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1. Introduction

It is well known that the Cauchy problem of heat equation possesses the ultra-analytic effect
phenomenon, namely, if u(t, x) is the solution of the following Cauchy problem:

oru — Axu =0, xeRd, t>0,
Ulemo = Up € Lz(]Rd),
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then under the uniqueness hypothesis, the solution u(t, -) = e/®*uq is an ultra-analytic function for
any t > 0. We give now the definition of function spaces .45(£2) where £2 is an open subset of R.

Definition 1.1. For 0 < s < +00, we say that f € AS(2), if f € C*°(£2), and there exist C > 0, Ng >0
such that

||a°‘f|}L2(m<c‘“‘“(a!)5, Vo e N4, |a| > No.

If the boundary of §2 is smooth, by using Sobolev embedding theorem, we have the same type esti-
mate with L2 norm replaced by any LP norm for 2 < p < +o0. On the whole space 2 =RY, it is also
equivalent to

e0=DF (3o f) ¢ 12(RY)

1
for some co > 0 and By € N¢, where e©0-2) % s the Fourier multiplier defined by

eco(*A)zlS ux) = F1 (eco\%'\% ﬁ(%-))

If s =1, it is usual analytic function. If s > 1, it is Gevrey class function. For 0 < s < 1, it is called
ultra-analytic function. Notice that all polynomial functions are ultra-analytic for any s > 0.

It is obvious that if ug € L2(RY) then, for any t > 0 and any k € N, we have u(t, ) = e~ (-4
1
A= (RY), namely, there exists C > 0 such that for any m € N,

)k
¥ Up €

| (™o uce, Mizge < CEM (e(=a0*) e, ) | L2(RY)

P 1
< ||U0 ”LZ(]Rd)Ckmm! < C2km+1 ((ka)') 2k N

where §2km = 2 jol=2km, aenvd O - We say that the diffusion operators (—Ay¥ possess the ultra-analytic
effect property if k > 1/2, the analytic effect property if k = 1/2 and the Gevrey effect property if
0<k<1/2.

We study the Cauchy problem for spatially homogeneous Landau equation

{ft = Q. H=(@) - vof =b(Hf). veR: t>0, (11)
fle=o = fo.

where a(f) = (@;;(f)) and E(f) = (51(f), cey Bd(f)) are defined as follows (convolution is w.r.t. the
variable v € RY)

d
aij(f) =ajj f, Ej(f):Z(aviaij)*fs i,j=1,...,d,

i=1
with

ViV
aij(v) = (s,-j - #)W*z, y e[-3,11.

We consider hereafter only the Maxwellian molecule case which corresponds to y = 0. We introduce
also the notation, for [ € R, LV (R?) = {f; (1+ |v|>)!/2 f € LP(R%)} is the weighted function space.
We prove the following ultra-analytic effect results for the nonlinear Cauchy problem (1.1).
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Theorem 1.1. Let fo € L>(RY) N LI(RY) and 0 < T < +oo. If f(t,x) > 0 and f € L>°(]0, T[; L*(R%) N
L;(]Rd)) is a weak solution of the Cauchy problem (1.1), then for any 0 <t < T, we have

ft,) e AVA(RY),

and moreover, for any 0 < Tg < T, there exists co > 0 such that forany 0 <t < Ty

_ d
e £, )] o ey < €21l foll 2o (12)

In [17], they proved the Gevrey regularity effect of the Cauchy problem for linear spatially homo-
geneous non-cut-off Boltzmann equation. By a careful revision for the proof of Theorem 1.2 of [17],
one can also prove that the solution of the Cauchy problem (1.10) in [17] belongs to Ai (RY) for any
t >0, where 0 <o < 1 is the order of singularity of collision kernel of Boltzmann operator. Hence,
if @ > 1/2, there is also the ultra-analytic effect phenomenon. Now the above Theorem 1.1 shows
that, for Landau equation, the ultra-analytic effect phenomenon holds in nonlinear case, which is an
optimal regularity result.

The ultra-analytic effect property is also true for the Cauchy problem of the following generalized
Kolmogorov operators

QU+ V- Veu+ (=AU =0, (x,v)eR¥ t>0,
Ule—o = o € L?(R*¥),

where 0 < o < o0, and the classical Kolmogorov operators is corresponding to o = 1. By Fourier
transformation, the explicit solution of the above Cauchy problem is given by

(e, 0, &) = e~ hlErsn*dsg o g 1),

Since there exists ¢, > 0 (see Lemma 3.1 below) such that

t
ca (t1E12 4+ 221 2) < / |& + sn|* ds, (13)
0

we have

ety (¢ . ) € 12 (R),

ie. u(t,-, ) e AYV@MR2) for any t > 0.

Notice that this ultra-analytic (if o« > 1/2) effect phenomenon is similar to heat equations of (x, v)
variables. That is, this means v - Vy + (—A,)¥ is equivalent to (—Ax)% 4+ (—A,)* by time evolution in
“some sense”, though the equation is only transport for x variable.

