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A b s t r a c t - - M u l t i s t e p  quasi-Newton methods were introduced by Ford and Moghrabi [1]. They 
address the problem of the unconstrained minimisation of a function 

whose gradient and Hessian are denoted by g and G, respectively. These methods generalised the 
standard construction of quasi-Newton methods and were based on employing interpolatory poly- 
nomiais to utilise information from more than one previous step. In a series of papers, Ford and 
Moghrabi [2-5] have developed various techniques for determining the parametrisation of the inter- 
polating curves. In [2], they introduced two-step metric-based methods which determine the set of 
parameter values required through measuring distances between various pairs of the iterates em- 
ployed in the current interpolation. One of the most successful methods in [2] was found to be in the 
"fixed-point" class, in which the parametrisation of the interpolating curve is determined, at each 
iteration, by reference to distances measured from a fixed iterate. 

As suggested in [1], multistep quasi-Newton methods can be constructed for any number of steps. 
In this paper, we therefore extend the previous work by describing the development of some three- 
step methods which use the "fixed-point" approach and data  derived from the latest four iterates. 
The experimental results provide evidence that  the new methods offer a significant improvement 
in performance when compared with the standard BFGS method and the unit-spaced three-step 
method, particularly as the dimension of the test problems grows. ~) 2005 Elsevier Ltd. All rights 
reserved. 

Keywords--Unconstrained optimisation, Quasi-Newton methods, Multistep quasi-Newton meth- 
ods. 

1. I N T R O D U C T I O N  

Multistep quasi-Newton methods were introduced by Ford and Moghrabi [1]. These methods 
replaced the quasi-Newton condition [6] 

B i + l s i  = Yi, (1) 
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which the Hessian approximation Bi+l is required to satisfy, with a similar condition 

Bi+lri = wi, (2) 

where ri and w~ are vectors determined by the specific multistep method under consideration. 
These methods generalised the traditional approach to quasi-Newton methods, and were based on 
interpolatory functions which utilise information from the m most recent steps, where ordinary 
quasi-Newton methods correspond to m -- 1. (In equation (1), s~ is the step taken from xi to xi+l 

S i = Xi+ 1 -- Xi, (3) 

and Yi is the corresponding change in the gradient 

= g(x +1) - (4) 

Equation (I) is a particular approximation to the so-called Newton equation [7] 

dx (r*) dg (x (r*)) (5) 
G(xi+l) dr  = dr ' 

where x( r )  is any differentiable curve (denoted by X) in R n constrained to satisfy x(r*) = xi+l. 
Relation (5) follows immediately from a straightforward application of the chain rule to the vector 
function g(x(r)) .  The quasi-Newton equation (1) may be derived from the Newton equation (5) 
by taking x(r )  to be the simple linear function 

x(r )  - + rs i ,  

and choosing r* = 1. From (6), we have 

x ( 0 ) - - x i ,  x(1) = x i + l ,  and 

(6) 

d x  
~ r  ~ s i ,  VT. 

If the curve g(x(r) )  is approximated by the interpolating linear polynomial g ( x ( 0 ) ) + r [ g ( x ( 1 ) ) -  
g(x(0))], then we can estimate the derivative eg(x(~*)) at r* = 1 by simple linear differencing dv 

Thus, (5) becomes 

rig(x(1)) m g(x(1)) - g(x(0)) = g(x~+l) - g(xi) = Yi. 
dr  

G (X~+l) si ~ yi. (7) 

The standard quasi-Newton approach uses an approximation B~+I to the Hessian G(xi+1). In 

the light of relation (7), Bi+l is therefore required to satisfy 

Bi+lSi = Yi. (8) 

We now focus attention on multistep quasi-Newton approaches which are based on interpolatory 
polynomial forms for X and which make use of information from the m most recent steps (m > i) 

X(Zk) = xi-,~+k+l, for k ---- 0, 1 , . . .  ,m. (0) 

Therefore, one way of representing the curve (if x ( r )  is taken to be a polynomial of degree m) is 

m 

x ( r )  = L:k(r)x , -m+k+l ,  (10) 
k=O 
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where £k(~') is the k th standard Lagrangian polynomial of degree m, based on the set {~}k=o"n 
By analogy, the gradient (when restricted to X) may be approximated by the corresponding 
interpolatory polynomial 

