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a b s t r a c t

In this work, we investigate some well-known and new properties of the Bernoulli
polynomials and their generalizations by using quasi-monomial, lowering operator and
operational methods. Some of these general results can indeed be suitably specialized in
order to deduce the corresponding properties and relationships involving the (generalized)
Bernoulli polynomials.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A polynomial pn(x)(n ∈ N, x ∈ C) is said to be a quasi-monomial [1] whenever two operators M̂, P̂ , called the
multiplicative and derivative (or lowering) operators respectively, can be defined in such a way that

P̂pn(x) = npn−1(x), (1.1)

M̂pn(x) = pn+1(x), (1.2)

which can be combined to get the identity

M̂P̂pn(x) = npn(x). (1.3)

The classical Bernoulli polynomials Bn(x) are defined by [2]

zexz

ez − 1
=

∞−
n=0

Bn(x)
zn

n!
(|z| < 2π), (1.4)

and, consequently, the classical Bernoulli numbers Bn := Bn(0) can be obtained by using the generating function

z
ez − 1

=

∞−
n=0

Bn
zn

n!
. (1.5)

Moreover, we have [3]

Bn(0) = (−1)nBn(1) =
1

21−n − 1
Bn


1
2


(n ∈ N0). (1.6)

E-mail address: daqianlu@163.com.

0893-9659/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2010.12.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82114243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.aml.2010.12.021
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
mailto:daqianlu@163.com
http://dx.doi.org/10.1016/j.aml.2010.12.021


D.-Q. Lu / Applied Mathematics Letters 24 (2011) 746–751 747

The generalized Bernoulli polynomials B(α)
n (x) are defined by [4]

z
ez − 1

α

exz =

∞−
n=0

B(α)
n (x)

zn

n!
(|z| < 2π). (1.7)

Clearly, the generalized Bernoulli numbers B(α)
n are given by

B(α)
n := B(α)

n (0)

and

Bn(x) := B(1)
n (x) (n ∈ N0).

In 2005, Luo defined the Apostol–Bernoulli numbers Bn(λ) and polynomials Bn(x; λ) as

z
λez − 1

=

∞−
n=0

Bn(λ)
zn

n!
, (1.8)

zexz

λez − 1
=

∞−
n=0

Bn(x; λ)
zn

n!
, (1.9)

(|z| < 2π when λ = 1; |z| < | log λ| when λ ≠ 1).

The generalized Apostol–Bernoulli numbers B
(α)
n (λ) and polynomials B

(α)
n (x; λ) are defined by [5]

z
λez − 1

α

=

∞−
n=0

B(α)
n (λ)

zn

n!
, (1.10)


z

λez − 1

α

exz =

∞−
n=0

B(α)
n (x; λ)

zn

n!
, (1.11)

(|z| < 2π when λ = 1; |z| < | log λ| when λ ≠ 1).

Clearly, we have

B(α)
n (x) = B(α)

n (x; 1) and B(α)
n (λ) := E (α)

n (0; λ), (1.12)

Bn(x; λ) := B(1)
n (x; λ) and Bn(λ) := B(1)

n (λ). (1.13)

The Appell polynomials [6] can be defined by considering the following generating function:

A(t)ext =

∞−
n=0

Rn(x)
n!

tn, (1.14)

where

A(t) =

∞−
k=0

Rk

k!
tk, (A(0) ≠ 0) (1.15)

is an analytic function at t = 0.

It is easy to see that if A(t) =


t

λet−1

α

, then Rn(t) = B
(α)
n (x).

From [7], we know that the multiplicative and derivative operators of Rn(x) are

M̂ = (x + α0) +

n−1−
k=0

αn−k

(n − k)!
Dn−k
x , (1.16)

P̂ = Dx, (1.17)

where

A′(t)
A(t)

=

∞−
n=0

αn
tn

n!
. (1.18)

By using (1.3), we have the following lemma.
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Lemma 1.1 ([7]). The Appell polynomials Rn(x) defined by (1.14) satisfy the differential equation

αn−1

(n − 1)!
y(n)

+
αn−2

(n − 2)!
y(n−1)

+ · · · +
α1

1!
y′′

+ (x + α0)y′
− ny = 0, (1.19)

where the numerical coefficients αk, k = 1, 2, . . . , n − 1, are defined in (1.19), and are linked to the values Rk by the following
relations:

Rk+1 =

k−
h=0


k
h


Rhαk−h.

Let P be the vector space of polynomials with coefficients in C, and the polynomial sequence {Pn}n≥0 be a polynomial
set. {Pn}n≥0 is called a σ -Appell polynomial set of the transfer power series A generated by

G(x, t) = A(t)G0(x, t) =

∞−
n=0

Pn(x)
n!

tn, (1.20)

where G0(x, t) is a solution of the system

σG0(x, t) = tG0(x, t),
G0(x, 0) = 1.

