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Generalized Information Functions
ZOLTAN DaRrOCzY

Department of Mathematics, University of L. Kossuth, Debrecen, Hungary

The concept of information functions of type 8 (8 > 0) is introduced and
discussed. By means of these information functions the entropies of type 8
are defined. These entropies have a number of interesting algebraic and
analytic properties similar to Shannon’s entropy. The capacity of type B
(8 > 1) of a discrete constant channel is defined by means of the entropy of
type . Examples are given for the computation of the capacity of type S,
from which the Shannon’s capacity can be derived as the limiting case 8 = 1.

1. INTRODUCTION
The concept of information functions has been introduced by the author [2].

DeriniTION 1. We call the real function f defined in [0, 1] an information
function if it satisfies the boundary conditions

fO=51); f@=1 (1.1)

and the functional equation

@+ =0 (2) =+ -n/(2) 02

for all (x, y) € D, where
D={x»n0<2<,0<y<lx4+y<1} (1.3)

If f is an information function and (p; , Pg yeer Pn) (B3 =0, iy s = 1)
is a finite discrete probability distribution, then we define the entropy of the
distribution (p, , P 5., Pn) With respect to f by the quantity

an(pl » P2 s'"’pn) = Z SZf(p ): (sz' =p+ _l_PZ’Z =2, n) (1'4)

i
i=2 S
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In (1.4) the convention 0f(0/0) = O is adopted. We summarize the known
results on the information functions in the following

TaroreM 1. Let f be an information function. If f is

(a) measurable in the open interval (0, 1), or
(b) continuous at the point x = 0, or

(c) nonnegative bounded in [0, 1], then we have
f(x)y=S8@) forall xe[0,1],

where S(x) is the Shannon’s information function defined by

_ {—xloggx — (1 —x)logy(1 —x) if xe(0,1)
5 = 1o £ x=0 or x=1 ()
The entropy of a probability distribution (py, ps se-s Prn) With respect to S is
the Shanmon’s entropy

Hns(Pl ] PZ LAAA] Pn) = Hn(Pl 7P2 EAaied Pn) = - Z Pz logzpi . (1'6)

=1

This theorem was proved by Lee [9] under assumption (a). The proof of the
theorem can be found in Daréezy [2] under assumption (b). Finally, the
theorem was proved by Dardezy and Kitai [4] in case (¢). This theorem con-
taines the results of Fadeev [6], Tverberg [11], Kendall [8] and Borges [1].
It is important to remark that there are information functions different from
S (see Lee [9] or Daréezy [2]).

In this paper we generalize the concept of information functions as
following.

DeriNiTION 2. Let 5 be a positive number. We call the real function f
defined in [0, 1] an information function of type B if it satisfies the boundary
conditions (1.1) and the functional equation

f@+ 0 =P f () =70 + 0 —2Ff (1) @D

for all (x, y) e D.
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On the analogy of the entropy H,” we define the entropy of type B of a
probability distribution (py, ps,..., P») by the quantity

HEpy s pares ) = Y. 58F (B2), (o =2y oo 2 i = 2,00m) (18)

i=2

where f is an information function of type B.

It is clear that an information function is an information function of type
B with g =1. .

In Section 2 of this paper we determine all information functions of type
with 84 1. In the discussion of Section 3, we sumnmarize the algebraic prop-
erties of the entropy of type 8 and we give an another characterization for
these entropies. In Section 4 we consider the analytic properties of the entropy
of type B. In Section 5 we define the joint and conditional entropy of type 8
of two discrete finite random variables and we discuss the properties of these
quantities. In Section 6 we define and consider the capacity of type 8 of a
discrete constant channel by means of the conditional entropy of type B,
where 8 > 1.

2. InrormaTION FuncTIONs oF TYPE 8

It may be seen, that we have a number of interesting results on the infor-
mation functions. Therefore, the following theorem is very unexpected.

TueoreM 2. Let f be an information function of type B with 8 7= 1. Then
we have
f(®) = Sg(x)  for all x€]0,1],
where
Selw) = (28 — 1)1 [a# 4 (1 — 2 — 1] @.1)
for all x€]0, 1].

