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Abstract

Metazoan genomes are highly organized inside the cell nucleus. Topologically associating domains (TADs)
represent the building blocks of genome organization, but their linear modularity does not explain alone their
spatial organization. Indeed, the chromatin type adorning a TAD can shape its structure and drives its nuclear
positioning and its function. Genome-wide association studies revealed mainly four chromatin types: active
chromatin, Polycomb-repressed chromatin, null chromatin and constitutive heterochromatin. In this review, we
will describe the main three-dimensional features of each chromatin type and finally their relationships with

TAD organization and epigenetic memory

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

Chromatin fiber is not randomly distributed inside
the cell nucleus. Firstly, chromosomes are confined
in discrete “territories” [1,2], and within them, further
levels of spatial organization are imposed to chroma-
tin. Metazoan genomes share a modular organization
of their chromatin in structures called “topologically
associating domains” (TADs). TADs can be defined
as linear units of chromatin that fold as discrete
three-dimensional (3D) structures tending to favor
internal, rather than external, chromatin interactions.
They are delimited by sharp boundaries, which
contain housekeeping genes and insulator sites.
TADs are detected by methods such as Hi-C [1,2],
which allows genome-wide identification of chromatin
contacts [3-5], and they correspond to chromosomal
domains, previously identified by microscopy [6].
Remarkably, TADs are conserved among different
cell types in animals, whereas they have not been
detected in plants and yeasts [7—11], demonstrating
that alternative modes of genome folding are possible.
Besides their 3D organization, metazoan genomes
are organized in linear clusters of co-expressed
genes [12], although there is a certain degree of
liberty in expression within gene clusters [13,14].
These co-expression clusters span on average
about 100 kb in Drosophila melanogaster [15]

and 1 Mb in humans [13]. Strikingly, these genomic
ranges correspond to the average TAD sizes in both
species.

The investigation of chromatin landscapes in
metazoathrough genome-wide association studies
proved to be a fruitful approach [3,16-23]. In these
studies, the presence of several chromatin factors and
histone modifications were analyzed and finally com-
bined, in order to obtain a global overview of the
chromatin landscape. Theoretically, a huge number of
chromatin type combinations were possible but, in fact,
a very limited number of these were shown to cover the
vast majority of the genome. The precise number of
chromatin types varied among the studies, according
to the algorithm used, the resolution and other
parameters. Despite these technical differences,
every report basically recapitulated the presence of
an active chromatin environment, sometimes further
subdivided, and three major types of repressive
chromatin: a Polycomb-repressed environment, a
null environment and a heterochromatic environment.

Strikingly, TADs were found to overlap with linear
chromatin domains [3-5,24,25]; therefore, a defined
chromatin type can be assigned to every single TAD.
Consequently, the chromatin flavor of a given TAD
can define its functional identity and drive its 3D
organization. Moreover, the chromatin identity of a
given TAD can guide its nuclear positioning and
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therefore shape the genome architecture. Although
TAD borders are generally not variable among
different cell types, chromatin states can change
dramatically their identity. The chromatin coating the
genome of a given species can be reshaped in
different cell types and conditions, hence reflecting its
activity [26]. The conserved modularity of TAD
organization can be combined with the variable nature
of chromatin identity. In this review, we will recapitulate
the current understanding about the 3D organization of
the abovementioned chromatin types. Recent and
older studies concerning the chromatin compaction,
local interactions, long-range interactions and the
nuclear positioning of each chromatin type will be
reviewed. These studies have been conducted using a
plethora of different methodologies, spanning from
microscopy-based to cell-population approaches. We
invite readers to refer to recent reviews on the technical
aspects of these approaches [27—29]. Based on this
multi-tiered evidence, a nuclear architecture model
based on TADs and their chromatin types will be
proposed.

Active Chromatin

Active chromatin is here referred as the fraction of
chromatin that is in a competent state for gene
expression and initiating DNA replication. Different
cell types are characterized by specific sets of active
and silenced genes. The specific portion of active
chromatin residing in the nucleus of a given cell type
reflects its identity [26]. Active chromatin is the most
heterogeneous chromatin type, since it displays
binding sites for many chromatin factors and it is
adorned by a plethora of histone modifications as H3
methylations on lysine 4, lysine 36 and lysine 79 and
acetylation of multiple lysines on H3 and H4 N-terminal
tails [17,23]. The deposition of such marks reflects
the identity of the underlying functional element (e.g.,
promoter, gene body, enhancer, etc.) and its degree of
activity (e.g., active, poised, etc.). Several chromatin
factors often work cooperatively and the surrounding
chromatin environment can alter their binding [23].
Finally, the specific characteristics of a gene (e.qg.,
length, presence of introns, etc.) or a promoter (e.g.,
housekeeping, developmentally regulated, etc.) can
influence the local chromatin features as nucleosome
positioning, binding of specific factors and deposition
of histone modifications [17,30].

Active chromatin represents a highly accessible
environment, displaying an increased density of
DNase | hypersensitive sites when compared to other
types of chromatin [31]. In D. melanogaster, active
chromatin domains show a more rapid decay in
contacts frequency as a function of genomic distance
than other domain types, revealing a decondensed
organization [3]. Genome-wide association studies
confirmed the extensive heterogeneity and the higher

accessibility of active chromatin. Depending on the
algorithm used to categorize the different chromatin
types, some studies grouped active chromatin as a
single chromatin variety [3,20,21], whereas other
studies identified subpatterns, characterizing elements
such as promoters, gene bodies, active introns,
enhancers and so on [16,18,19,22]. Finer classifica-
tions can uncover chromatin patterns that are specific
for housekeeping genes and tissue-specific genes [23]
or X-linked genes [17].

Active chromatin is organized in linear domains, on
average, shorter than other chromatin types. Those
domains cluster groups of active genes, which
regulation relies on distal regulatory elements placed
inside megabase-sized domains [24,32,33]. Active
domains can be organized in TADs [3,4,34,35],
suggesting that these clusters of active genes are
spatially independent form nearby domains.

3D organization of active TADs

The chromatin fiber forming active TADs does not
fold randomly but is highly organized in the 3D space.
Although chromatin contacts are not random, they are
quite variable between two cells [36]. The internal
interaction profile is even more different between cells
of a different type [5,37]. At the single gene level,
promoters display preferential interactions with their
downstream gene bodies rather than with upstream
sequences [37-39]. This asymmetric distribution is
independent of ongoing transcription [37]. Furthermore,
some genes can form a promoter—terminator loop,
which formation does not seem to be strictly dependent
on the gene activity and its functional relevance has still
to be elucidated [40,41]. In addition, promoters of
coregulated genes often contact one another [38,39].