17g 

g(x(~')) ,~ E £k(~')g (Xi_rn+k+i) . (11) 
k=0  

Having selected form (10) for x( r )  and with the approximation (11) for g(x(r) ) ,  we now apply 
the Newton equation (5) with the choice r* = rm. We determine ~ from (10) and estimate 

dg(,,0-,))d~ from (11), so that we may substitute for these derivatives in (5). Therefore, for multistep 
methods, we obtain the condition that the new Hessian approximation Bi+l is required to satisfy 
equation (2), where 

dx(~m) ~ , 
-~T = f-'k(Tm)Xi-m+k+l 

k=0  
£s 
= r~, (12) 

m 

dg(x(~'m)) ~ Z £~(rm)g (X,-m+k+l) 
dr  

k = 0  

( 1 3 )  

Formulae (12) and (13) may be rearranged to show that r~ and wi can be represented in terms 
of the most recent "step-vectors" t'fS'~--J')m-ljj~-0 8 J l d  (Yi-j)jffiom-1 

/ ri = E s,_j L~(Vm) ; (14) 
jffiO kfm--j 

w ,  = y , _ j  . ( 1 5 )  
=0 ( k=..-~ 

In multistep methods, we can obtain the new Hessian approximation Bi+l by (for example) 
use of a "BFGS-type" [8-11] formula, in which we substitute the vectors ri  and wi for si and Yi, 
respectively, 

BirirTi Bi wiw~ 
Bi+l = B i -  r~Biri + r T w i .  (16) 

The remainder of this paper is organised as follows: in Section 2, we give (in a form suitable 
for computation) expressions for the vectors ri and wi, for the cases when m = 2 and m = 3. 
We begin our derivation of specific three-step methods in Section 3, where we show the formulae 
which arise when the simplest possible choice for the values {rk)~=0 is made. This is followed, 
in Section 4, by a brief review of the concept of "metric-based" methods, and the derivation of 
certain three-step algorithms based on this concept. The paper concludes with a description, in 
Section 5, of the numerical experiments performed to assess the new methods and an evaluation 
of the experimental results in Section 6. 

2.  M U L T I S T E P  M E T H O D S  

2.1. T w o - S t e p  M e t h o d s  

In the ease of two-step methods, we substitute m = 2 in (14) and (15). Then the expressions 
for ri and wi may be rewritten (after removal of a common sealing factor) in the form 

r 2St.p, i ~ Si - -  Si - -1 ,  

52 
w..p,=y, 
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where 
5 - ( ~  - ~ )  

(r, - To) 

2.2.  T h r e e - S t e p  M e t h o d s  

We note that three-step methods will use data derived from the latest four iterates xi-2, xi-1, 
x~, and x~+l. Substituting m -- 3 in (14) and (15), we obtain (again after removal of a common 
scaling factor) 

,.(s_ot~,,~ = ~, + { -51(52 +I) 3 } 
i (51 _ 52)(35152 _~_ 51 .jr 52 ) -[- 1 Si_ 1 

,j" (515~.)~ + I, (35~2 + 5~ + 52) j" s~-2, 
(17) 

•vv(3-step) { --5~(52-}-1)3 

= Y i +  (51_52)(35152_[_51_[_52)  

(5152) 2 / 
+ [  (35~52+5~+52) ] y~-2, 

+ i} Yi-1 

(18) 

where 

(T3 - r l )  (19) 
51 : (T 1 -- TO ) ' 

52 = (T3 -- T2) (20) 
(r~ - ~0)  

3. U N I T - S P A C E D  T H R E E - S T E P  M E T H O D  

In the standard single-step quasi-Newton framework (m = 1), we have seen (Section 1) that the 
set of values {v~}~=0 can be taken to be r0 = 0 and ~'1 = 1. Therefore, a natural generalisation for 

7" rn multistep methods is to define the required values { k}k=0 by means of a unit-spacing between 
consecutive members of the set 

r k = k - m + l ,  for k = 0, 1 , 2 , . . . , m .  (21) 

Therefore, from (21), we obtain 

r0 = -2 ,  zl = -1 ,  r2 -- 0, and ~'a -- 1. 

By (19) and (20), 51 -- 2 and 52 = 1/2. Thus, ri and wi for the unit-spaced three-step method 
are given by 

7 2 

7 2 
w~ = Yi - iTy~-I  + yi'y~-2. 

