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The concept of information functions of type fl (]3 > 0) is introduced and 
discussed. By means of these information functions the entropies of type fi 
are defined. These entropies have a number of interesting algebraic and 
analytic properties similar to Shannon's entropy. The capacity of type fl 
(fl > 1) of a discrete constant channel is defined by means of the entropy of 
type ft. Examples are given for the computation of the capacity of type fi, 
from which the Shannon's capacity can be derived as the limiting case fl = 1. 

1. INTRODUCTION 

The concept of information functions has been introduced by the author [2]. 

DEFINITION 1. We call the real functionf defined in [0, 1] an information 
function if it satisfies the boundary conditions 

f(0) ----f(1); f(½) = 1, (1.1) 

and the functional equation 

X f(x)-f-(1 -- x)f  (1 Y---~x) =f(y)-I--(1 --y)f(~:--~) (1.2) 

for all (x, y) ~ D, where 

D = {(x,y): 0 ~ x  < 1,0 ~ y  < 1, x + y  ~ 1}. (1.3) 

n I f f  is an information function and (Pl ,  P2 ,..., P~) (Pi ~ O, ~ i= lP i  = 1) 
is a finite discrete probability distribution, then we define the entropy of the 
distribution ( P l ,  P~ ..... Pn) with respect to f by the quantity 

i(') f=2 ~-i ' ($i = Pl + "'" + Pi; i = 2,..., n). (1.4) 
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In (1.4) the convention Of(O/O) = 0 is adopted. We summarize the known 
results on the information functions in the following 

THEOREM 1. Let f be an information function. I f  f is 

(a) measurable in the open interval (0, 1), or 

(b) continuous at the point x = O, or 

(c) nonnegative bounded in [0, 1], then we have 

f (x )  = S(x) for all x e [0, 1], 

where S(x) is the Shannon' s information function defined by 

~--x logs x -- (1 -- x) log~(1 -- x) if x ~ (0, 1) 
S(x) (1.5) 

if x-----0 or x = l .  

The entropy of a probability distribution (Pl ,  P~ .... , Pn) with respect to S is 
the Shannon's entropy 

H , : ( p l  , pz  ,..., p , )  = H,~(pl , P2 ,..., P , )  = - -  ~ P, logs p~. (1.6) 

This theorem was proved by Lee [9] under assumption (a). The proof of the 
theorem can be found in Dar6czy [2] under assumption (b). Finally, the 
theorem was proved by Dar6czy and Kfitai [4] in ease (c). This theorem con- 
taines the results of Fadeev [6], Tverberg [11], Kendall [8] and Borges [1]~ 
It is important to remark that there are information functions different from 
S (see Lee [9] or Dar6czy [2]). 

In this paper we generalize the concept of information functions as 
following. 

DEFINITION 2. Let  fl be a positive number. We call the real function f 
defined in [0, 1] an information function of type fi if it satisfies the boundary 
conditions (1.1) and the functional equation 

X f(x) -4-(I - x)'f(l Y~x ) = f(y)+ (I- y)'f(~-~--~) (1.7) 

for all (x, y) ~ D. 
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On the analogy of the entropy Hn ¢ we define the entropy of type [3 of a 
probability distribution (P l ,  P2 ,..., P~) by the quantity 

Hn°(pl,p,,...,pn)-=i~_2s,'f(@),= (s,:p,-+'"+pi;i=2,...,n) (1.8) 

where f is an information function of type [3. 
I t  is clear that an information function is an information function of type 

/3 with/3 = 1. 
In  Section 2 of this paper  we determine all information functions of type t3 

with/3--/: 1. In  the discussion of Section 3, we summarize the algebraic prop- 
erties of the entropy of type/3 and we give an another characterization for 
these entropies. In  Section 4 we consider the analytic properties of  the entropy 
of type [3. In  Section 5 we define the joint and conditional entropy of type fi 
of two discrete finite random variables and we discuss the properties of these 
quantities. In  Section 6 we define and consider the capacity of type/3 of a 
discrete constant channel by means of the conditional entropy of type [3, 
where/~ > 1. 

2. INFOrmATION FUNCTIONS OF TYPE fl 

I t  may be seen, that we have a number  of interesting results on the infor- 
mation functions. Therefore,  the following theorem is very unexpected. 