A typical metazoan gene has a complex regulatory
network, which includes the presence of distal
regulatory elements called enhancers. Although
several models to explain the functional relation
between enhancers and promoters were originally
proposed, it is now accepted that enhancers work
through a physical interaction with the promoter,
therefore forming a chromatin loop [42—44]. Enhancer
function is usually independent on orientation and
distance to the target promoter [45] and can be located
upstream, downstream or in intronic regions [30].
These interactions are mediated by both specific and
general transcription factors such as the mediator
complex, cohesins and CTCF [46-48]. Promoter—
enhancer interaction networks are highly dependent
on the nature of the gene. For instance, promoters of
many housekeeping genes seem to have no enhanc-
er [37] although this result might be affected by
resolution issues, whereas promoters regulated by a
single enhancer are usually controlling tissue-specific
genes [49]. This kind of enhancers tends to be in close
proximity to the promoter [50]. Alternatively, several
enhancers can regulate a single promoter [51], usually
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Fig. 1. Specific but variable interactions inside TADs. (a) Enhancer—promoter interactions occurring in an active TAD
are represented. In the cell type “X”, the enhancer 3 binds the promoter 1 despite that it is not the closest promoter linearly.
The promoter 2 is active without being in contact with any enhancer. Despite the fact that enhancer 1 binds the promoter 3,
it is not transcriptionally active yet. In the cell type “Y”, the promoter 1 is bound by the enhancer 2 and not by the enhancer 3
anymore. The enhancer 1 switches its contacts from the promoter 3 and the promoter 4. (b) PRE—promoter interactions
occurring in Polycomb-repressed TADs are represented. In the cell type “X”, a PRE contacts four promoters, causing the
silencing of their downstream genes. In the cell type “Y”, the contacts between the promoter 1 and the PRE are lost,
whereas the other promoters are still bound to the PRE. This release causes a looping-out of the chromatin associated with

the gene 1 and concomitantly its transcriptional derepression.

controlling broadly expressed genes. In this case,
different subsets of enhancers are active on their
target gene in different cell types, revealing high
cell-type specificity in promoter—enhancer interactions
[24,38,39,52]. On the other hand, single enhancers
can control several genes [37,53], which are usually
coregulated. Finally, the association between an
enhancer and its target promoter is not guided just
by linear proximity, since most of the enhancers
control promoters located beyond the nearest gene
[39,52] (Fig. 1a). These association rules are in part
driven by the presence of insulator sequences, which
can form DNA loops through insulator binding proteins.
In mammals, CTCF dimers mediate these DNA
looping, whereas other organisms as D. melanogaster
exhibit a more diverse set of insulator binding proteins

[54]. Interestingly in a human fibroblast cell line, it was
observed that enhancer—promoter looping is already
preset before gene activation, since the stimulation of
a set of inducible genes did not resultin any consistent
spatial reorganization [37]. A similar mechanism has
been recently observed in D. melanogaster embryos.
Here, promoter—enhancer interactions are very con-
served between different developmental stages and
they are often associated with paused RNA Pol I,
arising before gene activation [55].

Long-range interactions and nuclear positioning
of active TADs

Even though internal interactions are highly pre-
ferred, interactions between active loci located on
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different TADs can occur [3,36]. Furthermore, specific
interactions can involve loci on different chromo-
somes, and in some cases, they may have functional
significance [56]. The existence of inter-chromosomal
interactions between active domains was further
confirmed by genome-wide studies [39,52]. The role
of the insulator protein CTCF for these interactions
appears to be crucial. In D. melanogaster, it was
demonstrated that CTCF could promote long-range
interactions of distant transgenes, whereas enhancer
presence could only increase their colocalization [57].

Besides specific cases of regulation in trans, long-
range interactions between active regions can have
a strong impact on genome organization. Indeed,
clustering of linearly distant RNA Pol Il genes was
observed in specific cases [43,58]. For example,
coregulated genes sharing the same transcription
factors or involved in the same pathways can
colocalize when they are transcribed in the same
moment [59-62]. Their colocalization frequencies
are higher than with other transcribed genes,
suggesting the presence of specialized factories
dedicated to their transcription [58]. Transcription
factories are described as proteinaceous structures
transcribing several RNA Pol Il genes and charac-
terized by an average diameter of 130 nm in
erythroid cells [63]. RNA Pol Il activity is higher at
the external surface of these structures [64], which
form upon induction of transcription [65] by specific
transcription factors [62]. In this context, long-range
interactions could favor coregulation of distant genes
by increasing the local amount of factors required for
their transcription. These findings are consistent with
a conserved tendency of active chromatin domains to
interact specifically with other active domains, even
when placed on other chromosomes. In contrast,
other chromatin types are less prone to interact with
other chromosomes [3,36,66,67].

A special case of transcription factory is the
nucleolus, the largest compartment in the nucleus.
Nucleoli are the places were rRNA is synthesized,
accounting for up to 80% of the total RNA amount in a
cell. In these compartments, rRNA is also processed
and finally assembled with ribosomal proteins. Arrays
of rRNA genes are arranged in several nucleolus
organizer regions, which can be located in the same or
in different chromosomes, depending on the species.
These regions are not all active in every cell, but the
active ones cluster together to form one to several
nucleoli [68]. Their clustering is likely to be dependent
on the essential transcription factor UBF, which does
not bind the inactive nucleolus organizer regions [69].
Furthermore, active rRNA genes can form loops
between promoter and terminator, enabling coordina-
tion of their expression [70].

Compartmentalization of the active chromatin was
already observed in Hi-C studies as a spatial segrega-
tion from inactive chromatin [2]. Active chromatin is
positioned preferentially in the nuclear interior [71,72].

This tendency is reflected at the chromosome scale, as
gene-dense and more active chromosomes reside in
a more internal position than gene-poor and silent
ones [73]. An intriguing hypothesis is that, when
several TADs are in an active state on a given
chromosome, contacts between transcriptional com-
plexes at active chromatin may cooperatively bring the
chromosome toward a more internal position. In
contrast, a chromosome depleted in active TADs
would be relegated to a more peripheral location. The
driving forces bringing the active TADs toward the
center of the nucleus could be the transcriptional
factories, which in a cell-specific way might bring
together different active TADs. Alternatively, the
internal positioning of active chromatin could be due
to a passive force, resulting in preferential positioning
of the null TADs to the nuclear periphery. These two
hypotheses do not necessarily exclude each other
and further investigation will be needed to better
elucidate this point.