Following [1], we denote this method by M3. 
However, Ford and Moghrabi [2] developed some alternatives to unit-spacing for defining the 

parameter-values. The experimental results for the two-step methods developed in this manner 
showed substantial gains in performance by comparison with the unit-spaced methods, so that 
such methods are well worth investigation. The following section is devoted to the development 
of three-step methods using one of these alternative approaches. 
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4 .  M E T R I C - B A S E D  A P P R O A C H E S  

Metric-based methods determine the set of parameter values {Tk}~n=0 required through the 
measurement of distances between various pairs of the iterates involved in the current interpola- 
tion. These methods employ a metric ~M which is generated by any appropriate positive-definite 
matrix (M, say) 

, ~ I / 2  
~0M(Z1, ~'2) = {(Zl -- z 2 ) T M ( z l  - -  Z 2 ) l  , (22) 

where zl,  z2 E R ~. More specifically, two metric-based approaches were developed in [2J--the ac- 
cumulative and the fixed-point approaches. The accumulative approach operates by accumulating 
the distance (measured by the metric ~OM) between consecutive iterates as they axe traversed in 
the natural sequence. The fixed-point approach uses the metric to compute the distance of every 
iterate from one selected iterate (the so-called "fixed-point"). The choices of the matrix M which 
were considered in [2] were: M = I, M = Bi, and M = Bi+l. We will confine our attention to 
the first two choices and to the fixed-point approach in this paper. 

4.1. Fixed-Point Methods 

These methods fix the origin for r at xi.t.1, 80 that vm = 0. Then each of the other pa- 
rameter values ~'j is computed by measuring (using ~OM) the distance from the corresponding 
iterate Xi_rn.bj+l to  Xi+ 1 

Tj --~ - -~M (X/+l ,  Xi--rn+j+l) ,  for j = 0, 1 . . . .  , m.  (23) 

In what follows, we will investigate fixed-point methods which use three steps, so that 

T3=0 .  

4.1.1. Three-step fixed-point approach, M -- I 

We first choose M to be the unit matrix, so that, from (23), the values for T axe 

T 3 ~ 0 ,  

1 1/2 
r u  = - ~ z  ( x , + l ,  x , )  = - ( x , + l  - x , )  T ( x , + l  - x , ) J  = - I I s ,  l h ,  

~-~ = - ~ z  ( x , + ~ ,  x , _ ~ )  = - IIs~ + s ,_~ l l~_ ,  

~-o = - ~ z  ( x ¢ + ~ , x , _ ~ )  = - IIs~ + s~_~  + s , - ~ l h  • 

We denote by F/(s) 
'start-up' procedure 
fixed-point iteration 

the algorithm based on the repeated use of the formulae above (with a 
[for the first two iterations] of a single-step iteration followed by a two-step 
using M = I). 

4.1.2. T h r e e - s t e p  f ixed-po in t  app roach ,  M = Bi 

Now we choose the matrix M to be Bi. From (23), the r-values axe 

T 3 ~ O ,  

~ = -f~, (x,+,, x~) = - [-t~g(x~)]'/~, 

n = - ~ B ,  (xi+1, xi-1) 
..~ _ [_t ,sTg(xi)  _ 2 t , sTIg(x , )  + s~_ly,_l] 1/2, 

TO = --~0B, (Xi+l ,  Xi -2)  • 

(24) 



1056 J . A .  FORD AND S. THARMLIKIT 

(We note that, in the derivation of the expressions above, it has been assumed that the new 
iterate Xi+l has been determined by a line-search along the "quasi-Newton" direction -B~-1 g(xi), 
so that 

Bisi = - t ig (x i ) ,  

for some known scalar ti. We have also used the approximation 

Bis i -1  ,~ Yi. 

We now observe that  the expression for r0 above can be calculated cheaply by using See [2].) 
similar techniques. Thus, T o becomes (approximately) 

ro ~ - [ - t i s~g(x i )  - 2tisT_,g(xi) + s~_lyi-1 
(2s) 

-2t,sL2g(x,)  + 2sLay,-1 + 

An iteration using this three-step method will be denoted by F (3) Bi " 

The work of Ford and Moghrabi [4] showed that improvements in the numerical performance of 
at least one two-step method could be obtained by an application of the technique of alternation. 
This involves (for two-step methods) repeated application of a cycle comprising a single-step 
iteration followed by a two-step iteration. The two-step iteration calculates the required values 
for {rk}~=o using relations known to be true because the previous iteration was 'single-step'. 
In light of this experience, we propose to study the three-step methods developed above with 
M = I and M = Bi in the form of new methods which use an extended form of alternation. 
More specifically, we propose two new algorithms (to be denoted, for convenience, by F (1'2'3) 

and m(l'2'3h based on the following cycles, each of which comprises three iterations: * Bi } 

F (1'2'3) = {S; ~(2). m(3)'[ . 
* 1  ' * I  S ' 

F (l'2,a) { F (2)" F (3) ].. 
B~ ~- S; Bi , Bi J' 

where S denotes a single-step iteration and F/(2) and F (2) denote two-step fixed-point iterations Bi 
utilising M = I and M = Bi, respectively (see [2]). We will compare the experimental perfor- 
mance of the following four algorithms with the standard BFGS single-step method in the next 
section: 