THEOREM 2. 
we have 

where 

for all x ~ [0, 1]. 

Let f be an information function of type [3 with [3 =/: 1. Then 

f ( x )  = Sa(x) for all x ~ [0, 1], 

So(x ) = (21-B - -  1) -a Ix a + (1 - -  x)~ - -  13 (2.1) 

Proof. Let  f be an information function of type/3  03 ~ 0). I f  we take 
x = 0 in (1.7), then we have f (0 )  = 0. Taking y ----- 1 - -  x into (1.7), we 
obtain by f (1 )  = f ( 0 )  = 0 

f ( x )  = f (1  - -  x) (2.2) 

for all x ~ [0, 1]. 
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Let p, q be two arbitrary numbers from the open interval (0, 1). We take 
p = 1 - -  x and q = y/1 -- x in (1.7), then we obtain by (2.2) 

l - - p  
f (p )  4- pff(q) = f(pq) 4- (1 - -  pq)ff ( ~ - p - ~ ) .  (2.3) 

We shall prove the following assertion. If  p, q e (0, 1) are arbitrary, then the 
function F(p, q) defined by 

F(p, q) = f (p)  + [pB 4- (l - -p)~]f (q)  (2.4) 

is symmetric, i.e. 

F(p, q) = F(q, p). (2.5) 

This assertion is trivial in the case/3 = 1. Let us put/3 if= 1 (/3 > 0), then we 
have by (2.3) 

F(p, q) = f (p )  + p~f(q) + (1 --p)ef(q)  

B 1 - - p  ~ f(pq) + (1 --pq) f ( ~ - ~ - ~ )  + (1 _p)Bf(q)  

= f(pq) + (1 pq)~ [ f --  ( 1 - ~ - q )  + (ll--~--pPq) Bf(q)] (2.6) 
1 ~ p 

for all p, q ~ (0, 1). On the other hand, we obtain from (2.3) and (2.2) with 
the notation p* = 1 - -  p/1 -- pq 

= + 

[ 1 - - p *  
= f(p*)  + p*ff(q) = f(p*q) 4- (1 --  p*q)"f ~1 -- p*q ) 

= f ( 1  - -p 'q )  4- (1 -- p*q)a f ( 
1 

= 

Therefore, it follows from (2.6) 

F(p, q) - -  F(q, p) = (1 - pq)~ [ A ( p ,  q) - -  A(q ,  p)]  = O. 
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Thus, the assertion (2.5) is proved. We now take q ---- ½ in (2.5), then we have 
by the definition ofF(p,  q) and by the boundary condition f(½) ---- 1 

0 = F ( p ,  ½) - -  F(½, p )  

= f ( p )  + [pC + (1 _p)B] i 1 - -  - -  - - f f z y f ( P ) ,  

from which it follows 

f ( p )  = (21-~ _ 1)-1 [pe + (1 _p)B _ 1] 

for all p ~ (0, 1). This formula is true in the case p = 0 or p = 1 by the 
boundary conditions (1.1), too. Thus the theorem 2 is proved. 

It is very simple to see that 

lim Se(x ) = S(x)  for all x e [0, 1]. (2.7) 
B-~I 

This remark shows that Sa(x) is a natural generalization of the Shannon's 
information function (1.5). 

3. ENTROPIES OF TYPE /~ 

From the theorem 2 we obtain the following 

THEOREM 3. Let ~ be a positive number with fl =/= 1. Then we have for the 
entropy of type t3 of a probability distribution (Pl , P2 .... , P,) 

n 

H~e(pl ,p2, . . . ,p , )  = (21-B --1)-1 (~__lpiB -- 1). (3.1) 

From (2.7) it follows that the Shannon's entropy H~(pl ,P2 ..... p~) is a 
limiting function of Hne(pl,  p~,..., Pn), i.e. 