Proof. Let f be an information function of type 8 (8 > 0). If we take
x =0 in (1.7), then we have f(0) = 0. Taking y = 1 — x into (1.7), we
obtain by (1) = f(0) =0

f®) =f(1 —x) 2.2)
forall x € [0, 1].
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Let p, g be two arbitrary numbers from the open interval (0, 1). We take
p=1—xand g = y/1 — xin (1.7), then we obtain by (2.2)

F(8) + $57(@) = £(p9) + (1 — papf ({—2). 23)

—Pg

We shall prove the following assertion. If p, g € (0, 1) are arbitrary, then the
function F(p, g) defined by

F(p,q) =f(p) + [* + (1 —pF1f(9) (2.4)
is symmetric, i.e.
F(p,q) = F(g, p)- (2.5)

This assertion is trivial in the case 8 == 1. Let us put 8 =4 1 (8 > 0), then we
have by (2.3)

Fp, ¢) =f(0) + 1% (@) + (1 — 1Y/ (9)

=72 + (0 = 0P ({=2) + (1L~ P 1@

=fe) + 0 —p? [F({E) + ((22) 7] o

for all p, ¢€(0, 1). On the other hand, we obtain from (2.3) and (2.2) with
the notation p* = 1 — p/1 — pg

.9 = F(T=E) + (1=L) 1@

g
— £+ @) = 1070 + (L —pap s (1 E)
=1 =) + (0P f (=)
= ({=E) + ((=L) 70) = 4. )

Therefore, it follows from (2.6)

F(p,9) —Flg, ) = (1 — pgf [A(p, 9) — A(g, )] = 0.
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Thus, the assertion (2.5) is proved. We now take ¢ = 1 in (2.5), then we have
by the definition of F(p, ¢) and by the boundary condition f(3) = 1

0 =F(p, 1) —F(3, ) |

= £+ 122 + (L= p¥] — 1 — 5y f(D),
from which it follows

f(8) = @2 — 12 [ + (1 — P — 1]

for all pe(0, 1). This formula is true in the case p = 0 or p = 1 by the
boundary conditions (1.1), too. Thus the theorem 2 is proved.
It is very simple to see that

13i£111 Sg(x) = S(x)  forall ze]0,1]. 2.7)
This remark shows that Sg(x) is a natural generalization of the Shannon’s
information function (1.5).
3. EntRrOPIES OF TYFE 8
From the theorem 2 we obtain the following

THeOREM 3. Let B be a positive number with B 7= 1. Then we have for the
entropy of type B of a probability distribution (py s Ps seees Pn)

2ty pa ) = @2 = 17 (3 52 = 1) (3.1)

From (2.7) it follows that the Shannon’s entropy H,(p;, Pg ;... Py} is @
limiting function of H,2(py , po yeers Pu), 1.€.

Hn(?l H Pz 3vecy Pn) = lﬂl_I)lil HnB(Pl > Pz EAA] Pn)

Previously Rényi [10] has extended the concept of Shannon’s entropy by
defining the entropy of order B (B > 0, B £ 1) of a probability distribution

(P15 P2 5ens Pu) 3S
gHo(P1 s P2 s Pu) = (1 — Bt 1ogy Y pif. (3.2)

i=1
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From (3.1) and (3.2) we have the following relations between the entropy of
order B and the entropy of Zype B:

el = (1 — B) " logy[(2*~# — 1) H,f + 1] (3-3)
and
H,p = (218 — 1) 20-85e 17, (3.4)
We denote by
= (b1 Boren ) 15> 0% 0 = 1 (35)
i=1
the set of all #-ary probability distributions. The entropy of type f is a real
function defined on 4,(n = 2, 3,...), ie.,
HEf: 4, —~R (n =2,3,..),

where R is the set of real numbers. In the following theorem we summarize
the algebraic properties of the entropy of type 5.