In conclusion, active chromatin can be described as
a heterogeneous environment, highly accessible and
decondensed. 3D interactions inside active TADs are
specific and crucial for gene expression although
variable at single cell level. The vast majority of those
interactions occur within each active TAD, but
inter-TAD interactions, especially among coregulated
genes, are possible. Active TADs are placed prefer-
entially in the inner part of the nucleus and have
preferential contact with other active TADs, rather
than inactive ones.

Polycomb-Repressed Chromatin

Polycomb group genes (PcG) were firstly identified
in D. melanogaster as repressors of Hox genes [74].
Later, PcG proteins were found to be organized in
mainly two multiprotein complexes, that is, Polycomb
repressive complexes 1 and 2 (PRC1 and PRC2),
which can respectively ubiquitylate H2AK119 and
monomethylate, dimethylate and trimethylate H3K27
[75,76]. Finally, genome-wide studies revealed that
PcG proteins are widespread transcriptional repres-
sors, which are responsible for the silencing of a
portion of metazoan genomes [77-79]. PRC1 and
PRC2 lack DNA binding motifs; therefore, they have to
be recruited by specific DNA-binding factors [80]. In D.
melanogaster, these recruiters drive PRC1 and PRC2
to specific Polycomb responsive elements (PREs)
[81]. Genomic regions containing arrays of PREs form
large domains covered by the H3K27me3 mark. The
most studied examples are the two homeotic com-
plexes, that is, Antennapedia complex and Bithorax
complex (ANT-C and BX-C), located on chromosome
arm 3R. In mammals, Polycomb-bound regions are
found mainly on Hox clusters, X-inactivation sites,
imprinted regions and thousands of genes bearing
CpG islands [82]. As expected, Polycomb-repressed
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chromatin emerged as a distinct chromatin type in all
the genome-wide studies aimed to identify chromatin
domains in metazoa [3,16—23]. PcG proteins and
H3K27me3 demarcate a significant portion of the D.
melanogaster genome, which shows very low tran-
scriptional activity and late replication timing [3,17,23].
Similar scenarios were observed in mammals
[16,18,19,21] and Caenorhabditis elegans [22], dem-
onstrating that this silencing strategy is evolutionary
conserved.

In D. melanogaster, Polycomb-repressed domains
correspond to a subset of TADs [3], linking their
functional specificity with an independent spatial
organization. The situation appears to be more
complex in mammalian genomes. Here, the corre-
spondence between Polycomb-repressed chromatin
and specific TADs is not as straightforward. This is
due to only a partial overlap in lengths' ranges
between TADs (100 kb to 10 Mb) and H3K27me3
domains (1 kb to 100 kb) [83]. One explanation for
this discrepancy might be the different resolution
between fly and mammalian Hi-C studies. Since
mammalian genomes are 10- to 20-fold larger than
in flies, a sequencing depth of 100- to 400-fold would
be required in order to reach the same resolution in
contact mapping. Lacking this sequencing depth, it is
possible that part of the TAD boundaries may have
been missed in currently available maps. However,
cases of H3K27me3-specific TADs have been report-
ed on the inactive X chromosome [4] and on Hox
clusters [34,35], suggesting that, at least in some
cases, this correspondence can be similar to what
was observed in D. melanogaster. Moreover, clusters
of single Polycomb-repressed genes that do not form
large and uniform H3K27me3 domains could in
principle reside inside the same TAD and may form
higher-order 3D structures that could be seen as
“Polycomb-repressed TADs”.

Polycomb-repressed TAD compaction

While initial studies assessing accessibility to
nucleases failed to detected Polycomb chromatin
compaction [84], later reports showed that chromatin
bound by PcG proteins has a reduced accessibility
when compared to euchromatin [85-87], suggesting
the presence of higher-order structures comparable
with classic heterochromatin [85]. Fitzgerald et al.
obtained similar results while testing the accessibility
of the BX-C. They observed that GAL-4-dependent
activation of RNA Pol Il transcription and FLP-
mediated recombination are specifically suppressed
in the Polycomb-repressed segments, while transcrip-
tion by the less bulky T7 RNAP is only partially
blocked in a subset of PcG-repressed cells. This
behavior was dependent on the presence of PcG
proteins [88].

Several lines of evidences indicate that the major
responsible for chromatin compaction is PRC1. PRC1

can compact nucleosomal arrays in vitro, indepen-
dently of the presence of histone tails. This compac-
tion is dependent on nucleosomes, rather than on
linker DNA, with templates organized in a ratio of one
PRC1 every three nucleosomes [89]. In D. melano-
gaster, the C-terminal region of the PRC1 subunit Psc
plays a central role in this process [89,90]. Moreover,
the presence of Psc mutant alleles alters PRC1
activity in vitro [90]. In mouse, however, a Polycomb
ortholog called CBX2 is the main responsible for in
vitro chromatin compaction [91]. The common feature
shared by the D. melanogaster Psc and the mouse
CBX2 is an unstructured highly basic domain, which
firstly interacts with a single nucleosome, then tethers
more nucleosomes together and finally promotes
oligomerization through the formation of higher-order
structures [91]. Ph, another PRC1 member, promotes
oligomerization via its SAM domain, facilitating PRC1
and PRC2 binding and fostering chromatin compac-
tion [92]. The lack of RING1B, the catalytic subunit of
PRC1, is responsible for chromatin decompaction on
HoxB and HoxD loci in mouse ESCs. This effect is not
just a consequence of transcriptional induction and it
is independent of its ubiquityltransferase activity [93].
RING1B is responsible for chromatin compaction also
at Keng1 imprinted locus in mouse. This locus shows
a 3D contracted state that differs from the maternal
allele when paternally imprinted [94]. The authors
conclude that RING1B is responsible for genomic
contraction in vivo. Interestingly, they found that
EZH2, the catalytic subunit of PRC2, also plays a
role in this process independently on PRC1. Further-
more, a PRC2 complex containing EZH1 can compact
chromatin independently on its enzymatic activity [95].
Finally, indications for a cooperative function between
PRC1 and PRC2 suggest that the PRC1-mediated
compaction could be facilitated by the PRC2 activity
and vice versa. Indeed, reconstituted D. melanogaster
PRC2 exhibits improved activity on dense rather than
dispersed oligonucleosomes, indicating that chroma-
tin, when compacted by PRC1, is a more suitable
substrate to exert PRC2 function [96].

