ((Y, p) E Wqf ’ td. (A2) allows to 

define a log likelihood function 1,( 6), the score vector J,( 6) = dl,( 6) /da of dimension 

q+ 1 +d and the (q-t 1 +d) X (qf 1 +d) matrix K,( 6) =d21,( 6) /da2 of second order 

derivatives. 

As a consequence of ( AO) and (A 1) we have in the N( (Y, p) model 

lim N, ,,/t *r+‘=lim n/7-~‘+’ =h2, [FD+-as., h2=~~~l(2r+ 1) , (1) 
f n 

cf. [P, Lemma 2.11 where r = y(q) is the largest exponent in p,( (Y) . We will call an N,- 

adapted process 8, E W 9+ ’ td a consistent ml. estimator for 8, if for each E> 0, 

R9(lGrY =G E, J,( &) = 0) + 1 (2) 

ast+m.Definingthe(q+l)X(q+l) anddxdmatrices 

0:“’ =Diag(t y(J)+1’2,j=o, . . . . q) ) DjP) =Diag( trt”2) 

aswellasthe(q+l+d)X(q+l+d) matrix 

D, =Diag(Dj”‘, Djp’) 

we can formulate the following assumption: 

(A3) There exists a consistent ml. estimator &r = (&r, 0,) for 6= ((Y, p) in the sense 

of (2) and asymptotic normality holds in the form 

D&-6) “;‘N(O, V) 

as T+ m, with some positive-definite matrix V= V(a). 

(3) 

Remarks. 1. Examples of (underlying) N(p) models where ( AO)-( A3) are fulfilled are 
_ irreducible positive-recurrent Markov processes with finite state space; 
_ certain Markov branching processes with random immigration rate; 
- certain linear OM (learning) processes; 

cf. [P, Section 51. Markov renewal processes, however, are excluded, since ( AO) requires 

a piecewise constant intensity function. 
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2. By using the square of the trend polynomialp,( a), the intensity A, remains nonnegative 

and the asymptotic analysis seems to become somewhat easier. 

3. Three lemmas on the estimated trend 

For the integrated trend function 

A(t)= ’ 
I 

as(~) ds= C C. Q.Q fYu)+Y(b+l 

0 
Jk J k 

O<j<k<y 

we introduce the estimator 

Lemma 1. Let (AO)-( A3) be jiiljilled. We have for T= T, with T,,/r, 2 ~0, 

(&(qJ -A(T “; 0 (n-x) 

Proof. One calculates by using the abbreviation a,,k, 7 = a;,.,& - CY~CX~, 

(‘~(7,) -A(‘,,))/~= C Cjk~~j.k,TTY”‘-C”2fi.fi(IZ) 
O=sj<ksy 

with 

~,k(n)=7,r(j)+~(k)+I/(~~~j)+1/211~/z) . 

Since from ( 1) and the assumption on T,,/r,,, 

f,.kcn) “,” 0 (n+m) , 

one derives by using &T = (C;,,r - aji) ak,T + ( &k.J - a)k) a; and (3) the aSSertiOn. 0 

To derive results on bounded expectations we have to stipulate further conditions. Let 

t,,~l,p,>O,c,~<mandfort~w: 

(A4) (i) (flt)l&E,b+.,(P) ds+ I-G 
(ii) b+,,(P,*)>&, forallt,<s<t, Pp-as.; 

(iii) (llt)lt~,[Jt(b+,,(P,) -b+,5(P)12 ds+c,; 
where in (ii) and (iii) /3:, t > 0, is a d-dimensional process with p: = B *( JV,, 0 6s Q t) 

and with &( p: - p), t > 0, stochastically bounded w.r.t. P,. 

Note that condition (A4) is formulated in terms of the underlying N( /3) model according 
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to the general standpoint adopted in this paper. With the same technique as in the proof of 

[P, Lemma 2.21 - which makes use heavily of Theorem 4 below and a Cesaro convergence 

argument [P, Appendix A] - one deduces from (A4) for the N( 6) model (note that the 

Pp-boundedness of t”*( p: - p) carries over to the $,-boundedness of ,r+“2(pF - 

p), I >, 0, such that fit can be chosen as p: ) 

f $,b+,,(P) ds+ /J, 
I 

b+,X(/%) > PO for all to Gs<t, p,-a.s. 

(to possibly larger than in (A4) ) , 

(4) 

(5) 

where B,, = trt’12 (b+.,(P,) -b+,,(P)) . 

For convenience our last condition will be formulated directly in the N( 6) model. The 

superscript (a) will refer to the components ( (Y(), . , aq) of 6. 