H~(Pl , P2 ,..., P,) = lim H,~e(pl , P2 ,..., P,). 
~-~1 

Previously R6nyi [10] has extended the concept of Shannon's entropy by 
defining the entropy of order fl (fl > O, fl =/= 1) of a probability distribution 
(Pl,  Pz ..... ion) as 

~H,(pl ,  p~ ,..., p,) -=-- (l --/3) -a log~ ~ p B. (3.2) 
g = l  
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From (3.1) and (3.2) we have the following relations between the entropy of 
order 3 and the entropy of type/3: 

~H~ ----- (1 - - f i )  -~ log2[(2 ~-B - -  1)H~ B -k 1] (3.3) 

and 

Hn B = (21-9 - -  1)-112 (1-B)¢H~ - -  1]. (3.4) 

We denote by 

1 ° I A. = (Pl ,P2  ..... P.) :Pi ~> 0, ~ p ,  = 1 (3.5) 
i=1 

the set of all n-ary probability distributions. T h e  entropy of type/3 is a real 
function defined on An(n = 2, 3,...), i.e., 

H ~  : A~ -+  R (n = 2, 3,...), 

where R is the set of real numbers.  In  the following theorem we summarize 
the algebraic properties of the entropy of type/3. 

THEOgSM 4. The entropies H~ ~ : A~--+ R (n = 2, 3, . . ; /3 > 0) have the 
following properties: 

1 ° Symmetric: H~e(pl, P2 ,..., P~) is a symmetric function of its variables; 

2 0 Normalized: H~(  1, ½) ---- 1; 

3 0 Expansible: HnB(pl, P2 ..... P~) = H~+I(Pl ,  Pe ,-.., P , ,  0); 

4 0 Strongly additive type [3: 

H~nm(Plq11,"', Paqma; P~qlz ,..., P~qm2; "'; Pnqln ,.'., P~qmn) 

= Hn~(Pl, Pz ,..., Pn) q- ~ PinHmB(qli, qzi,"', q~ni) 
i=1 

for all (Pl ,P2 ..... p~) ~A~ and (qa~, q2, ..... qm~) ~ A ~  (i = 1, 2 ..... n); 

5 o Recursive type/3: 

H,B(Pl , P2 , Pa ,..., P,) --/fB-I(Pl -~- P2, P3 , ' " ,  Pn) 

= (P~ + P2)BH2O([Px/Px + P2], [P2/Px + P2]) 

for all (p~ , pe ,..., p,~) ~ A,, with p~ + P2 > 0 (n >~ 3). 
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Proof. The  properties 1 °, 2 o and 3 o are obvious consequences of Theorem 
3. We prove 4 o by a direct computation: 

H,t~(Pl , P~ ,..., Pn) + ~ pi~H~t~(qai , q~i ,..., q,ni) 
i = 1  

n n ~q~ 

= i=I  k=l i=I 

n m 

B 
--~ H~m(Plqn ,..., Plqml; "'" ; P~ql, ,"., Pnqm,~). 

The  proof of 5 o is very easy 

H,°(Pl , P2 , P~ ,..., P,) o - -  H ~ - I ( P a  ÷ P2 , Pa ,..., Pn) 

= (  2 i - ~ -  1)--i [Pl ~ ÷ P 2  B ÷ ~ P i  ~ - 1  - - ( P l  + P ~ ) " - -  ~ P i  t~ ÷ l ]  
/=3 i=3 

= ( 21-~ --  1)-I[Pl t~ + P2 t3 - -  (Pl + p~)t~] 

P~, )~ P2 )~-1] 
+P------7 

( Pi P2 ).  (pi + p2)BH2 ~ 
' P l  + P~ ' Pl + P~ 

Now, we shall give an another characterization of the entropy of type ti- 
The  problem is the following. What properties have to be imposed upon a 
sequence 

I ~ : A ~ - - ~ R  (n = 2, 3,...) 

of functions in order that the following identical equality should hold 
I~(Pl , . . . ,P~)= H~t~(Pl ..... Pn) for all (Pl ..... Pn) ~A~ ,  where fi > 0 and 
fi =fi= 1. The  following theorem is a generalization of a result given by the 
author (see Dar6czy [3]). 
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THEOREM 5. Let 1~ : A~ -~ R (n = 2, 3,...) be a sequence of mappings and 
let/3 be a positive number different from one. I f  l~ satisfies the following conditions: 

(i) 1~(pl , P2 , P3) is a symmetric function of its variables; 

(ii) 12(½,½) = 1; 

(iii) In(p~ , p~ , P3 ,..., Pn) - -  In-~(Pl + Pz , P8 ,..., P,)  

( Pl P2 ) 
(Pl + 

( Pl - /  Pz ' Pl + P2 

for all (P l ,  P~ ,..., Pn) ~ An (n = 3, 4,...; p~ + P2 > 0), 

then we have 

I , ( p l  , p2 , . . . ,  p , )  = n , " ( p l  , , . . . ,  p , )  

for all (pl  , P2 ..... p~) ~ A~ (n = 2, 3,...). 