3D organization of Polycomb-repressed TADs

A complex issue is to determine how chromatin is
organized 3D inside these compact domains. Pioneer-
ing studies shed light on the spatial organization of the
Bithorax complex in D. melanogaster. The Fab-7 PRE
and the Abd-B promoter were found to interact
specifically, although they are distant 35 kb. These
interactions occur in nuclei where the gene is silenced
by PcG proteins and they are dependent by the
presence of a boundary element of the Fab-7 region
[97]. In 2007, Lanzuolo et al. suggested that the BX-C
forms a topologically independent structure. When
repressed by PcG proteins, the BX-C is organized in a
multi-loop structure where specific interactions occur
among PREs, promoters and 3’ end of the genes,
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Fig. 2. Linear representation of TADs and their variations between cell types. (a) The cell type “X” displays two null
TADs depicted in black (TAD1 and TAD2), harboring mainly inactive genes. In the cell type “Y”, the TAD 2 is completely
switched into an active TAD, depicted in red, whose genes are now mostly active. The TAD borders are fixed between the
two cell types. (b) An active TAD (TAD1) and a Polycomb-repressed TAD (TAD2) are depicted in red and blue,
respectively. In some instances, TAD borders can shift between different cell types. Indeed, in cell type “Y”, the active
TAD1 incorporates one gene that was part of the TAD2 in the cell type “X”.

forming three subdomains corresponding to the three
transcriptional units. When one of those transcriptional
units is expressed, the PRE dedicated to its regulation
loses most of its interactions within rest of the domain,
particularly with its proximal promoter, suggesting a
looping-out of the active gene [98]. These specific
interactions inside the BX-C can also occur in trans,
connecting regulatory sequences of homologous
chromosomes [99]. Moreover, the presence of an
insulator can block PRE—promoter contacts and
interfere with gene silencing in a transgenic construct
[100] (Fig. 1b).

3D organization of Hox genes was also studied in
mammals. Mammalian genomes bear four Hox clus-
ters that have evolved by duplication events from a
common ancestor [101]. They are organized in multi-
loop structures, preferentially interacting within the
domain, even though external interactions can be
observed at lower frequencies [34,35,102,103], as in
their D. melanogaster counterpart [66,67]. Repression
of groups of genes inside these clusters correlates
with chromatin condensation and H3K27me3 enrich-
ment [103], whereas transcriptional activation results
in decreased interaction frequencies and loss of
H3K27me3 [104]. Interestingly, transcriptional induc-
tion leads to the disruption of these looping contacts,
not only at the induced genes but also in the whole
HoxA cluster [102]. It was proposed that EZH2 might
not be responsible for the DNA looping, whereas
CTCF represents a good candidate for the looping
function [102,104]. When a Hox cluster is completely
repressed, itis covered with the H3K27me3 mark and
it is organized in a single 3D compartment. On the
other hand, when a portion of the cluster is transcrip-

tionally active, a bimodal 3D organization appears,
mirroring the underlying chromatin profiles. In other
words, the linear epigenetic boundary reflects the
spatial organization of two separated 3D compart-
ments, a repressed one and an active one.
Strikingly, when the expression profile changes, the
TAD boundary shifts concomitantly [34,35]. These
findings demonstrate that, at least in some cases, the
boundary between two TADs can move linearly,
according to the underlying chromatin environment
(Fig. 2b). Outside Hox clusters, multi-looped confor-
mations can be found in other PcG-repressed loci in
human and mouse, such as the GATA-4 locus [105],
the INK4-ARF locus [106] and the Meis2 locus [107].
In each case, transcription has a disruptive role on
these interactions and Polycomb components are
involved in their maintenance.

Polycomb-repressed TAD long-range interactions
and nuclear positioning

In addition to intra-TAD contacts [3,34,66,67,98],
Polycomb-repressed TADs show long-range inter-
actions. Two studies used a 4C strategy in D.
melanogaster with baits within the BX-C. Long-range
interactions involved other Polycomb-bound domains
placed from the same chromosome [66,67]. Larger
Polycomb-repressed TADs having more PREs inter-
act more often [67]. Moreover, long-range interactions
are evolutionary conserved despite the fact that
genomic rearrangements make the linear arrange-
ment of the underlying chromosomes substantially
different [66]. Earlier reports stated that long-range
interactions, even across different chromosomes,
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could occur at high frequency between transgenic
PREs [108] or between the transgenic PRE and the
endogenous copy [109]. This suggests that Polycomb
TAD interactions are an intrinsic feature and not a
mere reflection of the linear disposition along the
chromosome. Furthermore, the destabilization of
these interactions has a direct effect on gene
expression, demonstrating their functional relevance
[66,109]. In terms of molecular components involved
in this process, long-range interactions were shown to
be partially dependent on PcG proteins [109] and on
insulator components such as CTCF that binds to
regulatory regions flanking the interacting PREs
[57,110]. Depletion of CTCF affects long-range
interactions between the D. melanogaster homeotic
complexes, without affecting their local clustering [57],
while EZH2 was found to have a similar role in
mammals [111]. Surprisingly, mutations in several
components of the RNAI pathway also reduce contact
frequency [57,112], although the molecular role of
these factors at PREs is not known. Finally, long-
range Polycomb-dependent contacts occur in regions
of high Polycomb concentration, called Polycomb foci
[57,66,113—115], which can be seen as the physical
manifestation of Polycomb TAD interactions. Note-
worthy, PcG proteins and H3K27me3 mark do not
affect TAD presence [4] and do not alter higher-order
nuclear compartmentalization [94,116], but rather
they define the chromatin state and the 3D organiza-
tion of Polycomb-repressed TADs.

In summary, Polycomb-repressed TADs represent
a compact chromatin environment with a complex
internal multi-looped interaction network. As for the
other TADs, internal contacts are highly privileged but
inter-TAD contacts within the same chromosome arm
form a higher-order network, driving Polycomb-re-
pressed TADs into specific nuclear compartments
[116], placing them apart from active chromatin and
from lamina-associated chromatin.