(A5) ~s(J~,?‘( ar) )*G CE.(Jj,,“‘(a, p,))’ for all I>, t,,,j=O, . . . . q (C finite constant). 

Condition (A5) is fulfilled, if 

vanishes at &? [FD,-as. Using (5) and a quadratic form argument we conclude the as. 

invertibility of the matrix 

‘s~(~)+~‘~)(CW+,,~/~,~(L~) +b+,,Y(P) ds) 

for t > t,,. The stochastic boundedness expressed by (3) can now be sharpened w.r.t. the (Y 

components. 

Lemma 2. Under (AO)-(A5) we hate afinite constant Co such thatfor all T2 t,,, 

E,[ I~~,T-~jITY(J)+“2]2~C0. 

Proof.(i) Letting(withinthisproofonly) ~=(~-~,P,),~(u)=(~(u),~~),(Y(u)=(Y+ 

u( &, - a), and & = (B,, &) as usually. Then we have from the fundamental theorem 

J~)(~~)=J~P’(~)+W~a)(~~, 6)(6,-a,) (7) 

where W km.a) ( &-, 6) = /bK&m,m) (a(u)) dl* is a symmetric, invertible matrix (read the 

integral component-wise). Hence from (7) P,-a.s. 



H. Pruschu / Detrended point processes 

Ty’~)+“*(6i,T-ai) = 5 cij,T(Dj.T-fijj,T), i=o, . ..( q, 

,=o 

337 

(8) 

where 

c,~,,= -Ty(i)+y(j)+l[w~p,a)(~~, s)],~‘, 

DjT=T~(Y(j)+“2)(J~)(~))I, 

6j,T as Dj,T with 6 replaced by &. 

(ii) For the term Dj,T we calculate 

2 

EaD~,=4T~2YCi)~‘Es T(~Y(j)/ps(a))(dN+,J -~,2b+,~&) ds) 
> 

-U > 
2 

< 877 -2Yti) - l[E, 
7 sYU’~ps(a))(~+,s -db+,.A PI &I 

0 

0 
2 

+8T~2yU’~‘Eg 7sYo’P,Y(~)(b+,,~( p) -b+,(&) ds 
0 

=IT+IIT, say. 

By a well-known property of squared point process integrals we have 

I,=8T -2y~)-’ Ts2y”‘E,b+,,( p) ds 
I 0 

and thus I,+ const by using (4) and a Cesaro convergence argument. By using Jensen’s 

inequality, the quantity B,,, of(6) andy=8/(y(j)+i) wecanwrite 

I 

T 

IIT<yE,T~Y(i’~“2 sy~‘-“*{~“*p.A~)(b+.,(P) -b+,s&)))* ds 
0 

<yT-Y’_i’-‘/* ’ 

I 

~““~“‘{~-‘~,((Y)}*IE~B.~~s 
0 

the right-hand side converging towards some constant (use (6), P,~( a) /s” - q,, and once 

again a Cesaro convergence argument). 

(iii) Denoting by cl, c2, c3 finite, positive constants, by DimI” the diagonal matrix intro- 

duced above, and letting 

one calculates by using (5) and assuming f T> to, that P,-a.s. 

1 
-2 

( cij,T) 2<~‘A.$ax(CT) =clh;,2,(C;‘) =c, arC;‘a 
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(iv) The assertion follows now from (8) by using (ii), (iii) as well as (A5). 0 

Lemma3.Under(AO)-(A5)wehaveforT~f,and~~=max(r,,, l), 

MT n 
y(0)+l/2/Tt2r+1 

) I&(G) --A(T,) I GC, 

where C, is some finite constant. 

(9) 

Proof. Writing I, for the left-hand side of (9)) we deduce from Lemma 2 by making use 

of 

that 

‘a”CC cjk~,YI~j,k,TIT “” + I?& G cc CJkC2fj.k 

i<k j<k 

where C2 is some finite constant and 

f = ry(i) + y(k) + 1 
J,k n 

7-Y(‘))bY(l)/7;2r+I < 1 0 

4. Analysis of the detrended process 

As suggested by Lewis ( 1972) in the case of inhomogeneous Poisson processes (i.e. the 

case b,= l), we define a detrended (or residual) process by the double sequence 

(?,,, &,), n> 1 where $,, =&, and 

;,I =&( r,,) . c 10) 

The counting process belonging to ( 10) is fi, ,, = N, ,ec(fj , where k(t) = c?=(t), t > 0, is the 

inverse function of Al,( t) , t >, 0. 