TueorReM 4. The entropies H,f : 4,— R (n =2, 3,...; 8 > 0) have the
Jollowing properties:

19 Symmetric: H,2(py , ps 5oy Pr) 15 @ Symmetric function of its variables;
29 Normalized: Hf (%, 1) = 1;

30 Expansible: H,B(py , Py seers Pn) = HE (D1 P2 seees P> 0);

4° Strongly additive type fB:

Hﬁm(?ﬂ.ln seecs P19m1; P291z LAAAE] PZsz; ees PnQIn EALAH an”m)

= HnB(Pl aPZ LARAAH] an) + Z PiﬁHmB(qu 3 G2g 9eees sz)

=1

Jor all (py, Pg yeees Pu) €4, and (q1; , Goi yees Gms) € A (€ = 1, 2,..., 1);
5% Recursive type B:

H (P15 D2 » Py seees Pn) — He_s(Ps + Do s Py soves P)
= (p1 + p)PHP([ 1] p1 + Dol [ 2/ o1 + £5))
Jor all (py, Py semey Pu) € 4y with py + pp > 0 (n = 3).
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Proof. 'The properties 1°, 29 and 3° are obvious consequences of Theorem
3. We prove 4° by a direct computation:

HE (P15 P2 sees D) +- Z PEH (w5 ot 5eers Goms)
=1

=@ (L0 = 1) + @2 =02 3 (3 dhe 1)

= (28 — 1)1 (Z pE—1+3 ¥ pfgi— Y Pia)
==l

i=1 k=1 i=1

= (2v8 — 1)1 LZZI 1\21 (Pqr:)® — 1]

= 'Efm(quu seees P1@m1s **° 5 Puin seees Pann)'

The proof of 5° is very easy
H2(p1s Po s D3 sees Pa) — Hi3(P1 =+ Po s Py seeer P)
=@ =1 a0 k2 £ L 00— 1= (ou 4P = 350+ 1]
= (2% = 1)7Up® + p° — (p1 + 22)]

= (2@ — 7 (52 )+ () 1]

PP P+ P
= (p1 + pPH o i e Ze - )

Now, we shall give an another characterization of the entropy of type .
The problem is the following. What properties have to be imposed upon a
sequence

I:4,—~R (n=23..)

of functions in order that the following identical equality should hold
L D1 sees D) = HB(D1 ues Pn) for all (py,...,p,)E4,, where B >0 and
B # 1. The following theorem is a generalization of a result given by the
author (see Dardezy [3]).
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TugoreM 5. Let I, :4,— R (n = 2, 3,...) be a sequence of mappings and
let B be a positive number different from one. If I, satisfies the following conditions:

@) Is( Py, P » Ps) is @ symmetric function of its variables;
(i) L) =1;
(111) In(pl s P2 s Paseees pn) - In—l(Pl + D2y D3 sens Pn)

_ P P2
= (7 +P2)6]2(P1 +b " PP )

Jor all (py s Po seees Pu) € 4y (r=3,4,..;01 + P2 > 0),

then we have

In(Pl s Do ’---’Pn) = H’nB(Pl y P2 seeny Pn)
Jor all (py, Poseees Pn) €4, (1 =2, 3,...).

Proof. First we prove that the function f defined by f(x) = I(x, 1 — x)
(x € [0, 1]) is an information function of type 8. Let (¥, y) € D be arbitrary,
then we have by (i)

I3(y’ 1 —x - x) = 3(‘”) 1 -y — 'x')_y)’
from which it follows by (iii)

X

FU =9+ =Pl (2) =70 =0+ =¥/ ;=) 6O

1 —=x

We take x = 0, y = 4 in (3.6), then we have

(1) = 27%(0). G.7)

By (iii) we have Iy(1, 0, 0) = 2f(1) and I3(0, 1, 0) = f(1) + f(0), from which
we obtain by (i)

F(1) =7(0). (3.8)
From (3.7) and (3.8) we get (1) = f(0) = 0. Therefore, we have
f(l —x) =f(x) forall x¢e[0, 1] (3.9)

from (3.6) with the substitution y = 1 — x. By (3.9) the functional Eq. (3.6)
yields Eq. (1.7), that is, the function f is an information function of type g.

By Theorem 2 we have f(x) = S(x), hence, the theorem is proved by (iii)
with induction.
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4. ANaLyTIC PROPERTIES OF THE ENTROPY OF TYPE j
We begin with the following
THEOREM 6. For all (py , Ps ey Pr) €4y (n = 2, 3,..)