Null Chromatin

Genome-wide mapping studies in D. melanoga-
ster revealed that nearly half of the genome is
covered by a highly repressive chromatin state that
appears independent from the other well-known
silencing systems (i.e., PcG and HP1) [17,23]. This
“obscure” type of chromatin, originally baptized
“black chromatin” or “null chromatin”, shows a lack
of specific enrichments for the histone modifications
tested [3,17,23]. The only proteins associated with
this type of chromatin are shared with one or more
different repressive chromatin types [23,117]. Among
them, a strong enrichment is observed for lamin, which
plays a central role for the silencing and the compart-
mentalization at nuclear periphery of null chromatin.
This lamin-enriched chromatin type emerged also in
similar studies in mammals, thus revealing a general

strategy to keep chromatin peripherally compartmen-
talized and transcriptionally silenced [16,18,20,21].
Something reminding null chromatin was found also
in C. elegans, where a large portion of silenced genes
was enriched in lamin and H3K9me1, H3K9me2 and
H3K9me3 marks [22]. These findings suggest that, at
least in some species, null chromatin displays some
histone modifications. Moreover, it could be speculated
that, in some organisms, null chromatin and classic
heterochromatin might have been merged. High
histone H1 presence in null chromatin [3,17,23]
corroborates with gene expression data, as H1 has a
negative effect on transcription and can induce
chromatin compaction [118]. In D. melanogaster, null
chromatin is organized in chromatin domains that are
on average larger than the other types [17,23,119],
showing a good overlap with TADs [3]. Therefore, “null
TADs” might be most likely located at the nuclear
periphery because of their high enrichment in lamins.

The nuclear periphery has been described to
interact with transcriptionally inactive chromatin
domains. However, some active genes in metazoa
were also found to be associated to the nuclear pore
proteins (Nups). These findings led to the idea that
the nuclear pore could be a favorable environment for
gene expression in metazoan nuclei, as it is in yeast.
Remarkably, genes associated with Nups were found
to be active in the nucleoplasm but silenced when
tethered to the nuclear pore complexes in both D.
melanogaster and human cells, suggesting that
nuclear periphery is a quite homogeneously repres-
sive environment in metazoa (reviewed in Ref. [120]).
Besides nuclear pores, the internal surface of the
nucleus is paved by the nuclear lamina, an intricate
meshwork of proteins that physically separates the
inner nuclear membrane from the peripheral chroma-
tin. Its main components are lamins, which are
intermediate filament proteins, and lamin-associated
proteins [121]. A-type lamins are mostly expressed in
differentiating cells whereas B-type lamins are
expressed ubiquitously. Mutations in lamin genes
lead to severe developmental defects in D. melano-
gaster [122] and in humans [123], including notably
the Hutchinson-Gilford progeria syndrome [124].

LADs

The fragments of the genome interacting with the
nuclear lamina are called lamin-associated domains
or LADs. In D. melanogaster, LADs usually span
from 7 to 700 kb, with a median size of 90 kb,
bearing on average 7 genes per LAD [125]. Similarly,
mammalian LADs are large and gene-poor domains
spanning from 0.1 to 10 Mb, covering about 40% of
the genome in a cell population [126,127]. About 500
genes were found to interact with lamin in flies.
Interestingly, those genes had a very low transcrip-
tional activity, lacking any active histone mark or
heterochromatin mark. Moreover, they showed late
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replication timing and had intergenic regions 7 times
larger than average genes, none of these features
alone being sufficient to predict lamin binding [128].
FISH experiments in D. melanogaster showed that
LADs are located preferentially but not exclusively at
the nuclear periphery, indicating a dynamic nature of
lamin tethering [128]. Single cell studies conducted
in mammals confirmed this trend, showing that only
roughly one-third of the LADs are located at less
than 1 ym from the nuclear lamina at any point in
time. Interestingly, the fraction of the LADs that is
associated with the periphery does not move toward
the center of the nucleus during a given cell cycle
[129]. The evolutionary conserved repressive nature
of LADs is supported by genome-wide studies,
showing that the average gene expression levels
inside the LADs are consistently lower than outside
[125—-127]. Furthermore, tethering experiments of
genes to the nuclear lamina corroborated the idea of
a transcriptionally silenced compartment [130].

Genes clustered in LADs usually show develop-
mental coregulation, as they can change simulta-
neously their expression together with their nuclear
repositioning (Fig. 2a). For example, testis-specific
genes in D. melanogaster tend to be organized in
clusters and they are embedded in repressive
nuclear peripheral compartments in somatic cells.
These clusters are highly enriched for lamin and H1
but depleted for any active, heterochromatin or
Polycomb-related marks. Upon depletion of lamin,
somatic derepression of those genes is observed,
together with detachment from the nuclear envelope
[131]. Depletion of lamin can also cause misexpres-
sion of key developmental genes. For instance, the
Hunchback gene moves to the nuclear periphery
when the competence time window to specify early-
born neurons is over. Depletion of lamin leads to
detachment of hunchback gene from the nuclear
periphery with concomitant reduction of its silencing
and extension of the time window for neuroblast
competence [132]. LADs display a dynamic behavior
during development also in C. elegans [133] and in
mammals [127], even though some LADs are more
conserved than others among different cell types
[134]. Their developmental reorganization can hap-
pen, as in D. melanogaster, at single gene level or at
the level of entire LADs [127]. Null chromatin domains
found in genome-wide association studies in mam-
mals show strong overlap with LADs: they are
organized in large domains and span a large portion
of genome; they have the lowest transcriptional levels,
have the lowest DNase | accessibility, have the
highest lamina enrichments, lack any active mark
[16,18,20], replicate late and have high levels of DNA
methylation [21].

