1. INTRODUCTION

1.1. Document Development Process

The Society of Pediatric Cardiology Training Program Directors (SPCTPD) board assembled a Steering Committee that nominated 2 chairs, 1 SPCTPD Steering Committee member, and 6 additional experts from a wide range of program sizes, geographic regions, and subspecialty focuses. Representatives from the American College of Cardiology (ACC), American Academy of Pediatrics (AAP), and American Heart Association (AHA) participated. The Steering Committee member was added to provide perspective to each Task Force as a “nonexpert” in that field. Relationships with industry and other entities were not deemed relevant to the creation of a general cardiology training statement; however, employment and affiliation information for authors and peer reviewers are provided in Appendixes 1 and 2, respectively, along with disclosure reporting categories. Comprehensive disclosure information for all authors, including relationships with industry and other entities, is available as an online supplement to this document.

The writing committee developed the document, approved it for review by individuals selected by the participating organizations (Appendix 2), and addressed their comments. The final document was approved by the SPCTPD, AAP, and AHA in February 2015 and approved by the ACC in March 2015. This document is considered current until the SPCTPD revises or withdraws it.

1.2. Background and Scope

There has been substantial scientific progress relevant to pediatric cardiology in the 10 years since the last training guidelines for research were published (1). The prior guidelines and a National Institutes of Health (NIH) expert panel stressed that there remains a critical need for advancement and application of new knowledge in a breadth of disciplines relevant to the field (2). These guidelines begin with the principle that there is a compelling need to train pediatric cardiology fellows to develop new knowledge and to translate research findings into practice. Because research skills are relevant to all those trained in our field, it is essential to develop both core skills and knowledge to allow the realization of meaningful research that is matched to the trainee’s interests.

Different pathways and training schedules must be considered to address the specific needs of each trainee with guidance from mentors. A discussion with each trainee early in fellowship may facilitate
training pathways for those interested in advanced research training. Training of pediatric cardiology fellows requires that the sponsoring division and institution have appropriate resources for training fellows in research. As noted in a prior version of these guidelines, expertise and mentorship in a variety of scientific disciplines relative to pediatric cardiology are essential.

Although sufficient resources and dedicated time are critical to success, the expertise and commitment of the mentor is one of the most important elements of research training. The training program must ensure that trainees gain experience and develop career pathways with the advice and support of appropriate mentors from throughout the institution. Just as a program needs to have sufficient clinical volume to support a trainee, so too does a fellowship require an adequate number of well-qualified, established faculty mentors to ensure a successful research training experience. Early in the training fellowship, a faculty member, usually a pediatric cardiologist with extensive experience in research, should provide an overview of the research training including a list of potential mentors.

Once a trainee has identified their mentor, the Scholarship Oversight Committee (SOC) will assist in monitoring the trainee’s progress. There are several key ingredients to successful mentorship, including: 1) a sensible matching process designed to link mentor/mentee according to shared research goals; 2) jointly established and realistic expectations, including timelines that are understood clearly by both parties; 3) a written contract or agreement between the mentor/mentee that identifies key skill development needs and objectives and signifies a commitment on both parties to dedicate the time and effort required to meet the other’s expectations; 4) the allocation of specific time for regular mentor/mentee meetings; 5) an ongoing evaluation/feedback process that serves both parties; and 6) respect for sex and/or ethnic differences.

In most cases, it is advantageous for the mentor to be an established researcher rather than junior faculty. An established investigator may be better able to identify pitfalls and obstacles in study design, and an associate or full professor often has more stable resources to ensure successful completion of a project. However, in some cases, young faculty may do particularly well in mentoring roles. It is recommended that when a junior faculty member is assigned as a mentor, he or she should be paired with a more senior investigator to serve as co-mentors.

1.3. Levels of Expertise—Core and Advanced

In this statement, we discuss core training for all fellows enrolled in a traditional 3-year pediatric cardiology fellowship and advanced training for fellows who wish to embark on a career in pediatric cardiology research.Core training is required for all trainees and is intended to ensure that fellows acquire the knowledge base and skills necessary to become a pediatric cardiologist able to conduct research and participate in scholarly activity. Advanced training guidelines are recommended for fellows who wish to commit a large part of their career to research.

