
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 13, 1-24 (1976)

Computation Sequence Sets

JAMES L. PETERSON

Department of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712

Received October 10, 1974; revised June 18, 1975

A class of automata based upon generalized Petri nets is introduced and defined. The
language which a Petri net generates during an execution is called a computation
sequence set (CSS). The class of CSS languages is shown to be closed under union,
intersection, concatenation, and concurrency. All regular languages and ~ill bounded
context-free languages are CSS, while all CSS are context-sensitive. Not all CSS
languages are context-free, nor are all context-free languages CSS. Decidability
problems for CSS hinge on the emptiness problem for CSS. This problem is equivalent
to the reachability problem for vector addition systems, and is open.

1. INTRODUCTION

Petri nets have been used by several researchers for the description and analysis of
systems of parallel processes [8, 9, 16, 17, 18]. Although the majority of current
research with Petri nets is still directed toward parallel computation, in this paper we
consider Petri nets as an automaton in the same way as finite state machines, pushdown

stack automata, and Tur ing machines. Viewed in this way, a language cen be naturally
associated with the execution of a Petri net. Consideration of the properties of the
class of languages generated by Petri nets yields both new properties of Petri nets and
an interesting addition to formal language theory.

We first define the new class of automata based on Petri nets. Then, the language
of a Petri net, called a computation sequence set (CSS), is defined. A computation
sequence set contains all possible computation sequences which may represent an
execution of a Petri net from its start state to a final state. Formal definitions of these
concepts are given in Section 2. Section 3 investigates the closure properties of the
class of computation sequence sets, and Section 4 relates this new class of languages to
the classical hierarchy of regular, context-free, context-sensitive, and type-0 languages.
Section 5 then considers some decidability questions and conclusions about CSS as
a class of languages.

This work supported, in part, by the National Science Foundation under Grant MCS75-
16425.

1
Copyright /~ 1976 by Academic Press, Inc.
All rights of reproduction in any fo rm reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publ isher Connector

https://core.ac.uk/display/82113982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 JAMES L. PETERSON

2. THE PETRI NET

We begin by giving a definition for the class of Petri nets. This definition follows
the approach of [17] and is essentially the same as the Generalized Petri Nets of [6]
although different notation is used. This general definition subsumes, or is equivalent
to, most other definitions of Petri nets.

2.1. Definition of the Petri Net

A Petri net, C, is a 5-tuple defined by

C = (P, T, Z', S, F),

where

P {Pl , P~ , p~} is a set of places,

T := {t x , t~ t,~} is a set of transitions,

N is the input alphabet, a set of symbols or labels,

S c P is the start place,

F C P is the set offinalplaces.

Each transition, tj ~ T, is an ordered triple defined by

tj ----- (r I~-, 0~)

where

~ is the symbol or label associated with tj (~j ~ 27),

Ij is the bag of input places for t~. (Ij ~ p~o),

Oj is the bag of output places for tj (Oj a P~).

(The Appendix gives a brief summary of the theory and notation of bags. Bags are
essentially an extension of sets which allow multiple occurrences of an element in a bag.
The number of occurrences of an element x in a bag/3 is given by the function #(x,/3).
Our use of bags is for descriptive purposes, so we use the notation and concepts of set
theory with which the reader should be familiar. For a more complete development
of bag theory, the reader is referred to [2].)

The sets P, T, Z' are assumed to be finite. The cardinality of the set P is n and of
the set T, m. Arbitrary elements of P and T are denoted by Pk (1 ~< k ~< n) and tj
(1 ~ j ,~ m), respectively. The set Z' is not generally defined explicitly since it can
be inferred from the definitions of the transitions (27 = {~. [(~j, I j , Oj) ~ T}). We
use a, aj and early lowercase Roman letters (a, b, c,...)to represent elements of 27.