We consider now a more complicate equation, the Cauchy problem for linear Fokker-Planck equa-
tion:

{ft+v~VXf=V‘,~(va+vf), xv)eR¥ t>0, (14)

fle=0 = fo.
This equation is a natural generalization of classical Kolmogorov equation, and a simplified model

of inhomogeneous Landau equation (see [20,21]). The local property of this equation is the same as
classical Kolmogorov equation since the add terms V, - (vf) is a first order term, but for the studies of
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kinetic equation, v is velocity variable, and hence it is in whole space R‘f,. Then there occurs additional
difficulty for analysis of this equation.

The definition of weak solution in the function space L>°(]0, T[; L?(R24,)N L] (R24)) for the Cauchy
problem is standard in the distribution sense, where for 1 < p < +o00,l € R

LP(RY) = [F e S (®): (14 vP) " f e LP(BY)).

The existence of weak solution is similar to full Landau equation (see [1,13]). We get also the following
ultra-analytic effect result.

Theorem 1.2. Let fo € L(R2%) N L] (R%,), 0 < T < +oc. Assume that f € L>°(10, T[; L2(R24) N L} (R%,))
is a weak solution of the Cauchy problem (1.4). Then, for any 0 < t < T, we have

e, e AV (RM).
Furthermore, for any 0 < To < T there exists co > 0 such that for any 0 < t < To, we have
_ 3 d
||e COtAvFEAD (g . )” 2Ry S 92[||f0”L2(]R2d)- (1.5)

Remark 1.1. The ultra-analyticity results of the above two theorems are optimal for the smoothness
properties of solutions. From these results, we obtain a good understanding for the hypoellipticity of
kinetic equations (see [11,14]), and also the relationship, established by Villani [19] and Desvillettes
and Villani [10], between the nonlinear Landau equation (with Maxwellian molecules) and the linear
Fokker-Planck equation.

We consider now the spatially inhomogeneous Landau equation

{f[+v-vxf=Q(f,f), x,v)eR¥, t>0, (16)
fle=0o = fox, v).

The problem is now much more complicate since the solution f is the function of (t, x, v) variables.
We consider it here only in the linearized framework around the normalized Maxwellian distribution

lvi2

1(v) = @m)"te"'T

which is the equilibrium state because Q (i, ) = 0. Setting f = u+ g, we consider the diffusion part
of linear Landau collision operators

Q1. & =Vy(aw) - Vyg —b(n)g),
where
() =aij» =i (v > + 1) = vivj,
_ d
bj(w) =Y (Byap*p=—vj ij=1...d.
i=1

In particular, it follows that

d
Y G(wEE > 5P, for all (v,£) e R (17)
ij=1
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We then consider the following Cauchy problem

{ g +v-Veg=V, (@ - Vig —b(uwg). x.v)eR¥, >0, (18)
glt=0 = &o-

We can also look this equation as a linear model of spatially inhomogeneous Landau equation, which
is much more complicate than linear Fokker-Planck equation (1.4), since the coefficients of diffusion
part are now variables. The existence and C* regularity of weak solution for the Cauchy problem
have been considered in [1]. We prove now the following:

Theorem 1.3. Let go € L?(R2) N L}(R24,), 0 < T < +o00. Assume that g € L>°(10, T[; L*(R24,) N L} (R,))
is a weak solution of the Cauchy problem (1.8). Then, for any 0 <t < T, we have

gt ) e AN (RYM).
Furthermore, for any 0 < To < T there exist C, ¢ > 0 such that for any 0 <t < T, we have

HeC(f(—Av)1/2+t2(—Ax)1/2)g(t’ . H 12 (g2 < eCt||g0||L2(R2d)~ (1.9)

In this theorem, we only consider the analytic effect result for the Cauchy problem (1.8), neglecting
the symmetric term Q (g, i) in the linearized operators of Landau collision operator (cf. (1.15) of [1])
because of the technical difficulty, see the remark in the end of Section 4.

There have been many results about the regularity of solutions for Boltzmann equation without
angular cut-off and Landau equation, see [1-3,6,7,9,12,15,16] for the C*° smoothness results, and [4,
5,8,17,18] for Gevrey regularity results for Boltzmann equation and Landau equation in both cases:
the spatially homogeneous and inhomogeneous cases. As for the analytic and Gevrey regularities, we
remark that the propagation of Gevrey regularities of solutions is investigated in [5] for full nonlin-
ear spatially homogeneous Landau equations, including non-Maxwellian molecule case, and the local
Gevrey regularity for all variables t, x, v is considered in [4] for some semi-linear Fokker-Planck equa-
tions. Comparing those results, the ultra-analyticity for x, v variables showed in Theorem 1.1 is strong
although the Maxwellian molecule case is only treated. As a related result for spatially homogeneous
Boltzmann equation in the Maxwellian molecule case, we refer [8], where the propagation of Gevrey
and ultra-analytic regularity is studied uniformly in time variable t. Throughout the present paper,
we focus the smoothing effect of the Cauchy problem, and the uniform smoothness estimate near to
t = 0. Concerning further details of the analytic and Gevrey regularities of solutions for Landau equa-
tions and Boltzmann equation without angular cut-off, we refer the introduction of [5] and references
therein.