2. PROGRAM RESOURCES AND ENVIRONMENT

2.1. Types of Research

For the field of pediatric cardiology to advance and address key questions in the coming decades, it is critical to carry out various types of research. Accordingly, the fellowship research programs should allow trainees to obtain structured training in a number of established or evolving disciplines. Most training programs have emphasized 3 primary avenues for research: 1) basic research in imaging sciences; molecular, cellular, and developmental biology; physiology; structural biology; genetics; genomics; proteomics; and biomarkers research; 2) patient-oriented research, including clinical trials, epidemiological studies, population-based studies, behavioral science, outcomes research, quality and safety research, biomedical ethics, medical informatics, and application of imaging technologies; and 3) translational research that bridges the gap by turning laboratory findings into new drugs, devices, or procedures, or bedside-to-bench studies that apply clinical observations to develop fundamental mechanistic studies. However, there are a number of emerging fields that may overlap with the 3 core approaches, yet increasingly require specialized skills or training. These fields include clinical cardiovascular genetics, health services studies, educational research, and health economics. By developing expertise in these fields, the next generation of pediatric cardiologists will be best equipped to address critical challenges.

2.2. General Expectations

The resources needed to foster a meaningful research training experience are considerable. Institutions should not underestimate the financial commitment and breadth of expertise that are needed to successfully fulfill these obligations.

2.3. Personnel

First and foremost, a training program needs a committed fellowship director. A fellowship director takes on many responsibilities in the fellowship program, so it may be valuable to designate a faculty member to oversee the research training. However, in some cases, the fellowship director may have the time, expertise, and interest to
direct this important endeavor. This director of fellowship research would be entrusted to assemble and monitor the SOC. The composition, structure, and function of the SOC have been defined by the American Board of Pediatrics (6). The director of fellowship research would also be responsible for assessing each trainee’s progress.

2.4. Curriculum
The first requirement is to have a formal research education curriculum. This should be clearly defined and shared with trainees and other faculty members. The basic curriculum would include fundamental research principles such as protection of human subjects, evidence-based medicine, core biostatistics, clinical research design, and scientific writing. Many institutions have developed a core research program designed for fellows from various divisions. Such an approach is encouraged because it allows for shared expertise, collaboration, and efficient use of resources.

There should also be active research activities within cardiology and/or other groups that are involved in the care of pediatric cardiology patients. A faculty that is active in research will not only provide project opportunities and mentorship, but will also naturally bring out exchange of research ideas and reference relevant known research data in the course of patient care. The medium for scholarly exchange and interaction within cardiology should also be formal such as regularly scheduled journal clubs and research-in-progress updates. Protected time should be allotted for the trainee to attend these and other scholarly conferences and seminars.

Programs should provide the opportunity for fellows to collaborate or conduct multidisciplinary research with multiple investigators. Even if the cardiology program is active in research, a multidisciplinary approach will allow the trainee to leverage expertise from outside the division. The program director, research director, and SOC chair should assist the trainee in identifying these external resources.

2.5. Ancillary Staff
Critical elements of research training often include the firsthand preparation of an institutional review board submission, primary statistical analysis of research data, and grant application. The trainee needs to have knowledge of all of these areas. However, to support research endeavors, trainees engaging in complex research projects will often need assistance with data management, statistical analysis, and grant submission. A research training program should integrate with the larger divisional, departmental, or institutional research centers with access to research coordinators, biostatisticians, and grant writing assistants to ensure success for the trainees.

2.6. Financial Resources
Most forms of research require financial resources to ensure success. Therefore, programs will need to provide support to pediatric cardiology trainees. This financial support may come from extramural grants or endowments available to the established faculty. Training grants may provide some support. Discretionary funds and local grants may be available. Program directors need to not only provide an inquisitive research environment and passionate mentors, but also ensure that mentors can provide adequate project support to accomplish the research aims. There should also be financial support for the trainee to attend scientific meetings, and trainees should be particularly encouraged to submit and present original research at important scientific meetings.

Last, for conducting research, the training facility should have access to research administration that oversees research activities. This includes a human subject protection committee and assistance with grant proposals such as budget analysis. Free access to a library system with electronic access to most full-text articles and journals is mandatory. Additional support services may include standard computer hardware and statistical software.

2.7. Duration of Research Training
The Subspecialties Committee of the American Board of Pediatrics has stated that the principal goal of fellowship training should be the development of future academic pediatricians (6). To that end, it is recognized that a significant proportion (≥12 months) of the 3-year training program should be dedicated to scholarly activities and research training (6). The dedicated research time can be configured in various manners (see Section 5, Flexibility For Research Training) and should be protected time as much as possible.

For those trainees planning a career with a strong concentration in research, we recommend that the duration of research training should be considerably longer. To attain the needed skills, 24 months or more of dedicated research training should be undertaken. This will often require that the duration of fellowship training be extended beyond the 3 years.

3. CORE TRAINING: GOALS AND METHODS

3.1. Clinical Research
With appropriate mentoring, the trainee should develop skills in the following areas: literature critique, study design, funding, research implementation, and dissemination of results. For specific recommendations for each
of these skill domains, organized in the ACGME core competency structure, please see Table 1. This table is adapted from more extensive charts of clinical/translational research core competencies that can be found at the NIH Clinical and Translational Science Award (CTSA) web site (https://ctsacentral.org/wp-content/documents/CTSA%20Core%20Competencies%20final%202011.pdf).