For the following analysis we need a result on the transformation of point process 

distributions. If D, and ED@ denote as above distributions w.r.t. P, and P,, respectively, 
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and a(t) the inverse function of A(t) , t > 0, then we can prove (cf. [P, Appendix, Corollary 

B. 31) the following two equivalent statements: 

Theorem 4. Under ( AO) we have 

Dp(c, n&l) =Dg(A(7,,), n> 1) , 

~p(N+,r, f>O) =~dN+.(r(,), f&O) . 

Remarks. 1. Note that the detrended occurrence times ( 10) are intended to estimate A( 7,). 

2. In this theorem a,( a), t > 0, is allowed to be a random process; thus this theorem 

generalizes a well-known result on transforming a univariate point process to a Poisson 

process. 

4. I. Estimation of the model parameter p 

The reciprocal Y= 1 lp of the final intensity p, introduced by (A 1)) is usually estimated by 

u,, = r,,/ n. For many point processes N(p) we have 

&( V, - .): N(0, a:), Uz,>O, (11) 

cf. Brillinger ( 1975, p. 73). As an estimator of V, based on the detrended process ( lo), we 

introduce 

A 
%, =~,,ln=Fi,(T,,)ln. 

Proposition 5. Let (AO)-( A3) as well as ( 11) be fulfilled. Then we hal,e for T= T,, with 

T,,/r,,?xaasn+x, 

&z( CT.,z - u) ?N(O, a;,) (12) 

Proof. From ( 11) we obtain by using Theorem 4, 

&(A(T,,)/n- v)? N(0, (T;) 

Assertion ( 12) is then an immediate consequence of Lemma 1. 0 

4.2. Periodogram estimator 

The periodogram estimator for point processes is usually defined by 
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or 

where from now on N, stands for N, ,, and fir for i$, ,f. For many stationary point processes 

N(P) with a spectral densityf( w) > 0 we have cf. Brillinger (1975, p. 83) or Cox and 

Lewis ( 1966, p. 127) as t -+ 00 and IZ + ~0, respectively 

<Z,(~,~fC~,> emow~ C-6 E’) (w+w’) 1 

where E and E’ are two independent exponentials, as well as 

law (13) with Z,(w) replaced by $(,,)(w) . 

We introduce the periodogram estimator based on the detrended process ( lo), 

(13) 

(14) 

Theorem 6. Let (AO)-(A5) as well as ( 14) be fulfilled and d > 3/ (2y( 0) + 1). Then we 

have for T= nd as n + m, 

Proof. As a consequence of Theorem 4 we have 

where we have set Tk =A( TV). Hence, with respect to the inequality 1 a I2 - 1 b 1’ < 1 a - 

bl( Ial + lbl) itsufficestoshowthat 

P 0 
or that &I + 0 where 

6 T,,, = k$, Je-‘““-e-‘“+lkl(& 7L2’+‘), 7; =max( 1, rk) 

(note that rA2’+ ’ lk+llh’P,-a.s.dueto(l)).Nowusing le’“-e”l < (x-yJ andLemma 

3 we get 
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<WC, i k&fk,,, +Q (n+x) 

where we have set f& = kind’ y(O) + “*I 0 

Remarks. 1. Periodogram analysis in detrended point processes should not be used for the 

search for hidden periodicities (note that the time scale is transformed) but to test the 

observed process against hypothetical point process models N( /?). 

2. Writing a,, - b,, if a,,l b, -c,, (0 < cg < cc) we have from ( 1) p,-a.s. 

T=nd- T;, c=d(2r+ 1) 

Since c > 3 under the assumptions of Theorem 6 the time interval [ 0, T] for estimating (Y 

runs far ahead of the time interval [ 0, T,,] for calculating the periodogram. In time-series 

analysis (see Section 1) we have c > 1 and thus a much better result. Note, however, that 

in Section 1 a linear time-series model was assumed, while in Theorem 6 a rather general 

point process model is allowed. 

3. For Poisson processes the results are much better (in comparison with Theorem 6) as 

the next theorem will show (namely c >f + 1 / (2r + 1) with f = 1 or 2 if y( 0) = $ or 0, 

respectively). Note that the proof of Theorem 8 leans heavily on the structural properties 

of the Poisson process and allows for the sake of simplicity only the case Y= y(q) > 0. 

4. The difference between Theorems 6 and 8 reflects the fact that there is a lack of an 

intermediate model which the linear model represents in time-series analysis. 