Proof. First we prove that the function f defined by f ( x )  = I2(x, 1 - -  x) 
(x ~ [0, 1]) is an information function of type/3. Let (x, y) ~ D be arbitrary, 
then we have by (i) 

13(y, 1 - -  x - -  y ,  x) = Is(x, 1 - -  y - -  x, y), 

from which it follows by (iii) 

, B X 
f ( 1 - -  x) ~- ( 1 - -  x)~f (l Y~x ) = f ( l  - - y )  + ( 1 - - y )  f ( ~ - - ~ ) .  (3.6) 

We take x = 0, y = ½ in (3.6), then we have 

f ( l )  = 2-Bf(0). (3.7) 

By (iii) we have !s(l, 0, 0) = 2f(1) and I~(0, 1, 0) = f (1)  + f ( 0 ) ,  from which 
we obtain by (i) 

f (1)  = f(0) .  (3.8) 

From (3.7) and (3.8) we get f (1)  = f (0)  = 0. Therefore, we have 

f(1 --  x) = f ( x )  for all x ~ [0, 1] (3.9) 

from (3.6) with the substitution y = 1 --  x. By (3.9) the functional Eq. (3.6) 
yields Eq. (1.7), that is, the function f is an information function of type/3. 

By Theorem 2 we havef(x)  = S~(x), hence, the theorem is proved by (iii) 
with induction. 



44 DAR6CZY 

4. ANALYTIC PROPERTIES OF THE ENTROPY OF TYPE /3 

We begin with the following 

THEOREM 6. For all (Pl , P2 ,..., P,) G A n (n = 2, 3,...) 

( 1 1) = ( 2 : - a -  1 ) - : (n : -a -  1). (4.1) 0 <~ Hne(pl ,p~, . . . ,p , )  <~ H~ e 1 ,  n ' " "  

Proof. We define the function l~(x) by 

Z~(x) = (v -~  - 1) -1 (x~ - x) (/3 > 0,/3 ve 1) (4.2) 

for all x G [0, 1]. The function l~(x) is a nonnegative and concave function in 
[0, 1]. By the concavity of l B we have 

Hn~(P:,P~, . . . , t , , )  = ZB(p~) ~< nZ~ ~ p, 
'i=1 = 

' n '""  n )  = (2: -B - -  1 ) - l ( n l - B  - -  1), 

which proves the theorem. 
It is interesting to remark that the function 

(11 !) 
9~(n) = Hnt~ ' n  ' " "  

is monotonic, i.e., %(n) ~< 9~(n + 1). This is a simple consequence of Theo- 
rems 6 and 5: 

1, . . . ,1  l l  1 o~ 
H,~+: \ n ' " "  n' ] 

~<H~+: n + l ' " " n + l  = % ( n + l ) .  

If/3 > 1, then we have by the monotonicity of % : For all (p: ,  P2 ..... p~) G A n 
(n = 2 , 3 , . . )  

H ~ ( p l  .... , p~) • ~(n) ~< nlim %(n) = (1 -- 2:-~)-L (4.3) 
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In the case 0 < /3  < 1 this assertion is not true, while 

lim 9t3(n) = q - ~ .  
n ~ o o  

TrmOREM 7 .  Suppose fl > 1. For (Pl , P2 ,..., P,) ~ An,  

(qli,  q2i .... , qmi) ~ Am (i = 1, 2,..., n) 

~ Pit~HmB(qli , q~i ,'", qmi) 
i=1  

Proof. Using the concavity of lB(x ) defined by (4.2), we have 

PL(q~3 <~ lo p,q~i (k = 1, 2,..., m). 
g = l  

Let us add these inequalities with respect to k, we have 

i=i k=l k=l 

Using the assumption/3 > 1, 

pi~ ~< p¢ (i = 1, 2 ..... n), 

therefore, by the nonnegativity of l B 

/c=l k = l  

I f  we add these inequalities with respect to i, then we obtain 

i=i /c=1 i=l k=l 

From (4.6) and (4.5) we get 

Pi' l,(q~i) <~ In: Piqki • 
i=1 k = l  /c=l 

This exactly is (4.4). 