2. Spatially homogeneous Landau equations

We consider the Cauchy problem (1.1) and prove Theorem 1.1 in this section. We refer to the
works of C. Villani [19,20] for the essential properties of homogeneous Landau equations. We suppose
the existence of weak solution f(t,v) > 0 in L>(]0, T[; L}(RY) N L?(R%)). The conservation of mass,

momentum and energy reads
d 1
— | fe,v)| v dv=0.
dt
e |v|?

Without loss of generality, we can suppose that



Y. Morimoto, C.-J. Xu / J. Differential Equations 247 (2009) 596-617 601

/f(t,v)dv:], unit mass,

Rd

/f(t, v)vjdv=0, j=1,...,d, zero mean velocity,
Rd

/ f(t, v)|v|>dv =Ty, unit temperature,

Rd

d
/f(t, V)V]'deVZTj(Sjk, ZTj:To,
Rd j

Tj= / f, v)v? dv>0, j=1,...,d, directional temperatures.
Rd

Then we have

aj(f) =8k (IvI*> + To — T;) — vjvy, (21)
bi(f)=—v;j, (22)
(23)

d
D au(HEh = CrIER, V(v &) eR¥,

ik
where C1 =min;gj<a{To — T;} > 0.
Now for N> 9 +1and 0<8<1/N, co>0, t >0, set

eCotlél®
Gs(t, 151) = (1 + 8ecotlé?) (1 4 Scot]|&|2)N

Since Gs(t, ) € L°(RY), we can use it as Fourier multiplier, denoted by

Gs(t, D) f(t,v) = F ' (Gs(t, 16]) f (£, ©)).

Then, for any t > 0,
Gs(t) = Gs(t, Dy): L*(RY) — HZN(R?) c C2(RY).

The object of this section is to prove the uniform bound (with respect to § > 0) of

|Gt DV Ft. )| 2 ga)-

Since f(t,-) € L2(R%) N L1I(RY) is a weak solution, we can take

Gs(O2f(t,) = Gs(t, D)2 f(t,-) € H*N(RY),

as test function in the equation of (1.1), whence we have
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d d.r -
leofe Miae + > / k() (8y,G5 (O (£, V) (3w, Gs(®) F £, v)) dv

1
2 ;
],k:]Rd

1 -
2((3t68(t))f Gs(t)f) Lz(Rd)+Z/ dy; (vif (£, v)))Gs ()2 f(t, v)dv

Jj= l]Rd

+ Z {1 (H(Gs v, f(t, v)) = G @) (@ (fHdy; f (&, )} (v, Gs(® f (£, v)) dv.

k= ]Rd
To estimate the terms in the above equality, we prove the following two propositions.

Proposition 2.1. We have

G VGs® F O & S Z / ajk(f)(dv;Gs(t, Dy) f(t, v)) (v, Gs(t, Dy) f(t, v))dv (2.4)
j.k= l
(365 0) £, G50 f) ;2| < o VuGs@® F O |52 (2.5)

ReZ / (3, (v F (£, ))) G5 (O f (£, v) dv < —||Ga<t)f(r>|\fz+zcor||vvcs(t>f<t>||§z. (2.6)
j= 1]Rd

Proof. The estimate (2.4) is exactly the elliptic condition (2.3). By using the Fourier transformation,
(2.5) is deduced from the following calculus

1 Né§
1 4 Secotlé> 14 8cot|€]?

%Gs(t. 1£1) = col€12Gs (¢, |s|)( ) =col€[*Gs(t, 1E]) In,s5.

where
Né
sl :’1+5ecotlélz " Troconer| S
To treat (2.6), we use
3e;Gs (t, £]) = 2cot&;Gs (¢, 1€]) In.s- (2.7)

Then, we have

ReZ/ Ay, (vif (£, v)))Gs(t, D)2 f (£, v)dv

]Rd

d
= —ReZ/ viGs(t, Dy) f(t, v)(8y,G5(t, Dy) f(t, v))dv

=1

- ReZ/ ([Gs(t. Dy), vj]f(t, v))(dy;Gs(t, Dy) f(t, v))dv
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d d
= 3165 £ )72 pe) —Re Y / ([G5(t, Dy), v;] £ (£, v)) (3, Gs(€, Dy) f (£, v)) dv

=1

Using Fourier transformation and (2.7), we have that for t > 0,

d
—Zf([ca(t, D), vj]f(t. v))(dy,Gs(t. Dy) f (¢, v))dv
j=1]R3
d
—Z/(caa, Dy)Vif(t,v) = vjGs(t, Dy) f (£, v))(dy,Gs(t, Dy) f(t, v))dv
=
d A A
Z[ idg, (Gs (¢, 161) F(£. &) — Gs(t. |£1) (de, f (. £)) ) Gs(t. €1)ig; F (£, &) de
J=TRa