• M3, 
• F }  3) , 

• F/(1'2'3) ' 

• F (1,2,3) 
Bi 

5. NUMERICAL RESULTS 

The three-step fixed-point methods described in Section 4 were compared with the standard 
single-step BFGS method and with the unit-spaced three-step method M3. The experimental 
work was carried out on a set of 79 test functions. These test functions are taken from standard 
sets which are described in [12]. The dimensions of these test functions varied from 2 to 200. For 
these functions, we also chose the starting-point for each function as specified in [12]. However, it 
also seems to be desirable to explore other parts of the variable-space in addition to the standard 
point, in each case. Therefore, in our implementation, we chose a total of four different starting- 
points for each test function, giving, in all, 316 test cases. Further details of the test functions 
used may be found in [13]. 

In order to analyse the efficiency of the new algorithms and particularly any tendency for 
the performance to improve or degrade as the dimension increases, the test problems have been 
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divided into four groups, corresponding to lowest (2 ~< n ~< 15) dimension, low (16 ~< n ~< 45) 
dimension, medium (46 < n ~< 80) dimension, and high (81 < n ~ 200) dimension. 

In the actual implementation of these methods, we have employed a line search procedure. 
The specific procedure for the line search used safeguarded cubic interpolation to produce a 
point xi+l which was accepted if the two standard conditions given below were satisfied by the 
new iterate x~+l [14] 

f (xi+l) < f (x , )  + 10-4sTg(xi), (26) 

s~g (xi+1) i> f~s~g(xi). (27) 

Taking account of earlier work by Ford and Moghrabi [1] on the effect of safeguarded cubic 
interpolation on the performance of multistep methods, f~ was set to 0.9. 

All the algorithms and the BFGS method tested in these experiments employed the BFGS 
formula to update the inverse Hessian approximations H~ ~ B~ -1, but (in the case of multistep 
methods) with the usual vectors s~ and Yi replaced by the forms of ri and w~ (see (17) and (18)) 
appropriate to that algorithm 

H i + I = H , % ( I + W : H , w , ~  r , r :  ( H ,  w i r ~ ÷ r , w : H , ~  (2S) rTw, ) r, w, r, w, ) 

Furthermore, in the case of test functions of dimension ten or greater, the initial approximation 
to the inverse Hessian was scaled by the method of Shanno and Phua [15] before the first update 
was performed. 

The basic structure of the algorithms we have used in our experiments is as follows. 

STEP 1. Set H0 = I and i = 0; evaluate f(x0) and g(x0). 

Repeat 

STEP 2. Pi ---- -Hig(xi ) ;  
I f  i < .  and [[Pd[2 > 1, 

t h e n  Pi := P'/[[P'II2" 

STEP 3. Compute x~+l which satisfies conditions (26) and (27), 
by means of a line-search from xi along Pi, using 
safeguarded cubic interpolation. 

STEP 4. I f  a one-step iteration is being executed, 
then  set r~ = si and wi = y~; 
e l s e  {calculate ri and wi; 

I f  r : w i  <_ lO-41[rill211wi[12 
then set ri = ai and wi = Yi.} 

STEP 5. I f  i = 0 and n > 10, 
then  scale H0 by the method of Shanno and Phua. 

STEP 6. Update Hi (by use of equation (28)) to produce Hi+l 
satisfying Hi+lwi = ri; increment i. 

Unt i l  [[g(xi)ll < ~ (where e is a problem-dependent tolerance). 

(Remark: with regard to Step 4, in order to preserve the positive-definite property of the 
matrices Hi generated by multistep methods, it is necessary and sufficient that 

rTwi > 0, 

by analogy with the condition employed in standard quasi-Newton updating (such as the BFGS 
formula, for example) 

s~y~ > 0. 
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We guarantee this property by using the stronger condition 

r~wi  > 10 -4 [[ril[2 Ilwi[12, (29) 

which ensures, at the same time, that  we avoid a potential source of numerical instability by 
not permitting a small value of r~wi  to be used in the updating of Hi - -compare  equation (28). 
Therefore, if condition (29) fails, we perform a single-step update.) 