Familiarity with these domains requires a fundamental knowledge of basic biostatistical methods, including diagnostic test performance (sensitivity, specificity, predictive value, and receiver-operating characteristic curves) and parametric and nonparametric data analysis, including comparison of proportions, power and sample size, correlation, linear and logistic regression, and multivariable analysis. During research training, the trainee will be required to undertake a scholarly project that meets requirements for subspecialty certification by the American Board of Pediatrics. Such scholarly activity may consist of a project in which the trainee undertakes a hypothesis-driven study or a project requiring substantive scholarly exploration and analysis. The scholarly activity must include active participation by the fellow that is mentored by faculty and results in the generation of a peer-reviewed publication, critical systematic review, or meta-analysis of the literature. Core research training in the domains could be obtained as part of a master’s program in clinical investigation, public health, or some other structured degree program. Competency in the skills noted in Table 1 can be documented as part of the oversight of the trainee during his or her fellowship.

3.2. Laboratory/Basic and Translational Research

Although the minority of fellows pursue scholarly projects that involve laboratory-based research, these skills are important because of the broad impact of basic research on the field. A certain core knowledge base is relevant and important for a specialist in the field (7). These skills along with those for trainees who wish to pursue laboratory training are outlined in Table 2. A basic understanding of the genetic basis of disease and the impact on genomic variation on disease presentation is needed.

4. ADVANCED TRAINING: GOALS AND METHODS

Fellowship directors should communicate frequently with trainees regarding career goals. For those fellows who desire to commit a large part of their career to research, program directors should help configure the training to ensure success in this endeavor. Trainees preparing for clinical research careers in pediatric cardiology need a similar time commitment and similar advanced training as those pursuing careers in basic science research. Some trainees may have previously obtained advanced training as part of an MD/MPH or MD/PhD program in medical or postgraduate school, but
may need to develop specific skills for basic or clinical cardiovascular research. Others may need advanced training, including coursework in epidemiology, study design, and biostatistics. This may be obtained as part of an advanced degree program or as part of a separate career development plan. Advanced research training for clinical research should also include mentored investigational experience with an active and productive scientist working in an appropriate field, such as epidemiology, population science, behavioral science, quality and safety of care, or outcomes research. Often it is appropriate to assemble a mentoring team, which can provide a range of expertise and is directed by a senior mentor.

For trainees seeking careers with a major emphasis on basic or laboratory research, additional focused training will be needed. There will be a wide variation in skills that trainees bring in based on previous training and experience. For those with minimal or no prior laboratory training, the need for didactic course work is greater, as is a more prolonged training experience. Formal entry into a PhD training program may be considered.

There are often institutional or individual research training grants (T32, F32) to support the research training and career development, including coursework and mentored research training. The NIH Loan Repayment Grant can help support the focused early investigator.

The advanced research training should be viewed as only the beginning of the training experience. Individuals who pursue this path will need counseling on finding academic positions, protected time, and resources required to support the development of meaningful research projects.

5. FLEXIBILITY FOR RESEARCH TRAINING

Fellowship research training should allow significant flexibility to accommodate diverse career paths. For some trainees, consecutive months of dedicated research training may provide the best environment for growth. However, for others, it may be best to alternate some periods of clinical training with dedicated research time. This may be valuable, for example, when planning a clinical investigation that requires several distinct phases such as protocol development, institutional review board submission, and recruitment/enrollment. This approach may be necessary when trying to integrate structured course work from the academic calendar year into the training program. This may be especially relevant for those who obtain a concomitant master’s level training degree (such as in epidemiology or public health). Meeting the demands of both clinical and research training poses a great challenge to any training program; thus, the time devoted to research should be assigned to allow the trainee the best opportunity for success. The breadth of training opportunities must allow fellows the flexibility to configure their research training in ways that best meet individual career goals. Fellows should be allowed to work with program directors to design their schedule and commitments to foster time management skills and career planning that will be critical in their early career.
6. EVALUATION AND DOCUMENTATION

Ongoing evaluation of progress in advanced research training is important. Inherent within the tables for core training are basic tasks that must be accomplished for successful completion of the research portion of fellowship. Overall evaluation should include specific goal setting and review of progress made on those goals. Research knowledge, skills, and commitment should include both objective components, such as skills and knowledge in analyzing literature and appropriately applying statistical tests, and subjective components, such as creativity, drive, and problem solving. This evaluation should be based on criteria that have been developed and agreed upon by the trainee, the SOC, and the mentoring team. The competence and accomplishments should be clearly documented at the completion of training. This evaluation should include the success of the trainee as indicated in producing a meaningful scholarly work product that hopefully results in at least 1 publication.