2/ (9, Ga (. 1€1)) F 6. £)81G5 (¢, 1£1) F (¢, &) d&

=2cot/|s|2|cs(r, €D Fe. )% s de <2cotf|s|2\ca(r, g Fe. 6| de.
]Rd d

which give (2.6). The proof of Proposition 2.1 is now complete. O
For the commutator term, the special structure of the operator implies
Proposition 2.2.
d

> /{ﬁjk(f)(Ga(t, Dy)ay; f(t, V) = Gs(t, Dv)(@jk(f)dv; f (¢, V) } (3, Gs(t, Dy) f(t, v))dv =

Jk=14

Proof. We introduce now polar coordinates on Rg by setting r = |&| and w = £/|¢| € S¢~1. Note that
3/0&; = w;d/dr +r~12; where £2; is a vector field on S, and (see [14, Proposition 14.7.1])

d d
Y wi2j=0, Y Qjwj=d-1. (2.8)

By using Fourier transformation, we have

d
-y /{a,-k(f)(cw, Dy)dy; f(t,v)) = Gs(t, Dy)(@jk(f)dv; f(t, v))}(3v,Gs(t, Dy) f(t, v))dv

jok=15

d
=/{ > a[GjrAe — 0,0, Gs (¢, |s|)]sj]‘<t,5)} x Gs(t, [E]) f(t. &) de.
d

R J.k=1
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Noting, in polar coordinates on RY,

d

2 d—193 1
Ae=—st———+—=) 27
§ 8r2+ r 8r+r2j_1

we have, denoting by G(r2) = Gs(t, 1),

d

2 _ ~
S ol (sn] o + L 2~ @waror @) @pgar 41 2))] )66 |

r
j.k=1

2 d-19 -, SR » SR 1 -
:[87+—57G(r )]— D_(@id/or+r7lon2) ) (wjo/or+r712jw)) | 6(%)

r
k=1 j=1

2 d-13 -, 2  ad-1 -,
_[ﬁ—l———,c(r )]—[W+§—,c(r )]_0,

r or r
where we have used (2.8). Then we finish the proof of Proposition 2.2. O

Remark 2.1. In the above proof of Proposition 2.2, we have used the polar coordinates in the dual
variable of v, which is essentially related to a form of the Landau operator with Maxwellian molecules.
We notice that the same relation (in v variable) was described by Villani [19] and Desvillettes and
Villani [10].

End of proof of Theorem 1.1. From Propositions 2.1 and 2.2, we get

d 1
GO F e, + (cl — 50— 2C0f> |4 Gs ) £t ) |2 e

1
2
d 2

< 5 HGS (t)f(t, ')“LZ(Rd)'

For any 0 < To < T, choose cg small enough such that C; — %co —2coTo > 0. Then we get
d d
GO 2y < S[CsOFE ] 12 oy (29)
Integrating the inequality (2.9) on ]0, t[, we obtain
d
IG5 f(t. )] 2 gy <21l foll 2 o) (210
Take limit § — 0 in (2.10). Then we get
d
le= 4 £, )| o ey < €21 foll e (211)

for any 0 < t < To. We have now proved f(t,-) € AY2(RY) and Theorem 11. O
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3. Linear Fokker-Planck equations

In the paper [19], there is an exact solution for spatially homogeneous linear Fokker-Planck equa-
tion. In the inhomogeneous case we can also obtain an exact solution of the Cauchy problem (1.4).
Denote by

Fe.n,8 =Fou(f(E,x 7))

the partial Fourier transformation of f with respect to (x, v) variable. Then, by Fourier transformation
for (x, v) variables, the linear Fokker-Planck equation (1.4) becomes

0 - ~ ~ ~
Fle=o = F(f0) (1,8

Therefore we obtain the exact solution
t
Fegm=F(0.g " +n(1-e), n)exp(_ / g™+ (1 —eff)f‘”)
0

Note that

t

/ lEe " +n(1- e”)|2dt

0
1—e2 2 3+e2
L teR (e e (-

+26")|n|2
Xz 2 2 X2 2
=(X=5 )P+ X% 0+ (—log1 = X) = X = = )inl?,

where X =1 —e~f ~t. We have for 0 < K <2/3
t
/ |ge™" +n(1 - e—f)|2dr > X(1-1/QK) = X/2)1E* + (1/3 — K/2)X3|n|%.
0

Hence for t ~ X <2 —1/K, we get
fe, ) e AV2(RM),

so that the ultra-analytic effect holds for any t > 0 by means of the semi-group property. But we
cannot get the uniform estimate (1.5).

We present now the proof of (1.5) which implies the ultra-analytic effect, by commutator estimates
similarly as for homogeneous Landau equation. Set

W(t7 T],%‘) = }(t! n’g _“7)
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Then the Cauchy problem (1.4) is equivalent to

0 2
Wlt=0 = F (fo) (1. §).