In D. melanogaster, chromatin regulation plays a
key role in LAD dynamics. Depletion of lamin results in
higher chromatin accessibility, as well as increased
H3 and H4 acetylation. HDAC1 is required for

silencing, whereas HDACS3 has an auxiliary role in
silencing but plays a key role in peripheral retention
[135]. In a previous report, HDAC3 was found to
interact at the nuclear periphery with LAP2(3, an
integral nuclear-envelope protein with repressive
function [136]. The role of HDAC3 in LAD peripheral
maintenance is strikingly conserved from D. melano-
gaster to mammals [137-139]. Indeed, the lamin-
associated protein Emerin binds HDAC3 at the
nuclear periphery and activates its function [138].
Emerin depletion releases HDAC3 from the nuclear
periphery [138] and correlates with loss of peripheral
chromatin association [138,139]. Mammalian LADs
also exhibit specific features, such as enrichment in
G9a-dependent H3K9me2 [126,129] that is required
for tethering to the lamina [129]. H3K9me2 was
previously found to cover large portions of the
genome, initially called “Locks” [140] that mostly
reflect LADs [130]. This reinforces the idea that the
so-called null chromatin is not devoid of all histone
marks in every species. LADs are decorated with
histone modifications also in other metazoa. Indeed, in
C. elegans LADs, H3K9 is initially monomethylated
and dimethylated by MET-25 and successively
trimethylated by SET-25. H3K9me1/me2 modifica-
tions are required for the anchoring at the nuclear
periphery and the H3K9me3 mark is responsible for
transcriptional repression [141]. These results show
that the anchoring and silencing mechanisms are
coordinated but can be uncoupled. Moreover, the
attachment to the nuclear periphery is not just a
passive process driven by external forces but is at
least partially driven by biochemical mechanisms.
Mammalian LADs show very sharp borders, wherein
the occupancy of lamin drops drastically within few
kilobases. These borders are genetically defined,
since they show the presence of bidirectional tran-
scription units, usually pointing outward from LADs
and bearing CpG islands and CTCF binding sites
[126]. These features seem to be conserved in D.
melanogaster, where very strong transcriptional units
pointing outward and insulator proteins mark the sharp
boundaries of null TADs [3,119] and LADs [125]. This
active chromatin environment demarcating LAD bor-
ders may block the spreading of chromatin marks
outside LADs. Strikingly, the same genetic determi-
nants, that is, CTCF binding sites and highly
expressed housekeeping genes, were found also at
human and mouse TAD borders [5].

NADs

Nucleoli, besides rDNA arrays, also associate with
actively transcribed RNA Pol Il genes, with constitutive
centromeric and telomeric heterochromatin and with
nucleolar-associated domains or NADs [142]. NADs
cover about 4% of the human genome, comprising loci
with tissue-specific repression, transposable elements
and repetitive sequences. There are several evidences
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that NADs and LADs actually overlap. NADs can
relocate at the nuclear periphery after cell division [143]
and their linear size range highly corresponds with
LADs. Moreover, a subset of internalized LADs was
shown to become associated with the nucleolus [129].
Finally, tissue-specific repressed olfactory receptor
genes, which were already shown to cluster to the
nuclear periphery [144], were shown to also associate
at the periphery of the nucleolus [142]. Thus, nuclear
lamina and nucleolar periphery provide physical
platforms to host null TADs.

In addition to null chromatin, the nuclear and the
nucleolar peripheries can host constitutive hetero-
chromatin [145]. Moreover, Polycomb-repressed
chromatin shows a certain degree of lamin enrichment
in genome-wide association studies [3,16,18,20,23].
Nevertheless, null chromatin is likely to represent the
major flavor of chromatin to be localized both at the
nuclear periphery and around nucleoli.

Constitutive Heterochromatin

Heterochromatin was originally defined as the
chromatin portion that maintains high condensation
during interphase [146] and was subdivided in
facultative and constitutive heterochromatins [147].
Facultative heterochromatin corresponds to euchro-
matic regions that can become silenced and con-
densed under specific circumstances. In contrast,
constitutive heterochromatin preserves its compaction
regardless of the cellular context. In metazoa,
constitutive heterochromatin usually comes in large
blocks that are contiguous to centromeres and itis also
called pericentric heterochromatin. Depending on the
species, constitutive heterochromatin can also be
found in other genomic regions. For example, in D.
melanogaster, constitutive heterochromatin is located
at pericentric regions, telomeres, most of the Y
chromosome and on the small fourth chromosome
[148]. The amount of constitutive heterochromatin is
highly variable among different organisms: it covers
about 30% of D. melanogaster and human genomes
[149] and up to 90% in certain nematodes bearing
holocentric chromosomes [150]. Constitutive hetero-
chromatin is highly enriched in tandem repeats,
satellite DNA and silenced transposable elements. It
has very low rates of meiotic recombination and
transcription besides replicating during late S phase.
Gene density in constitutive heterochromatin is low
compared to the rest of the genome, approximately
10-fold less in D. melanogaster [151]. These genes
embedded in constitutive heterochromatin are actively
transcribed and often essential for viability. Moreover,
they require a heterochromatic environment to be
expressed [149,152,153]. Besides RNA Pol Il genes,
both small and long noncoding RNAs are transcribed
from heterochromatin [154—156], indicative of an
environment not completely averse to transcription.

Universal hallmarks of constitutive heterochromatin
are the presence of H4K20me3, H3K9me2/me3 and
HP1a (heterochromatin protein 7a), which binds to
H3K9me2/me3 via its chromodomain [157].
H3K9me2/me3 marks are deposited in D. melanoga-
ster pericentric heterochromatin by SU(VAR)3-9 and
by its homologs in other species, but different
heterochromatin environments can use different meth-
yltransferases [148]. The borders between hetero-
chromatin and euchromatin were initially described
cytologically [158] and then by molecular approaches
[159,160]. These borders are defined by sharp
H3K9me2 transitions and they show a substantial
overlap among different tissues [153]. Euchromatic
genes placed near those borders display a mosaic
expression, namely, a variable transcriptional state in
different cells. This phenomenon, initially discovered in
D. melanogaster, (reviewed in Ref. [161]) and recently
reported also in humans [162], was called PEV
(position effect variegation) and was explained through
a spreading model, predicting that the linear distance
of a euchromatic gene from the heterochromatin
border influences its transcriptional state. Interestingly,
this model does not explain cases where a marker
gene closer to heterochromatin is active and a more
distant one is repressed. Thus, an alternative model
has been proposed, confirming a linear polarity but
introducing the possibility that chromatin loops could
bring linear distant genes 3D closer to the nucleation
sites. This 3D explanation can solve the observed
skipping in the silencing of nearer genes [163].

Genome-wide studies recapitulated many of the
already-known features of constitutive heterochro-
matin. In D. melanogaster, heterochromatin domains
show enrichment for H3K9me2/me3 and for alrea-
dy-known heterochromatin proteins, together with
other proteins shared with different chromatin types
[3,17,23]. Average transcriptional activity is lower
than in active chromatin but higher than Polycom-
b-repressed chromatin and null chromatin [23].
Moreover, high H1 enrichment [23] and the lowest
density of DNase | hypersensitive sites [17] predict a
very compact chromatin environment. Similar stud-
ies in humans confirmed the presence of H3K9me3
domains enriched in repetitive sequences and
devoid of active marks and H3K27me3 [16,18-21].