45 
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5. ENTROPIES OF TYPE fl OF DISCRETE RANDOM VARIABLES 

Let  ~ be a discrete finite random variable with the set Xl, x 2 . . . . .  x~, of 
possible values of ~. We define the entropy oftypefi  of the random variable ~ by 

HB(~) = HnB(Pl , P~ ..... Pn), (5.1) 

where 

p,  = P(~ = x,) (i = 1, 2 , . ,  n). (5.2) 

Correspondingly, for a two-dimensional discrete finite random variable 
(~, ~/) with the joint discrete probability distribution 

rrik = P(~ = x i ,  ~ = Yk) (i = l,..., n; k = 1,..., m), 

we have the following notions: 

and 

H~(~, ~7) (5.3) 

where 

and 

H~(~ I ~) = ~, piaHme(ql~ , q=, ,..., qm,), (5.4) 
i=1 

le=l  

(i = 1, 2,..., n) 

q~i = P ( r l  = Y k  [ ~ = x i )  - -  rrize 
Pi 

( i =  1, 2,..., n; k = 1,2,..., m). 

We call the quantity (5.3) joint entropy of type fl of (~, ~7) and we call the 
quantity (5.4) conditional entropy of type fl of the random variable ~ with respect 
to ~. It  is clear that in the limiting case fl = 1 we have the usual quantities 
of the information theory (see Fano [7]). 

By the algebraic and analytic properties of the entropy of type fl, we have 
the following 

THEOREM 8. If ~ and ~ are discrete finite random variables, then 

HB(~, 7) = H~(~) + HB(~ I ~), (5.5) 
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and 

H~(~ [ ~) <~ Ho(~I) i f  /3 > 1. (5.6) 

Proof. Equation (5.5) comes from Theorem 4. The inequality (5.6) is 
equivalent with the inequality (4.1) presented in Theorem 6. 

It is simple to see that the statements of Theorem 8 are generalizations of 
the known equality and inequality for the Shannon's entropy. The following 
problem is very natural: what is the situation in the case of independent 
random variables ? 

where 

THEOREM 9. 

hoof. 

H~(~, ~7) = H~(~) + HB(~7) + (21-~ -- 1) HB(~) He(~7). 

I f  ~ and ~ are discrete independent random variables, then 

(5.7) 

In this case we have 

P(V = Yk [ ~ = xi) = q~i = q~ 

qk = P(~7 -~ Yk). 

( i =  1 ..... n ; k - ~  1 ..... m), 

By (5.5) we get 

H~(~, 7) = H'(~) + H~(~7 [ ~) 

m 

: "~(~:) q- ,=1~ P'~(2x-~- 1)-1 (k~--lqka- 1) 

n 

= Ha(,) + H~(~7) + H~(~7)(,~lpia--1) 

= H~(~) -[- H~(~7) + (21-B - -  1) H'(~) H~(~), 

which proves the theorem. In the limiting case fi--~ 1, we have the known 
additivity property of Shannon's entropy. 
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6 .  CAPACITY OF TYPE /3 

A discrete constant channel with the space X ~-- {x 1 ,..., x,~} of input sym- 
bols and with the space Y = {Yl ..... Ym} of output symbols is characterized 
by the (m × n) transition matrix 

with 

Q = (qki) (k = 1,..., m; i = 1,..., n) 

q~i ~ O, ~ qk~ = 1 (i = 1,..., n). 
k = l  

(6.1) 

qki represents the conditional probability for receiving the k-th output 
symbol if the j - th  input symbol has been transmitted. 

Consider an arbitrary input probability distribution (P l ,  P~ ..... p~) ~ A~ 
on the space of input symbols, which induces the distribution 

(ql, q2 ,-.., qm) 6 Am 

on the space of output symbols given by 

n 

qk = ~ P~qk~ (k = 1,..., m). (6.2) 
i=1  

The  spaces of input and output symbols can now be viewed as the space of 
values for discrete random variables, say, f and 7/, respectively. Now, we 
define the capacity of  type [3 of the discrete constant channel characterized by 
Q as the quantity 

C~ = max [HB(~?) - -  H~(~/I ~)], (6.3) 
(/01,... ,ion) 6d~ 

where fi > 1 and the distributions of V and ~ are given by 

P(~ -~ xi) = Pi (i = 1,..., n), 

P(~7 = Ye) = q~ = ~ P,qk, , (k = 1,..., m), (6.4) 
i=1  

P(V = Y~ I ~: ---- xi) = qk,, (h = 1,..., m; i ---- 1,..., n). 