Since we need to study the function fot |€ — sn|?ds, we prove the following estimate.

Lemma 3.1. For any o > 0, there exists a constant ¢y > 0 such that

t
[ 16 st ds > caeier + e i) (32)
0

Remark 3.1. If o = 2, we can get the above estimate by direct calculation. The following simple proof

is due to Seiji Ukai.

Proof of Lemma 3.1. Setting s =tt and 7 = tn, we see that the estimate is equivalent to
1
[ 1~z ar > caler® +171).
0

Since this is trivial when 77 =0, we may assume 7 # 0. If |§| < |7}] then
1 1
[ e —cirar i [
0 0
€1/171 o 1 a
=7« / (lil—r) dr + [ (r—@) dt
; 1l I

E1/171

o
‘L’—E dt

17l

> Ul min (9“+1+(1—9)“+1)=7m|&
“ o +1o0<6<1 2% 4+ 1)

> garig gy (€1 + 1),

If |&] > |7| then

1 1 o 1
/Ié—fﬁl‘*dr%él"‘/(l—r%) dr>|€|“/(1—t)°‘dr
0 0 0

_ 18
a+17 2(+1)

(IE1* +171%).

Hence we obtain (3.2). O
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Set now

t
¢(r,n,s>=co(/|s —sf*ds — %rﬂnlz),
0

where cg > 0 is a small constant to choose later, and c; is the constant in (3.2) with o = 2. Then (3.2)
implies

B(E.1.6) > cos (e +EnP?). (3.3)

Let N=(2d +1)/4. For 0 <8 < 1/4N? and t > 0, set

eh(E0.6)
(1+8e5C1D) A +3(nP + 16PN

Gs=Gs(t,n,6) =
Since Gs(t, -, -) € L°(R2%), we can use it as Fourier multiplier, denoted by
(Gs(t, Dy, Dy)U)(E, X, v) = Fyy 1(Gs(t, 1, §)0(E, 1,8)).
Lemma 3.2. Assume that f (¢, ) € L2(R2%) N L] (R24,) forany t € 10, T[. Then Ve w(t, n. &) € LW(R%‘E), and
€ — 0G5 (t, 1. £)*W(E. 0. £), [ICs(t. 0, §)*W(t. 0,5), V5(Cs(t, 1.6 W(t,7.8)  (35)
belong to LZ(R%‘fs)for anyt €0, T[.
Proof. Since 9;;w = —iF(v;f), it follows from f e LI(R2) that Vew(t, 1, £) € LOO(Rf]%). Noting
|& — tn|Gs(t, 1. £)%, In|Gs(t. 0. £)* € L°(R2Y%),

we see that the first two terms of (3.5) are obvious. To check the last term in (3.5), note

t
0 Gs(t, 1, §) =260f(?§j - 5’71)@3@, n,§)

~ 2NSE;
(1+8(nl% +151%)

1
(1 + §e¢t.n.6))

Gs(t,n, §). (3.6)
Then, we have

Ve (Ga(t. 1. 6)*W(E.0.86)) = Gs(£,0.6)*Vew(t, 1. §) + Ve (Gs (£, 0. §)°) W(t, 0. §)
=Gs(t,1.6)*VeWw(t.n,8)

t 1 _
+4C0f(5 - Eﬁ)mca(f, n, €2 w(t,n, &)

ANSE

- Gs(t,n, 2 t,n,&).
A+smE + gy 2 G oW
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Since Gs(t,n,£)? € L*(R%,) we have
Gs(t.1.£)*Vew(t, 1. £) € L*(R™).

Using

‘ ‘ . ‘ 2N§&
(1+8edEn6)y| = (482 +1£1%)

x 1

and

'(s - 5n>ca<t, n.6)? v‘v(t,n,@'

1
2 (1 + 8et.n.8))

Gs(t, 0, &)*|w(t,n, &)

<’ _t
<|g=5m
_ t _
<|s—tmca(t,n,s)zlw(r,n,s)l+§|n|ca<t,n,5)21w<r,n,s)|eLZ(RZ").

We have proved Lemma 3.2. O

We take now Gs(t, 1, £)2w(t, n, £) as test function in the equation of (3.1). Then we have

d
prd [GICEDIICRP] [ +2f & — G (e, E)wit, 0, &) dndé
RrR2d

—2wa<t 0, 8) (3% & — t1)Gs (&, 1, ©2WIE, 7, ) d &

= 1R2d

+ ((8Gs(t, - ) w(t, -, ), Gs(t, -, IW(E, -, ) 2y (3.7)

We prove now the following:

Proposition 3.1. We have

((atGB (t’ Ty ))Wv Gs(t’ % ')W)LZ(RZd)
=CO/ |6 — t)Ga(t. 1. E)yw(t. 0. &)[* dn d
RZd