SUMMARY

Research training represents a critical component of the pediatric cardiology fellowship training. To successfully carry out the mission of training, academic pediatric cardiologist programs must provide a structured research experience lead by dedicated mentors. There are a number of varied, yet fulfilling, pathways to pursue in research, and trainees should tailor the research training experience to meet their career goals.

REFERENCES

3. Reynolds HY. In choosing a research health career, mentoring is essential. Lung. 2008;186:1–6.

KEY WORDS

SPCTPD/ACC/AAP/AHA Training Statement, basic research, biostatistics, clinical research, epidemiology, fellowship training, pediatric cardiology
APPENDIX 1. AUTHOR RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES (RELEVANT)—
TASK FORCE 8: PEDIATRIC CARDIOLOGY FELLOWSHIP TRAINING IN RESEARCH AND SCHOLARLY ACTIVITY

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership or Principal</th>
<th>Personal Research</th>
<th>Institutional/Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>William T. Mahle (Co-Chair)</td>
<td>Sibley Heart Center at Children’s Healthcare of Atlanta—Medical Director, Heart Transplant and Medical Director, Clinical Research; Emory University School of Medicine—Marcus Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Anne M. Murphy (Co-Chair)</td>
<td>Johns Hopkins University School of Medicine—Division of Cardiology and Fellowship Program Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daniel Bernstein</td>
<td>Lucile Packard Children’s Hospital at Stanford, Stanford University—Alfred Woodley Salter and Mabel G. Salter Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen R. Daniels</td>
<td>University of Colorado School of Medicine—Professor and Chair, Department of Pediatrics; Children’s Hospital Colorado—Pediatrician-in-Chief and L. Joseph Butterfield Chair in Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Yuk M. Law</td>
<td>University of Washington—Professor; Seattle Children’s Hospital—Medical Director of Heart Failure and Transplant</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jennifer S. Li</td>
<td>Duke University—Beverly C. Morgan Professor of Pediatrics and Division Chief, Pediatric Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bradley S. Marino</td>
<td>Northwestern University Feinberg School of Medicine—Professor Pediatrics; Professor Medical Social Sciences; Director, Cardiovascular Bridge Programs; Co-Director, Research and Academic Affairs; and Attending Physician, Cardiac Care Unit and Neonatal and Cardiac Intensive Care Follow-up Clinic; Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern Memorial Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jane W. Newburger</td>
<td>Boston Children’s Hospital—Associate Cardiologist-in-Chief for Academic Affairs, Department of Cardiology; Harvard Medical School—Commonwealth Professor of Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert D. Ross</td>
<td>Children’s Hospital of Michigan, Wayne State University School of Medicine—Director of Fellowship Programs and The Pulmonary Hypertension Program</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

For the purpose of developing a general cardiology training statement, the American College of Cardiology (ACC) determined that no relationships with industry (RWI) or other entities were relevant. This table reflects author’s employment and reporting categories. To ensure complete transparency, authors’ comprehensive healthcare-related disclosure information—including RWI not pertinent to this document—is available in an online data supplement. Please refer to http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy for definitions of disclosure categories, relevance, or additional information about the ACC Disclosure Policy for Writing Committees.
APPENDIX 2. PEER REVIEWER RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES (RELEVANT)—
TASK FORCE 8: PEDIATRIC CARDIOLOGY FELLOWSHIP TRAINING IN RESEARCH AND SCHOLARLY ACTIVITY

<table>
<thead>
<tr>
<th>Name</th>
<th>Employment</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional/Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Gelb</td>
<td>Mount Sinai Medical Center—Professor, Pediatrics</td>
<td>AHA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Regina Lantin-Hermoso</td>
<td>Texas Children's Hospital</td>
<td>ACPC Council</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Carole Warnes</td>
<td>Mayo Clinic—Professor, Medicine</td>
<td>ACC BOT</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric Williams</td>
<td>Indiana University School of Medicine—Professor (Cardiology) and Associate Dean; Indiana University Health, Cardiology Service Line Leader</td>
<td>ACC CMC Lead Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

For the purpose of developing a general cardiology training statement, the ACC determined that no relationships with industry or other entities were relevant. This table reflects peer reviewers’ employment, representation in the review process, as well as reporting categories. Names are listed in alphabetical order within each category of review. Please refer to http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy for definitions of disclosure categories, relevance, or additional information about the ACC Disclosure Policy for Writing Committees. ACC indicates American College of Cardiology; ACPC, Adult Congenital and Pediatric Cardiology; AHA, American Heart Association; BOT, Board of Trustees; and CMC, Competency Management Committee.