4.3. Periodogram estimator (Poissonian case) 

Now we consider as underlying model N(p) the model NP( 1) of a homogeneous Poisson 

process with rate 1. The notation [E,, ID, etc. now refers to the NP( 1) model, while E,, ED* 

etc. pertain to the trend-affected NP( 1) model, i.e. an inhomogeneous Poisson process with 

rate function a,( a). 

Define the random element F( t, T) from U ,I w” by 

F(t, T)=(~N,+,, . ..> Q-NT) (t<T) 

Lemma 7. For the NP( 1) model vve hare 

E, 5 q(Tx,F(t,T))=[EB %(.,F(t,T))du, 
k=1 I 0 

M!here t < T and !If is a nonnegatilse measurable function on W X tJ ,,W”. 

Proof. Writing e(u) instead of F( U, fl, f E IJ ,, W” and making use of the independence 
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of F( 0, t) and F( t, T), of Corollary 4.38 in Breiman ( 1968) and of the uniform conditional 

property we get 

k=l 

n=O 

=lE,t ’ 
s 0 

where [E,, E,, E, pertains to the expectation w.r.t. the uniform distribution on [0, 11, the 

distribution of F = F( t, T) and of G = F( 0, t) , respectively. 0 

TheoremS.LetT=t’,c>max(l, l/(y(O)+~)+ll(2r+l)}. Thenfortheinhomoge- 

neous Poisson process with rate a,( (Y) and r = y(q) > 0 we have as t + 00, 

procided that the estimation dT of (Y is based on F( t, T) . 

Proof. (i) For the NP( 1) model the asymptotic result ( 13) withf( o) = 1 /n holds true, cf. 

Cox and Lewis ( 1966, p. 127). Further we have according to Theorem 4, 

, 

where fi, = N,, ,, , a(t) inverse function of A(t), and fk =A ( TV). Hence, putting 

k=l k=l k=l 

it suffices to show that 

^ A 

(ii) Lettingf( u) =A7( CT( u) ) we have by using Lemma 7 and Theorem 4, 
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Nr 
E8 C (ep’uul(n) -e 

k=l 

where [E, = E,,, E, = IE,., is similarly used as in the proof of Lemma 7 (note that c(t) < t 
forlargetduetoy(q)>O,suchthat(7,, . . . . rg,, I?,,> and F( t, T) are independent). Writing 

A(t) =A(t, a) we now apply the mean value theorem to A(a(u), hi,) -A((T(u), a) = 

f(m) -u. With CY* lying between (Y and c&- we have, taking 13/&r~A(t) = 2j&p,( LY).s~(~) ds 

into regard, 

j.?(u) --uj =2 e (&,,,--a;) ds 
j=O 

fora(u)&l where.&,=I&j,,-cu,ITY’J’+“2. Hence by Lemma 2 ( (AO)-( A5) are ful- 
filled for the NP( 1) model) for large t with finite constants cj, 

~(y(i)+l/2)t~y(r,)+y(j)+l)/(2y(r,)+1)+1/2_ 
-c4 k tK(i) 

, = 0 

taking a(t)2Y’y’t’ /t -+ const into regard. Since I < 0 by our assumption on c, we arrive 
- *i 

atEs(H,-H,) -0. 

(iii) In order to show &, - fi, “-“O we begin with a proof of 

(t-A(B(t)))lJt 20. (16) 

In fact, applying the mean value theorem to t-A ( 8(t) ) = A ( u(t) , a) -A ( &( t) , a) and 

then to a(t) - c?(t) = a( t, a) - a( t, c?) we obtain 
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)r-A(&(t)) 1 /&e*(r) i .&tKCi) 
j=O 

withK(j) <O,i,,,asinpart(ii),ande*(t) =a,*(a)/a ti,,a*j (a*), where (T* lies between 

c(t) and c?(t) and CK* between (Y and hr. Assertion (16) now follows from 

e * (t) “-;’ 1 ( t + ~4) and the stochastic boundedness of &r. 

Next we want to show that 

the process fit - fi,, t > 0, is stochastically bounded w.r.t. Ptg . (17) 

In fact, writing 

N c,(r) -Nw,, _ N,c,, --t I t-A(3t)) + 4+(t))-N,,, 

Jr Jt Jt Jt ’ 

we know that the first and the third term converges in P,-law towards the normal distribution 

(apply the random time change theorem 17.1 of Billingsley (1968) along the line of 

arguments used in Aalen ( 1976), p. 66) ), while ( 16) completes the proof of ( 17). 