3 2 2 2 1
—ECosz /|77| |Gs(t, n. &)w(t, n,§)] mdﬂdf- (3.8)
R2d
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d
R [ wit.n. 03 (& ) Gatt.n £Pwie . ) dnds

j:1R2d

2
< (ZCOH- C;Tz +Co) / |(§ —t))Gs(t,m, E)w(t, 77’5)|2d77d§
R2d

d+2N25/c 2
d+ 2N78/co |Goct. - YWt -, )| 2 gae
2
+ 2 cocat? / P (Gs e 1. YW 0. O 5 e, dn e .
3 1, PSI ( sed e D)
R2d

Proof. The estimate (3.8) is deduced from

3 1
_ _ 2 _ 2 i2192 s
afcs(t,n,é)—c()<lé " = Scatll )G‘S(t’"’é)a+ae¢<r.n,s>)'

Since it follows from (3.6) that

d
j=1]R2d

_ReZCOtZ/ i —tn;) ( tm)!%(f,fhf)w(t,ﬁvé)‘z

= lRZd

(14 5e¢E.n.6)) dndg

d
2N8Ej(Ej —tn))
—Re) [ —2 T |G t, dnd

e,-leZ/d (1+3(Inl* + €2 ))| s(6m.Ew(em. &) dnds

—ReZ (& — tn)) (9, Gs (6, 0, E)W(E, 0, ) G5 (6, 0, ) W(E, . &) dn de,
] 1]R2d

we get

I= 2COIZ/ —tn;) ( nj)\cg(t,nf)w(t,n,é)f

1= lRZd

1
(14 §e#E.n.6)) dn dg

d

2N6E;(&j —tnj)) |G 2

_Z/ T 2 L e S(t n, S)W([ n, $)| d?’]ds‘f‘_”GS(t )W(tv'v')”LZ(RZd)
) T3P +1eR)

:2Cot/ I%'—”7|2|Gs(tﬂ,E)W(f,Tl,E)|2 dndé

R2d

1
(14 8e¢E.n.8))

+cot2/(s—rn)-nlcaa,n,@w(t,n,snz
]de

1
(14 sevtny 1%



610 Y. Morimoto, C.-J. Xu / J. Differential Equations 247 (2009) 596-617

d

2NSE; (£ — )

Y [ e G owien, o) dnde
j:lRZd

d 2
+ 3 Gs - Wt ) [ gaay.

For the last term, noting

i 2N8Ej( —tn)  _ (N2/co)s? (&% +colé — tn?

< <N%§/co+ —tn.
(T +o(n+ E) (1 +8(nP + E2)) /€0 +Col§ =11

j=1

we finally obtain

2
I< (2C0f+ 63072 +Co> / |6 —tm)Gs(t, m, )w(t, ﬂﬁg)}zdﬂdé
R2d

d+ 2N25/co

S Gstt w2 s

3 2 2 2 1
+ 4 Cocat /|ﬂ| |Gs(t. . &)w(t, 1. §)| mdnd?
R2d

Thus we have proved Proposition 3.1. O

End of proof of Theorem 1.2. Now Eq. (3.7), the estimate (3.8) and (3.9) deduce

2C()t2
3¢y

R2d

d
G ow. ) |2 gaa + (2 —3co — 4cot —

2
< (d+2N%8/co) [ G5 (t, -, YWt ) |12 g0
Then for any 0 < To < T choose ¢y > 0 (depends on Tp) small enough such that

2¢oT?

2 —3co —4coTy — >0,

then for any 0 <t < Ty,

d+2N%5/cq

d
g NG W, ) o gany < ——

IGst, - W (e, -, ) 12 g2
which gives

d+2N25/cot
IG5, -, yWt, -, )| pgaay <€~ 2l foll sy

Take § — 0, we have
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/ €0 fot |E—sn|2 ds—cqt3|n|? |jA°(t, nE— t77)|2d77 de
R2d

¢ N
= / efo Jo [+ =9 ds—cq£3|n|? |f(t, n, E)|2d7} de < edt”fOHiz(de)-
R2d

By using (3.3), we get finally

—C 3 d
”e CUAFERD £ (¢, ., ')”LZ(]RM) < €2t||f0||L2(]R2d)

for any 0 <t < Ty, where ¢o = % > 0. This is the desired estimate (1.5), which implies
fe. ) e A2 (RM).
We have thus proved Theorem 1.2. O

4. Linear model of inhomogeneous Landau equations

We prove now Theorem 1.3 in this section. By the change of variables (t, x, v) — (t,x + vt, v), the
Cauchy problem (1.8) is reduced to

{ fe= (Ve =tV0(@) - (Vv =tV f —b(w)f). (a1)
fle=0=go(x, v),
where f(t,x, v)=g(t,x+ vt,v). Recall that
aij() = agj * o = 8 (IvI* + 1) — vivj,
~ d
bj(w) =) @Ovap)xp=-vj, i.j=1,....d,
i=1
and
d
a.:: £ 2 2d
D a(wEg; = 157, forall (v, &) e R¥.
ij=1