If /3 --~ 1 + ,  then we have the known concept of the Shannon's capacity of a 
discrete constant channel (see Fano [7]): 

C = lira C B . (6.5) 
/3-~1 + 
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I f  the transition matrix of a discrete constant channel has 

{ l n - - p i f i = k  
q~' = P i f  i =/= k (n -= m), (6.6) 

- - 1  

C. = (21-" - -  1)-l(n 1-o - -  1) 

- -  n1 -~ (21 -~  - -  1 ) -1 [ (1  - -  p ) "  + / ( n  - -  1) 1-~ - -  1].  (6.7) 

Proof. By (6.6) and by Theorem 6, we have 

HB(~) - -  H"(~ I ¢) 

(2 x-" - -  1)-Z(n 1-" - -  1) 

- -  ~ p , B ( 2 1 - " -  1) -1 [ ( 1 - - p ) "  - ] - ( n -  1 ) (n  P - ~ I ) "  - - 1 ] .  
i=1 

By the convexity of t" (]3 > 1),  we obtain 

/ I  & x" 
~ piB ~ n t~ ~lpi ) = nl-O. 
i=1 = 

From these inequalities it follows that 

m ( ~ )  - H . (~  I ~) 
( 2 1 - "  - -  1 ) - l ( n  1 - "  - -  1) 

- -  n l -q21-"  - -  1)-1[(1 -- p)" + p"(n -- 1) 1-8 - -  l] 

= K . .  

But K s is the value of the function H " ( ~ / ) -  H"(~/]~) at the point 
(i01, P2 , ' " ,  Pn) -= (1In, l/n,..., l /n )e  An, f rom which we obtain 

K s ----- max ~,J [H"(~/) - -  He(r/[ f)] = C . .  
(gi , ' - ' ,~ 'a)  n 

Thus,  the theorem is proved. 
This  theorem is a generalization of a known result for the Shannon's 

capacity (see Fano [7]) 

lim C. ---- C = log 2 n - -  p log~(n - -  1) + p log~p + (1 - -  p) log~(1 - -  p). 
~-~1+ 

6 4 3 / z 6 / I - 4  
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For a binary symmetric channel we have with n = 2 

C B = 1 + (2 ~-1 - -  1) 4 [(1 - -p)~ + p ~  - -  1], 

from which it follows 

(6.8)  

C = lim C B = i -~ p log s p -k (1 - -  p) log2(1 - -  p). (6.9) 
~-*1+ 

A further result is given by 

THEOttt~M 11. For an arbitrary (m × 2) transition matrix of  a discrete 
constant channel we have 

C 2 = 1 --  ~, qklqk~. (6.10) 
k=l 

Proof. We take (P l ,  P2) - -  (x, 1 - -  x) ~/13, then 

= 2 I ~  {(xqkl)" -k [(1 - -  x)qk2] 2 -  [xqkl + (1 - -  x) q~z] 2} 

+ x ,  + (1 - x)2 _ 11 = T(x). 

It  is easily shown that the function T(x) has an unique maximum value at the 
point x = 1/2. From this assertion we obtain 

C~ = max [H201) - -  H2(~/[ ~)] 
(Ioi,Io2) e,~ 2 

= max T(x) = T(1) = I -- ~ q~lqTo2. 
~(O,l) 

k=l 

Thus, the theorem is proved. 

For a binary symmetric channel (q11 ---- q22 ~ l --p and qi2 ---- q21 ~---P), 
we get from (6.10) J 

c~  = 1 - 2p(1 - p )  = (1 - p)2 + p~, 

which is (6.8) in the case/3 = 2. It  is clear that we can determine C2, gener- 
ally, with the method of Lagrange multipliers. The  computation C o is in 
general an open question. This problem can be solved with an iterative 
method which is similar to the method for calculation of the Shannon's 
capacity (see Eisenberg [5]). 
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