To complete the proof of f?, - fi, s > 0 we can restrict - as a consequence of ( 17) - 

the estimators &,(j < q), t$ to the intervals [a; - 1, a, + 1 ] and [ f CZ,, 2a,], respectively. 

Now using E, = E,,? and E, = E,,, as in part (ii), we have for large t, 

E,]&fi,] ~[E,IN,-~,,IIJt=[E,IN,-N,(,(,,,I/Jt 

=IE,[E,IN,-N,(w,,,I/~=1E,,Jt-A(6(t))l/Jr 

due to ( 16) and the fact that the convergence ( 16) is (by the restrictions of the dj’s) 

bounded. 0 

5. Application 

We will now apply the method to the sequence (T,,, e,,), n = 1, . . ., 355, of aftershocks of 

the Friuli earthquake (May-Sept. 1976) where T,, refers to the occurrence time and &, to 

the type of the nth shock. We will only distinguish two types 1 and 2 according to the 

magnitude of the shock ( < 2.5 or > 2.5 ML, respectively). The time-series plot of the 

number of shocks per 2 days, i.e. Xr=Nrh-NC,_,jhr t= 1, 2, . . . (h=2 days), shows a 

decreasing tendency (Figure 1) . As underlying model we suppose a certain generalization 

of the two state Markov process, namely a two state linear OM process (see Pruscha, 1983, 

1986), while the function 

a,(a)=(a,t-“.2+a,t~“.‘+cu,t~“.4)2, t>o, 

should fit the reciprocal trend. The inclusion of further terms tY does not improve the 

likelihood significantly. Different to Theorems 6 and 8 above we base here the calculation 
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Fig. 2. Number of shocks per interval plotted over the consecutive intervals [h( t- 1 ),ht], t= 1, . . . . 50, h = 

A( T,,) 150, on the detrended time scale (n = 355) 

of both the parameter estimations and the statistics on the maximal interval [0, ~~~~1. 

Detrending according to ( 10) produces detrended occurrence times ?,, , II = 1, . ., 355, and 

a corresponding time-series plot $ = I?,,, - fiCr-, jh, t = 1,2, . . (Figure 2)) which no longer 

reveals an obvious trend (but still one outlier) . 

The periodogram based on the original (trend affected) process exhibits high values for 

small cycle numbers which is typical for trend affected processes. They are removed in the 

periodogram based on the detrended process. But there are still values outside the simulta- 

neous bound testing the hypothesis of an homogeneous Poisson process, such that the 

Poisson model for the underlying process can be rejected. (See Figure 3.) 
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Fig. 3. Periodogram estimators I,,,,(w) and i(,,,( w) based on the original and on the detrended occurrence times, 

resp.; evaluated at w= w, = 2rk/7,, and wk = 2nk/a( T,), resp., and plotted over k= 1, __ ,, 40 (n = 355). 

B = B4t1 = - In( 0.025/40) /m gives a simultaneous bound for the 40 periodogram values under the hypothesis of 

a homogeneous Poisson process, cf. Cox and Lewis ( 1966, p. 99). 

,2 FRlyLl EARTHOUAKE 1976 AFTERSHOCKS 
! 

Trend affected _ _ _ 

Detrended _ 

-B 

0 4 8 12 16 

LAG H (ORIG. AND DETR. TIME SCALE) 

Fig. 4. Conditional (or Palm) intensity function estimators v,,(h) and ij,,( h), based on the original and detrended 

occurrence times, resp.; evaluated at time lags 11 = L. k, L = T,,/ IO0 and L = a( T,,) / 100. resp. (n = 355), and plotted 

in standardized form over k=O, ___. 17. E=B,,=u( I -0.025/18) gives a simultaneous bound for the I8 values 

under the hypothesis of a homogeneous Poisson process, cf. Cox and Lewis ( 1966, p. 123). 

Qualitatively the same features are revealed by the plots of the estimated conditional 

intensity function (L a small bandwidth, k = the time lag) 

I 

7,r 
v,,(h) = (Nr+h+L -N<+/,) dNJ[Wth)l 

= “z I(k<T~-7,~k+L)l[LnS(k)] 
0<,<1<t1 
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for the original process and for the detrended process (where rk - 7; is replaced by fk - 3), 

see Cox and Lewis ( 1966, p. 123). Here, f(h) = ( 7, -h - $L) 17, is a correction factor. 

Even after trend removal significantly high values for small time lags h (compared with the 

Poissonian model) indicate a cluster effect in the sequence of aftershocks (see Ogata, 1988, 

for related results). (See Figure 4.) 
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