In view of this Cauchy problem, we set
t
w(t,n.§) =60/ & —snlds,
0

for a sufficiently small cy > 0 which will be chosen later on. Then we can use (3.2) with « =1 to
estimate V. Set

e¥

(1+8e¥)1 +5W)N

Fst.n.8) =
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for N=d+1,0<4 < % If A is a first order differential operator of (t, n, &) variables then we have

AFs = ! No (A¥)F (4.2)
T \11se? 116w 5 ‘
and
1 Né§
— v | <
1+68e¥ 146w
Taking

Fs(t, Dy, Dy)2f = F5(t)* f € H?N(R)

as a test function in the weak solution formula of (4.1), we have

|| Fs@) |} L2y + (@GO (Vv = tVOFs O f), (Vv =tV F5(0) f)) 2 gas)

2 dt
:_Z/ V]f (8\/1 tan)Fs(t)zf)dXdV+ ((atFS)f F(S(t)f)LZ(RZd)
J= l]RZd
d
+ 3y / {@ () (Fs(©) @y, — t3x))) f — Fs @) (@j1() @y, — t3x,) f) } (v, — tox ) Fs(®) f) dxdv.
Jok=1g2q

We prove now the following results.

Proposition 4.1. We have

[ (V0 = VO Fs O F 2 ga, < @1 ((Vy = E0F5@)F). ((Fy = EVOF5 () F)) 2 g, (43)

[((3cF5©) £ Fs© F) 2| < o[ (W =tV Fs @ f || 2 | Fs @ f] 2 (4.4)

d
—ReZ vif(@y; — faxj)Fa(t)zf)<EHF(S(f)f”iz+C0fH(Vv—fo)F(Sf(t)”,_z”F(Sf(f)HLz- (4.5)
] 1R2d

Proof. The estimate (4.3) is a direct consequence of the elliptic condition (1.7). Using the Fourier
transformation and noting (4.2), we see that (4.4) is derived from

1

when 6= (1w e

)(3tW)F5, oY =col§ —tn|.

For (4.5), we have firstly

—ReZ / ViFs(t) f((0v; — tox)F5(0) f) ——||Fa(r>f||u

j= 1R6

For the commutators [vj, Fs(t)], using Fourier transformation, we have that for t > 0 and f:

R
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d

-y / ([F5(t. Dy, D). v;] £t x, ) 3y,

— tdy;)F5(t, Dx, Dy) f(t, X, v)) dxdv
jz]]RZd

= —Z / (Fs(t, Dx, Dy)v;jf(t) = vjF5(t, Dx, Dy) () ((3y;

j:]RZd

— tdy;)F5(t, Dy) f(t)) dxdv

3 -
Z / i3, (F5(t. 0, ) F(©) — Fs(t, 1. £)(idg, T (©)) ) Fs (¢, 1. £)i(; — tnj) F (©) dn d&
d A~ ~

Z/ (9, F5 (6. 0. §)) F(© &) — tn ) Fs(t. 0. §) f (¢) dn d&

J =1de

R2d

A2
<cot f & — tnl|[Fs(t,n, &) f©] dndg < cot|[(Vy =tV Fs fO) | 2| Fs f O 12
where, in view of (4.2), we have used the fact that

1
<CO/
0

d
> @ W)(t 0. £) x (& —tn))

i=1

—sn;j
— 1

(&j —tnj)|ds < cotl§ —tn|.

Thus (4.5) has been proved. O

For the commutator terms, we have

Proposition 4.2. There exists a constant C1 > 0 independent of § > 0 such that
d
> / {@(10) (Fs ()@, — tox)) f — Fs(6) (@j0(1) @y,

jok=Tgiag

— t3k) )} (v, — o) F5(©) f)
< C{o?] (Vs =tV FsO f | 1 + | FsO | 12}

Proof. In order to prove (4.6), we introduce the polar coordinates of & centered at tn, that is

§—1tn d—1
r=|E—tn| and w= eS".
" & — o)

Note again that 9/9&; = w;d/dr + r‘l.Qj where £2; is a vector field on S%-1. We have again

d d
Za)jﬂjzo, Z.Qj&)j:d—l.
j=1 j=1

By means of Plancherel formula, we have

d

> /{ﬁjk(u)(Fa(t)(avj — tdy,))

Jk=Tg2q

— Fs (0 (@ () @y, — tox) ) } (3, — tag) F5s (O f)
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d N
{ 3 & — [ (jrAe — dg,0c)), Fa(t, 0, ))& — tn) F () FFs(t, n, &) f(0)dé dn

R2d Jik=1

=]

Noting again

92 d—10d
Aszﬁ-f— rZZQI’

we have with Fs(t, 7,7, ) = Fs(t,n.7- @+ tn) = Fs(t, 0, £)

d 2 d
d d—129 1 2 d 1 a9 1 ~
_jkElwk|:<8jk{ﬁ+75+r_zlglgl} i(a)ka +r .Qk)<wj§+r 2; ,Fs |wj