In [8], the authors investigated the coefficients of connection between two polynomials. And there is a result concerning
coefficients of connection between two σ -Appell polynomial sets.

Lemma 1.2 ([8]). Let σ ∈ Λ(−1). Let {Pn}n≥0 and {Qn}n≥0 be two σ -Appell polynomial sets of transfer power series A1 and A2,
respectively. Then

Qn(x) =

n−
m=0

n!
m!

αn−mPm(x), (1.21)

where

A2(t)
A1(t)

=

∞−
k=0

αktk.

Recently, several interesting properties and relationships involving the classical as well as the generalized Bernoulli
polynomials and the Apostol–Bernoulli polynomials were investigated [3,9,5,10–15]. In this work, we want to investigate
some well-known and new properties of these polynomials from different angles.

In Section 2, we propose to prove some relationships and differential equations involving the generalized Bernoulli
polynomials.

In Section 3, wewant to consider the problem of connection of the generalized Apostol–Bernoulli polynomials with some
other polynomials.

In Section 4, we shall extend the generalized Apostol–Bernoulli polynomials to Hermite-based generalized Apostol–
Bernoulli polynomials by an operational method. And some of their properties are given.

2. Recursion formulas and differential equations

FromSection 1,we know that the generalized Bernoulli polynomials B(α)
n (x) are Appell polynomialswithA(t) =

 t
λet−1

α
.

And by using (1.4), we obtain

A′(t)
A(t)

= −α

∞−
n=0

Bn+1(1)
n + 1

tn

n!
.

By using (1.16)–(1.18), we can obtain the multiplicative and derivative operators of the generalized Bernoulli polyno-
mials:

M̂ =


x −

1
2
α


− α

n−1−
k=0

Bn−k+1(1)
(n − k + 1)!

Dn−k
x , P̂ = Dx. (2.1)

From the generating function (1.8), we can easily obtain

∂p

∂xp
B(α)
n (x) =

n!
(n − p)!

B(α)
n−p(x). (2.2)

By using (1.2), (2.1) and (2.2), we obtain the following result.
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Theorem 2.1. For any integral n ≥ 1, the following linear recurrence relation for the generalized Bernoulli polynomials B(α)
n (x)

holds true:

B(α)
n+1(x) =


x −

1
2
α


B(α)
n (x) − α

n−1−
k=0

n
k

 Bn−k+1(1)
n − k + 1

B(α)
k (x). (2.3)

Furthermore, applying Lemma 1.1 to B(α)
n (x), we obtain

Theorem 2.2. The generalized Bernoulli polynomials B(α)
n (x) satisfy the differential equation

Bn(1)
(n)!

y(n)
+

Bn−1(1)
(n − 1)!

y(n−1)
+ · · · +

B2(1)
2!

y′′
−


x
α

−
1
2


y′

+
n
α
y = 0. (2.4)

In the special case of (2.3) and (2.4) when α = 1, we obtain the following results.

Corollary 2.1. For any integral n ≥ 1, the following linear recurrence relation for the Bernoulli polynomials Bn(x) holds true:

Bn+1(x) =


x −

1
2


Bn(x) −

n−1−
k=0

n
k

 Bn−k+1(1)
n − k + 1

Bk(x). (2.5)

Corollary 2.2. The Bernoulli polynomials Bn(x) satisfy the differential equation

Bn(1)
(n)!

y(n)
+

Bn−1(1)
(n − 1)!

y(n−1)
+ · · · +

B2(1)
2!

y′′
−


x −

1
2


y′

+ ny = 0. (2.6)

3. Connection problems

From the generating function (1.11), we can easily obtain
∂

∂x
B(α)

n (x; λ) = nB
(α)
n−1(x; λ).

So by the definition of the σ -Appell polynomial (1.20), we know that the generalized Apostol–Bernoulli polynomials are a
D-Appell polynomial set, D being the derivative operator.

From Table 1 in [8], we know that the lowering operators of monomials xn and the Gould–Hopper polynomials [16]
gm
n (x, h) are all D. And their transfer power series A(t) are 1 and eht

m
respectively.

Applying Lemma 1.2 to Pn(x) = xn,Qn(x) = B
(α)
n (x; λ), we get the well-known identity [5]

B(α)
n (x; λ) =

n−
m=0

 n
m


B

(α)
n−m(λ)xm. (3.1)

Applying Lemma 1.2 to Pn(x) = Bn(x; λ), Qn(x) = B
(α)
n (x; λ), we get the well-known identity [5]

B(α)
n (x; λ) =

n−
m=0

 n
m


B

(α−1)
n−m (λ)Bm(x; λ). (3.2)

Applying Lemma 1.2 to Pn(x) = gm
n (x, h), Qn(x) = B

(α)
n (x; λ), we get a new identity:

B(α)
n (x; λ) =

n−
r=0

n!
r!