Constitutive heterochromatin compaction

As mentioned above, constitutive heterochromatin
represents by definition a highly condensed envi-
ronment. Surprisingly, the first studies aimed to
determine the relative levels of heterochromatin
accessibility to DNA methylating enzymes [164]
could not identify strong differences in accessibility
compared to control regions, but similar approaches
performed with transgenes with a well-characterized
chromatin structure showed substantial differences
in chromatin accessibility between euchromatic and



Structure and Function of Chromosomal Domains

617

heterochromatic insertions. Transgenes inserted in
several heterochromatic loci showed a reduction in
accessibility to restriction enzyme digestion, togeth-
er with transcriptional silencing. HP1a presence
influenced both compaction and silencing of trans-
genes inserted into pericentric heterochromatic loci
and in the fourth chromosome [165]. Reduced
subtelomeric heterochromatin accessibility was fur-
ther confirmed [166]. Moreover, micrococcal nucle-
ase assays revealed a more regular nucleosomal
ladder in heterochromatin compared to euchromatin,
indicating a higher-order compaction with a constant
repeat length [167].

The higher compaction observed in constitutive
heterochromatin may not just depend on the lack of
transcription since non-transcribed euchromatic
genes maintain the same DNA accessibility when
they become transcribed [85]. Interestingly, when the
relative DNA accessibilities of euchromatin, constitu-
tive heterochromatin and Polycomb-repressed chro-
matin were compared in the same study, the latter two
showed similar low levels, regardless of their different
molecular nature and genomic positions. These
findings indicate that the two different compaction
mechanisms may involve similar higher-order chro-
matin organization [85]. Finally, it is important to
mention that transcription factors can, in some cases,
challenge the heterochromatic environment and even
be crucial for its establishment [168]. This means
that DNA accessibility, although lower than in active
regions, does not represent an insurmountable barrier
for DNA-binding factors.

Long-range interactions and nuclear positioning
of constitutive heterochromatin

There is no formal proof that constitutive hetero-
chromatin is organized in TADs and technical
difficulties in mappability given by the huge amount
of repetitive sequences make it hard to answer this
question. Nonetheless, either a TAD arrangement or
an alternative 3D organization could be possible. In
general, constitutive heterochromatin regions inter-
act poorly with any other chromatin type, whereas
they readily interact with other heterochromatin
regions in cis and in trans [3].

In D. melanogaster, centromeres and pericentric
heterochromatin coalesce into nuclear structures
called chromocenters. In polytene salivary gland
nuclei, there is a single chromocenter that clusters
centromeres, the Y and fourth chromosomes in a
single heterochromatic structure, located at the
periphery of the nucleus. This cytological organization
has been recapitulated by Hi-C studies performed in
late D. melanogasterembryos [3] and cultured cells of
embryonic origin [119]. Recently, clustering of D.
melanogaster centromeres was shown to be depen-
denton CTCF and nucleoplasmin-like proteins. These
proteins, together with the nucleolin homolog Modulo,

favor the interaction of centromeres with the periphery
of the nucleolus [169]. In D. melanogaster embryos,
heterochromatic telomeric sequences also cluster,
but they cluster away from the chromocenter [3].
Mammalian nuclei display chromocenters in numbers
and sizes that vary across species and cell types. For
example, mouse chromocenters are more clustered
than human counterparts [170]. Mammalian chromo-
centers reside at the nuclear periphery in late G1, then
they disassemble and centromeres internalize in late
S phase and G2. After mitosis, centromeres keep an
internal position until early G1 [171,172]. Differentia-
tion can either increase chromocenter clustering
[170,172] or induce a de-clustering [173—-175], ac-
cording to the cell type.

Long-range interactions between heterochromatic
foci and euchromatic genes can drive their silencing
by a proximity effect. This phenomenon was called
trans-inactivation in D. melanogaster [176]. The most
famous example is the brown dominant allele (bwD),
carrying a 1.6-Mb block of heterochromatic satellite
sequence in its locus [177]. Whereas null alleles of
brown are recessive, bwD can silence in trans the
wild-type copy, dragging both alleles to pericentric
heterochromatin [178]. The result is that the two
alleles are repressed [176], even though the wild-type
allele does not show the typical heterochromatic
condensation or HP1a binding in polytene chromo-
somes [179]. Nevertheless, physical proximity to
heterochromatin is not sufficient for silencing, since
genes nearby brown do not get silenced and an active
form of brown was found to be compatible with
heterochromatin association [180]. Other examples of
trans-inactivation were described in D. melanogaster,
affecting protein coding genes [181,182] and trans-
posable elements [183,184]. Similar long-range inter-
actions between heterochromatin and silenced genes
can also occur in mammals. For instance, in mouse
thymocytes, specific loci are bound by the zinc-finger
protein Ikaros and targeted to pericentric heterochro-
matin [185]. Ikaros firstly represses their transcription
and then brings them to heterochromatin foci, where it
multimerizes and physically bridges the repressed
genes with the heterochromatin satellite repeats [186].
During the repositioning, deacetylation on H3K9ac
occurs. After heterochromatic localization, firstly,
there is demethylation of H3K4me3 and then methyl-
ation of H3K9, finally spreading bidirectionally and
leading to an irreversible silencing [187]. Interest-
ingly, genome-wide association studies in D. mela-
nogaster have highlighted a special form of
H3K9me2/me3 heterochromatin, not located at the
classical genomic loci but rather embedded in
euchromatin [17]. These ectopic heterochromatic
domains vary among cell types and contain mostly
silenced genes [17,153]. An intriguing hypothesis is
that those tissue-specific silenced genes might be
3D tethered to pericentromeric heterochromatin,
reflecting a looping mechanism.
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TAD1

Fig. 3. 3D representation of TADs. The active TAD1 in red, the Polycomb-repressed TAD2 and TAD3 in blue, the null
TAD4 in black and the heterochromatic TAD 5 in green are depicted inside the cell nucleus. TAD1 harbors mostly active
genes and is more decondensed and its nuclear positioning is more internal. TAD2 and TAD3 are more condensed than
TAD1 and they are mainly transcriptionally silent. TAD4 is associated to the nuclear periphery and its genes are mostly
silent. TADS5 is coated with constitutive heterochromatin. TAD5 not only has repressed transposable elements but also has
few genes, which are expressed, regardless of the surrounding chromatin environment. The domains' borders harbor

actively transcribed housekeeping genes.