2 d—19d - d d d .
:—[Wﬁ-Tg,Fs]"r[(Z(a)ﬁa r- a)ka>Z< 1.(2ja)j)>,F51|
k=1 j=1
1 d d B
=) ‘ wj|:IX1:QIZ,F5:|wj=A1 + Ay + As.
j=1 =

Note again that

ORISR A Tl XY U A B P
! 277 o2 r oo ? arz T ar r 0T

On the other hand, we have in view of (4.2)
d

Z (29082, Fs] - [21. 121, F51])o;

d
1 QW) NS2¥)\ -
= w20 - F
r2jl_1w’< ’(1+5e“’ 11w )

(£2%)  N3(2¥) 2+ o (£2¥)  N&(29) 3 )
_<(1+8e"’_ 140w ) ( ’<1+8e‘1’_ 140w ))) 5)‘”"

Putting w; = wjﬁgw with w(t, n,r,w) = f(t, n,r-w+tn), we have

o0
]:Re]:Re// / rz(A3w)I~75_wrd_1drda)dn

d d—1
R§ 05

d o0
fo'4 N& (2w
:—ZRe/// 282 w2y (§2%) wj VTjrd_ldrda)dn
1+8e¥  1+8¥

Jj.1=1 RY 0 si-1
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(29)  Ns(2¥) 2 (%)  NsE@w) ad
+Z/~/ / <<1+5e’1’ 1468w ) +<Q’<]+(ged/ 146w ))>|W1| " drdwdn

]l]d _

=J1+ ]2

Since 2 = —$2;+ (d — 1)wj, the integration by parts gives

T @) NS(2W)
W INRCIE = )
: 1+ 8e¥ 1+ 6w

Ll:lR?, 0 sd—1

(29)  Ns(Qw) 2dot
d—1 — i drdwdn.
+( )wz(HW S )}|w]| ri~ldrdwdy

Hence we obtain

d o0 Ns 2
= - w)?
/= ,21///{(1%@” 1+5w)( 1)
J=Rd 0 sd-
1 NS
—d- Do —— — —— ) @) {w; ¢ drdewd
( )‘”’(1+aew 1+M,)( 1 )}|w1|r rdods

Z/]O/{(Hﬁ 1+w) (Z(Q'w)>

d d—1
R$ 0 S

d
1 NS§ 5
—d-D——— Qu Fsw2rdVdrdawdn. 4.7
( )<1+8e‘1’ 1+8W)([§1w'( I ))}l swlr"drdwdn (4.7)

Since there exists a constant C4 > 0 such that

Z SJ ’71 ds(2wj)

[$21%] = cor
1§ —sn

< coCytr, (4.8)

we have
[o9) o0
1J1 < Cé{(cot)zf/ / 2| Esw?rVdrdwdn +/f / [Esw|?rd—1 drda)dn},
R§ 0 sd-1 R 0 sd-1
which yields (4.6). The proof of Proposition 4.2 is now complete. 0O

End of proof of Theorem 1.3. From Propositions 4.1 and 4.2, there exist constants C;, C3 > 0 indepen-
dent of § > 0 and t > 0 such that

1d 1
5 2 | EsNO 2z, + (5 - <cor)2cz) [ (Vo = 6V (Fs YO 12 s,

< Ca| Fs YO 12 s,
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So that if § — (cot)?>C2 > 0, we have

d
m IEs YO 2 g20) < C3[[(Fs HO 12 goay -
Using the fact (Fsf)(0) = ﬁgo, we get

H(st)(f) ” 12(R2) < ecgt”gO”LZ(]RM)~

Take the limit § — 0. Then we have

. 2
/ 2Vt n, )|  dnds < e253t|\g0||fz(de)-
RrR2d

On the other hand, by Lemma 3.1, there exists a ¢; > 0 such that

/ e2W(t,ﬂ;$)|j(t’ 1, %‘)|2d77d%‘ — / eZCofé |§—S77|ds|§(t’ 0, € — f77)|2 dndg
R2d R2d

_ f 6260/6 |&+(t—s)n|ds
R2d

> /62c0c1(t\5\+t2\'}\)|§(t,n’g)|2dnd€.
R2d

g(t,n. &) dnds

(4.9)

(4.10)

Finally, for any 0 < To < T, choosing cyp > 0 small enough such that % — (C0T0)2C2 > 0, we have

proved

_ 1/2 42 1/2 2
flec"“(“ ATHEEA T (e, x, v)| dxdv < eIgol1 7 o

R2d

which completes the proof of Theorem 1.3 with C =2C3 depending only on d. O

for any 0 <t < To,

Remark 4.1. The formulas (4.7) and (4.8) show that we cannot get the ultra-analytic effect of order
1/2 as in Theorem 1.2. It is the same reason why we do not consider the symmetric term Q (g, i) in

Eq. (1.8) as in [1].
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