We provide summaries of the performance of the algorithms in Table 1. For each method, the 
total number of function/gradient evaluations required to solve all the problems in the given test 
set is stated, followed (two rows later) by the total number of iterations. The entries in each row 
labelled 'ratios'  give the proportions of evaluations or iterations, respectively, each expressed as 
a percentage of the corresponding figure for the BFGS method. The asterisks attached to the 
results for Fx (1'2'3) in the "low" category indicate that  these figures include the results for one 
failure for this method. The circumstances pertaining to this failure were that  a close approach 
to the minimum was being achieved but the line-search failed before the gradient tolerance could 
be satisfied. 

Table 1. Comparison of three-step methods and BFGS. 

BFGS M3 F (3) F (1'2'3) F (1'2'3) Problem Set Bi 
Evaluations 3,263 4,292 4,505 3,624 3,638 
Ratios 100.0% 131.5% 138.1% 111.1% 111.5% Lowest 
Iterations 2,555 3,105 3,166 2,735 2,733 
Ratios 100.0% 121.5% 123.9% 107.0% 107.0% 
Evaluations 17,682 19,182 17,800 15,282" 16,874 
Ratios 100.0% 108.5% 100.7% 86.4%* 95.4% Low 
Iterations 15,262 14,918 14,212 12,587" 13,436 
Ratios 100.0% 9 7 . 7 %  9 3 . 1 %  82.5%* 88.0% 
Evaluations 20,761 20 ,266  17 ,927  17 ,294  16,946 
Ratios 100.0% 97.6% 86 .3% 83.3% 81.6% Medium 

Iterations 18,727 16,563 15,037 14,834 14,243 

Ratios 100.0% 8 8 . 4 %  8 0 . 3 %  79.2% 76.1% 

Evaluations 26,250 24,815 21,813 21 ,370  20,661 
Ratios 100.0% 9 4 . 5 %  8 3 . 1 %  81.4% 78.7% High 
Iterations 23,609 20,123 18,295 18 ,332  17,409 
Ratios 100.0% 85.2% 77.5% 77.6% 73.7~o 

Evaluations 67,956 68,555 62,045 57,570* 58,119 
Ratios 100.0% 100.9% 9 1 . 3 %  84.7%* 85.5% Combined 
Iterations 60,153 54,709 50,710 48,486* 47,823 
Ratios 100.0% 9 0 . 9 %  8 4 . 3 %  80.6%* 79.5% 

6. S U M M A R Y  A N D  C O N C L U S I O N S  

The concept of multistep quasi-Newton methods has been reviewed, and the derivation of 
certain three-step methods (based on approaches known to have been successful in the case of 
two-step methods) has been described. These methods have been compared experimentally with 
the standard single-step BFGS method and with the unit-spaced three-step method originally 
introduced in [1]. 

Consideration of the experimental results summarised in Table 1 leads to the following conclu- 
sions. 

1. None of the three-step methods considered here are competitive with the BFGS method 
for problems of the lowest dimension. This is a feature which confirms again what has been 



Three-Step Fixed-Point Quasi-Newton Methods 1059 

demonstrated on a number of occasions elsewhere [1-4] in respect of multistep methods. 
The feature may be considered to be of mainly theoretical interest since, from a practical 
point of view, such problems generally require very little computational effort for their 
solution. 

2. As the problem dimension and the cost of solution rises, the three-step methods become 
much more competitive with the BFGS method and, for problem dimensions in the 'high' 
range, outperform it by as much as 20-25%. 

3. The unit-spaced method M3 is a little more effective than the BFGS methods for the 
higher dimensions, although the improvement is seen more in respect of iterations than of 
evaluations. It does not appear to be competitive with the metric-based methods. 

4. All three metric-based methods considered here equal or outperform the BFGS method 
for all but the lowest dimension problems, with the gap in performance increasing as the 
dimension rises. 

5. If we give greatest weighting to the functions with higher dimensions, the best of the 
three metric-based methods (and therefore, of all the methods considered here) is evi- 
dently F (1'2'3) B, . In particular, this method shows (for problems of the highest dimension) 
improvements of around 21% in evaluations and 26% in iterations. Since the extra com- 
putation required on each iteration (by comparison with the BFGS method) is only a 
modest multiple of the dimension, it may safely be concluded (and experimental work 
on other multistep methods in [2] confirms this) that commensurate reductions in the 
computational time may also be expected. 

6. Previous work [13] has shown that the alternating two-step method F21 introduced in [4] 
is capable, on problems of high dimension, of improvements over the BFGS method of 
around 30% in evaluations and around 40% in iterations. Evidently, none of the three- 
step methods considered here has managed to achieve that  level of performance. However, 
further research on the development and implementation of such methods, together with 
the use of recurrences to reduce the dependence on estimated quantities (see, for example, 
equations (24) and (25)), holds promise of additional improvements in the numerical 
performance. 
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