In summary, constitutive heterochromatin repre-
sents a special chromatin environment, usually
covering the centromeric and telomeric regions. Its
condensation is fundamental for its functions and its
compartmentalization radically shapes the genome
architecture, also providing a potential platform for
tissue specific gene silencing.

Conclusion

There is still much to understand about chromatin
organization in metazoa, but some principles are
beginning to emerge. TADs are the basic units of
metazoan chromosomes and they represent a
physical compartment for chromatin interactions.
TADs are robust entities, since their borders are
generally conserved among different cell types [4,5],
even though they can shift in some instances [34,35].
Genetically defined TADs are associated with a
particular chromatin type that dramatically alters
TADs identity. The main chromatin types are basically
four: active chromatin, Polycomb-repressed chromatin,
null chromatin and constitutive heterochromatin, but
further sub-classifications are possible and their
description will help understand the complexity of the

system [3,20,21]. The chromatin type characterizing a
TAD is switchable, giving a certain degree of freedom to
these genomic entities (Fig. 2). This chromatin type
confers to the TAD's some specific characteristics,
which impact on TAD's functionality, even though a
certain degree of internal heterogeneity is tolerated.
The 3D organization of a TAD, adorned with a specific
chromatin type, reflects its typical features as relative
accessibility, chromatin compaction and looping con-
tacts, which are characteristic of that particular chro-
matin environment. Despite these type-specific
differences, the common feature of every TAD is its
partial 3D separation from the rest of the genome
(Fig. 3).

Moreover, the chromatin type of a TAD is a main
factor for its nuclear positioning, favoring or disfavor-
ing specific long-range contacts and driving it toward
a preferential localization in the nucleus. The strong
influence that chromatin types can give to TAD
localization could be a major force in chromosome
positioning and finally in genome architecture. For
example, more gene-rich and transcriptionally active
chromosomes occupy preferentially a more internal
territory than gene-poor and silent ones do. Such a
behavior at whole chromosome level may just reflect
the tendencies of its own TADs, which finally could
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drag the chromosome to different nuclear neighbor-
hoods. Consequently, chromosomes with several
null TADs could be more peripheral, as they will bind
preferentially the nuclear lamina. This abundance of
lamin binding TADs might lead to effective competition
of inactive chromosomes against more active ones.
Inactive chromosomes would thus locate at the
periphery, at the expense of chromosomes carrying
higher density of active TADs, which would place
themselves in a more central position and would
interact more easily with active TADs present on other
chromosomes.

The chromatin type of TADs is switchable, and this
change will influence its function together with its 3D
internal organization. This feature should also affect
nuclear architecture, as different cell types sharing
their TADs but coated with different combination of
chromatin types can have a completely different
genome organization (Fig. 4). In this regard, it is
important to mention that even two cells of the same
type show a high variability in contacts between TADs
[36], demonstrating that two cells displaying exactly
the same nuclear organization do not exist. In
summary, a given cell type, with a genome defined
by the linear succession of different chromatin types,
can have several possible 3D organizations. This is
due to a certain degree of stochasticity and to the
dynamics of the process. Nonetheless, two different
cell types, displaying different chromatin landscapes,
will have an even less similar nuclear organization.

The chromatin coating the genome has also been
defined as the “epigenome”. This is due to the fact

that chromatin states, and particularly histone modi-
fications, have been considered as potential carriers
of epigenetic inheritance. In favor of this idea, many
chromatin modifiers have been found on the replica-
tion forks, suggesting that the epigenome could be
replicated along with the genome [188]. Remarkably,
nucleosomes relocate after DNA replication. While
duplicating chromatin, the parental histones are
repositioned in a place that can be about 400 bp
(corresponding to 2—3 nucleosomes) away from the
original position [189]. In light of this fact, large
domains of repressive marks (e.g., H3K27me3,
H3K9me2, H3K9me3), rather than sharp peaks of
active marks (e.g., H3K4me3, lysine acetylations),
would represent better candidate for this epigenetic
role. Since TAD's organization is completely lost
during metaphase [190], a faithful epigenome replica-
tion would allow two daughter cells to have very
similar chromatin landscapes, which may recapitulate
a related genome organization. This principle, al-
though partially true, cannot be universally applied.
Indeed in mammals, LADs tethered to the nuclear
periphery in the mother cell do not associate
preferentially to the periphery in the daughter cell,
meaning that there is no epigenetic mechanism to
restore nuclear positioning. LAD association to the
nuclear periphery is linked to a certain degree of
stochasticity in the acquirement of dedicated histone
marks, that is, H3K9me2, which finally drives the
peripheral compartmentalization [129]. Older reports
already showed that the same loci in daughter cells do
not share the same nuclear positioning and therefore
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Fig. 4. Impact of genetic features and chromatin type on the TAD. Fixed genetic elements define TAD borders,
determining its length. The presence of genes and of functional elements inside a TAD are also genetically determined, as
well as its genomic site. These features do not vary among different cell types. The chromatin type surrounding the TAD
defines features as the DNA accessibility and the chromatin compaction. The chromatin environment can vary among
different cell types and its partial replication will determine differences between different cells of the same type. Together,
these genetic and epigenetic parameters will affect TAD 3D organization and nuclear positioning that will finally determine
TAD function. The TAD tendency to occupy preferential nuclear positions will finally drive the global genome organization.
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cannot be inherited from the mother cell [191]. The
same principle can be applied to the conservation of
chromosome territories, as their relative positions
observed in daughter cells differ significantly from that
of the mother cell. Apparently, chromosome territories
are established in early G1 and stably maintained
throughout the cell cycle, but during early prophase, a
reshuffling occurs [182].

In conclusion, genome architecture relies on TAD
organization. TADs are primarily defined by genetic
determinants and further shaped by their chromatin
environment. Epigenome replication processes will
ensure the maintenance of their chromatin landscape
and, consequently, of part of their 3D properties.
Although the genome is faithfully replicated, the
epigenome could be in part variable between two
daughter cells. This variability, along with a high
stochasticity in genome conformations, will lead to a
partial conservation of genome architecture between
two cells of the same type (Fig. 4).
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