0 <H (py, Pa s Pr) < Hy 3(1 1 %)=(21‘B—1)‘1(n1‘3—1). (4.1)

n

Proof. We define the function J(x) by

o) =@ — 1) —x)  (B>0,B~1) 42)

for all x €[0, 1]. The function ly(x) is a nonnegative and concave function in
[0, 1]. By the concavity of /; we have

HE(py, ps - ,pn)—ZlB(p,) nzg(%g )
=y () = (L1 = oo — e — 1y,

which proves the theorem.
It is interesting to remark that the function

oo(n) = H,? (1 Lo 1)

n'n n

is monotonic, i.e., @) < pa(z + 1). This is a simple consequence of Theo-
rems 6 and 5:

oy =1 (1) = s (- )

1 1

B
S Hua (m o

) = @aln + 1.

If B > 1, then we have by the monotonicity of gz : For all (py , pa yeers Pn) € 4n
(n=2,3,.)

Ho (P15 Pn) < pp(m) < Him gp(m) = (1 — 22-8)7 (4.3)
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In the case 0 << 8 <C 1 this assertion is not true, while
Sim ee(n) = +oo-
Turorem 7. Suppose B > 1. For (py, Py seees Pn) €40,

(915 » 925 3+e0s i) €4 t=12,..,n)

z PPH (91 5 Qo 5eees Gma) 4.4

i=1

Hy,? (i Pt » i DG 5eees i Piqmi)'

i=1 t=1 =1

Proof. Using the concavity of Jy(x) defined by (4.2), we have

Y pilelan) < s (Z Piqki) (k = 1,2,...,m).
=1

=1

Let us add these inequalities with respect to &, we have

é g Is(gre) < 721 lg (glpzqm) (4.5)

Using the assumption § > 1,
< p; ¢ =1,2,..,n),

therefore, by the nonnegativity of I,

Pz Z lﬂ(qm) Pz Z le((lm)

If we add these inequalities with respect to 7, then we obtain

n m

21 P kzl I(gr) < 21 P: 1621 Io(qns)- (4.6)
From (4.6) and (4.5) we get
Z P’ kzl l(gns) < ch:l ?(il Pz"]ki)-

This exactly is (4.4).
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5. EnTROPIES OF TYPE 8 OF Di1scRETE RANDOM VARIABLES

Let ¢ be a discrete finite random variable with the set x, , %, ,..., %, of
possible values of ¢, We define the entropy of type B of the random variable ¢ by

H¥§) = H.A(py, P2 seees Dn)s 5.1)

where
P =P =) (t=1,2,.,n). (5.2)

Correspondingly, for a two-dimensional discrete finite random variable
(&, 9) with the joint discrete probability distribution

g = P(E = x;, 1 = ) (¢=1,.,nk=1,..,m),

we have the following notions:

HE(E, ) = HE (11 yeees T 50003 Tt 30003 ) (5.3)
and
H 1) = 3 0PH, s G G (5.4)
where
pi =P =x;) = ]i T (G =1,2,.,n)
and
G = Plp =y, | £ = x;) = ’; (G=1,2,mk=1,2,.., m).

We call the quantity (5.3) joint entropy of type B of (£, 1) and we call the
quantity (5.4) conditional entropy of type B of the random variable v with respect
to £. It is clear that in the limiting case 8 = 1 we have the usual quantities
of the information theory (see Fano [7]).

By the algebraic and analytic properties of the entropy of type 8, we have
the following

TueoreMm 8. If § and n are discrete finite random variables, then

H(¢,m) = HYE) + H(q | §), (5.3)
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and
H(n | & <H¥y) i B>1. (5:6)

Proof. Equation (5.5) comes from Theorem 4. The inequality (5.6) is
equivalent with the inequality (4.1) presented in Theorem 6.

It is simple to see that the statements of Theorem § are generalizations of
the known equality and inequality for the Shannon’s entropy. The following
problem is very natural: what is the situation in the case of independent
random variables ?

TueoREM 9. If € and v are discrete independent random variables, then
HE(E, m) = HE) + HP(n) + 2'F — 1) HE(&) HA(x). .7
Proof. 1In this case we have

Pn=y, | &€ =%) = ¢y = ¢ (= 1,.,m k = 1,..., m),
where

g = P(n = yp).
By (5.5) we get

HA(§,m) = H¥¢) + HPn | §)

— 1) + ¥ po@ = 1 (5 00— 1)
—1199) + 1) (3 )

= HP(§) + Ho(n) + H¥(n) (if’fs —1)

= H(¢) + H(y) + (28 — 1) HY(¢) H¥(x),

which proves the theorem. In the limiting case 8 — 1, we have the known
additivity property of Shannon’s entropy.
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6. Capaciry oF TvyeE B

A discrete constant channel with the space X = {x, ,..., x,,} of input sym-
bols and with the space ¥ = {y, ,..., 3.} of output symbols is characterized
by the (m X #) transition matrix

0 = (qu) (kR =1,..,myi=1,.,n)

with (6.1)

k=1

qx; represents the conditional probability for receiving the k-th output
symbol if the j-th input symbol has been transmitted.