[n−r/m]−

k=0

(−1)k
hk

k!(n − r − mk)!
B

(α)
n−r−mk(λ)


gm
r (x, h). (3.3)

In particular, for Hermite polynomials, since Hn(x) = g2
n (2x, −1), we have

B(α)
n (2x; λ) =

n−
r=0

n!
r!


[n−r/2]−
k=0

1
k!(n − r − 2k)!

B
(α)
n−r−2k(λ)


Hr(x). (3.4)

In the special case of (3.1) when α = 1 and λ = 1, we have

Bn(x) =

n−
m=0

 n
m


Bn−mxm. (3.5)

And if we apply Lemma 1.2 to Pn(x) = Bn(x),Qn(x) = xn, we can obtain the following familiar expansion [4]:

xn =
1

n + 1

n−
m=0


n + 1
m


Bm(x). (3.6)
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4. Hermite-based generalized Apostol–Bernoulli polynomials

The two-variable Hermite–Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) are defined by the series [17]

Hn(x, y) = n!
[n/2]−
r=0

xn−2ryr

r!(n − 2r)!
(4.1)

with the following generating function:

exp(xt + yt2) =

∞−
n=0

tn

n!
Hn(x, y). (4.2)

And the 2VHKdFP Hn(x, y) are also defined through the operational identity

exp

y

∂2

∂x2


{xn} = Hn(x, y). (4.3)

Acting with the operator exp

y ∂2

∂x2


on (1.11), and by the identity [18]

exp

y

∂2

∂x2


{exp(−ax2 + bx)} =

1
√
1 + 4ay

exp


−

ax2 − bx − b2y
1 + 4ay


, (4.4)

we define the Hermite-based generalized Apostol–Bernoulli polynomials HB
(α)
n (x, y; λ) through the generating function

z
λez − 1

α

exz+yz2
=

∞−
n=0

HB(α)
n (x, y; λ)

zn

n!
. (4.5)

Clearly, we have

HBn(x, y, λ) := HB(1)
n (x, y, λ), HBn(x, y) = HB(1)

n (x, y, 1).
From the generating function (4.5), we easily obtain

∂

∂xHB(α)
n (x, y; λ) = nHB

(α)
n−1(x, y; λ) (4.6)

and
∂

∂yHB(α)
n (x, y; λ) = n(n − 1)HB

(α)
n−2(x, y; λ), (4.7)

which can be combined to get the identity

∂2

∂x2 HB(α)
n (x, y; λ) =

∂

∂yHB(α)
n (x, y; λ). (4.8)

Acting with the operator exp

y ∂2

∂x2


on both sides of (3.1), (3.2) and (3.6), and by using (4.3), we obtain

HB(α)
n (x, y; λ) =

n−
m=0

 n
m


B

(α)
n−m(λ)Hm(x, y), (4.9)

HB(α)
n (x, y; λ) =

n−
m=0

 n
m


B

(α−1)
n−m (λ)HBm(x, y, λ), (4.10)

Hn(x, y) =
1

n + 1

n−
m=0


n + 1
m


HBn(x, y). (4.11)
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[7] M.X. He, P.E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math. 139 (2002) 231–237.
[8] Y. Ben Cheikh, H. Chaggara, Connection problems via lowering operators, J. Comput. Appl. Math. 178 (2005) 45–61.
[9] M. Garg, K. Jain, H.M. Srivastava, Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch zeta functions,

Integral Transforms Spec. Funct. 17 (2006) 803–815.
[10] Q.-M. Luo, H.M. Srivastava, Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl. 51 (2006)

631–642.
[11] Q.-M. Luo, The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of higher order, Integral Transforms Spec. Funct. 20

(2009) 377–391.
[12] H. Ozden, Y. Simsek, H.M. Srivastava, A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials,

Comput. Math. Appl. 60 (2010) 2779–2787.
[13] H.M. Srivastava, Á. Pintér, Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (4) (2004) 375–380.
[14] H.M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77–84.
[15] H.J.H. Tuenter, The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers, J. Number Theory 117 (2) (2006)

376–386.
[16] H.W. Gould, A.T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29 (1962) 51–63.
[17] P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynómes d’Hermite, Gauthier-Villars, Paris, 1926.
[18] G. Dattoli, S. Khan, P.E. Ricci, On Crofton–Glaisher type relations and derivation of generating functions for Hermite polynomials including the multi-

index case, Integral Transforms Spec. Funct. 19 (2008) 1–9.


	Some properties of Bernoulli polynomials and their generalizations
	Introduction
	Recursion formulas and differential equations
	Connection problems
	Hermite-based generalized Apostol--Bernoulli polynomials
	Acknowledgements
	References