‘Consider an arbitrary input probability distribution (P1sD2se s Pu) €4,
on the space of input symbols, which induces the distribution

(ql y Gz 505 qm) € A’m

on the space of output symbols given by

@ = Z Pirs (k= 1,..,m). (6.2)

i=1

The spaces of input and output symbols can now be viewed as the space of
values for discrete random variables, say, £ and v, respectively. Now, we
define the capacity of type B of the discrete constant channel characterized by
O as the quantity

Co =, max  [Hn) — Hy|¢)), (6.3)

(DyseensPp)E

where 8 > 1 and the distributions of 5 and ¢ are given by
Pél=x)=p (i=1..,m),

n
Plg =y0) =qp = ), pirs» (k= L., m), (6.4)
' =1
Plp=yplé=m)=qu, (k=1l.,mi=1..n).
If B — 1+, then we have the known concept of the Shannon’s capacity of a
discrete constant channel (see Fano [7]):

C = lim C,. (6.5)

B-14
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TuaroreM 10. If the transition matrix of a discrete constant channel has
the form
1—p if i=Fk

n—1

(n = m), (6.6)

then we have
Cy = (2% — 1) Yn~2 — 1)
— AHQE — (1 — PP P — 1 — 1. (6T)
Proof. By (6.6) and by Theorem 6, we have

Hi(y) — H?(n | §)
< (Q1F — 1) Ynt — 1)

- ZLIP,-B(ZLB — 1) [(1 — PP+ (n—1) (n 2 1)3 _ 1].

By the convexity of t# (8 > 1), we obtain
n 12 8
pE=n\=) pi) =n R
igl g (” ig'l )
From these inequalities it follows that
Ho(n) — H%(n | £)
< (278 — 1) (m-8 — 1)
— IR — (1 — P o — Y2 — 1]
- KB .

But K; is the value of the function HS(n) — HPf(n|§£) at the point
(P15 P2 seeos Pu) = (In, 1n,..., 1/n) € 4, , from which we obtain

Ky =, max . [H%) — Ho(y | )] = C.

[¢ 270N D,)E4

Thus, the theorem is proved.
This theorem is a generalization of a known result for the Shannon’s
capacity (see Fano [7])

lim Cg = C =logyn — plogy(n — 1) +ploga p + (1 — p) loga(l — p).

643/16/1-4
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For a binary symmetric channel we have with # = 2
Co=1+ =D —pff +p" —1], (6.8)

from which it follows
C=Jim Cy=1+ploggp+(l—p)log(l —p). (69
A further result is given by

TreorEM 11. For an arbitrary (m X 2) tranmsition matrix of a discrete
constant channel we have

m

Co=1—=73 G- (6.10)

s}
Proof. We take (py, ps) = (%, 1 —x)ed;, then
H¥n) — H¥*n | §)

=23 {(xg + (1 — ) gal® — Figia + (1 — ) gual¥)

k=1
+ a4 (1—xpP—1; = T(x).

It is easily shown that the function T'(x) has an unique maximum value at the
point x = 1/2. From this assertion we obtain

Cy = max [H¥n) — H(n| £)]

(91,19)ed,

= o) Tx)=T(#) =1~ Ic§1 Gr1qrz -
Thus, the theorem is proved.
For a binary symmetric channel (g;; = ¢, = 1 — p and g3, = gy = p),
we get from (6.10)

Co=1-2p(1—p) =01 —pf+2

which is (6.8) in the case B == 2. It is clear that we can determine C, , gener-
ally, with the method of Lagrange multipliers. The computation Cy is in
general an open question. This problem can be solved with an iterative
method which is similar to the method for calculation of the Shannon’s
capacity (see Eisenberg [5]).
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