COMPUTATION SEQUENCE SETS

An example Petri net is defined in Fig. 1.

c = (P, T, z, S, F)

P = {Pl, P2, P3, P,, Ps}

T = { t l , t2, ta, t~}
Z = {a, b, c}

S = Pl
F = {p,}

t~ = (a, {p,}, {p~, p~, p~, p~})
t~ = (b, {p~, p~, p~}, {p,})
t~ = % {p~), {p,))
t, = (c, {p,}, {p~, p3))

FIG. 1. Definition of an example Petri net.

When working with Petri nets, we need to refer to the separate components of the
ordered triples which define the transitions. To allow us to specify easily the portion
of a transition which we are discussing, we define three projection functions--the
label function (a), the input function (I), and the output function (O). For a transition
tj -- (ai, I j , Oj), these functions are defined by

r = ~- ,

To map sequences of transitions
function by

a(x) = ~ if x = e ,

a(x) = a(tj) a (y) if x = t~y, tj ~ T, y ~ T* .

I(t j) = I~,

o (t 3 = o~ .

into sequences of symbols, we extend the label

(We use e to denote the empty sequence. 27* denotes the set of all strings over an
alphabet 27.)

A convenient visual representation of a Petri net is a bipartite directed graph. Both
places and transitions are represented as nodes in the graph. To distinguish them,
places are represented by circles and transitions by bars. An arc is directed from a
transition t s to a place Pk for each occurrence of Pk in the output bag, O(tj) , of the
transition. An arc is directed from a place p~ to a transition t~. for each occurrence ofpk
in the input bag, I(t~), of t j . Since the ordering of places and transitions is unimportant,
the start place is assumed to be P l - Final places are indicated by a circle around the
node representing them. The Petri net of Fig. 1 is graphed in Fig. 2.

4 JAMES L. PETERSON

FIG. 2.

~ j J c

Graphical representation of the Petri net of Fig. 1.

The graph representation of a Petri net contains all the information which is
necessary to define the net. Thus we give graph representations of Petri nets rather
than formal definitions for our illustrations.

2.2. Execution Rules for a Petri Net

The above definitions are concerned with the description of the structural properties
of a Petri net. Since the Petri net is an abstract machine, it also has computational
properties. The computational properties refer to its behavior during an execution.
The execution of a Petri net is directed by the existence and location of tokens in
the net. Tokens are abstract entities which we represent by black dots in the circles
of the graphical representation of a Petri net. Tokens move about the Petii net in a
manner dictated by the execution rules for Petri nets. These rules are

(1) The Petri net is initialized by placing one token (the start token) in the start
place.

(2) If the net is in a final state, we may halt; otherwise the set of enabled transi-
tions, U, is computed.

(3) I f U is nonempty, one transition from U is fired, and we may return to
step (2). I f U is empty, the execution halts.

A transition is enabled if all of its input places have (a sufficient number of) tokens
in them. A transition fires by removing tokens from all of its input places and placing
tokens in all of its output places. These definitions are made more precise by

DEFINITION. A transition, t~, is enabled if for each Pk e P, there are at least
(P k , I(t~)) tokens in Pk.

DEFINITION. An enabled transition, t~, fires by first removing # (P k , I(tj)) tokens
from each pe E P, and then adding # (P k , O(tj)) tokens to each pe ~ P.

Execution of a Petri net begins with one token in the start place. Each time that a
transition fires, it may change the number and/or location of tokens in the Petri net
and therefore the state of the net. A Petri net may halt whenever it reaches a final state

C O M P U T A T I O N SEQUENCE SETS

(one token in a final place and zero tokens elsewhere) or it may continue execution.
If the set, U, of enabled transitions is empty, the Petri net must halt.

Figure 3 illustrates the concept of the execution of a Petri net by using the graphical
representation of Fig. 2 to present one possible execution. At each step, the Petri net
and its tokens are given as well as the set U of enabled transitions and the selected
transition which fires.

2.3. The State Space of a Petri Net

The state of a Petri net is defined by the number and location of tokens in the net.
This can also be expl?essed as the number of tokens (possibly zero) in each place of
the net and is commonly called a marking. The number of tokens in each place will
always be a nonnegative integer number, and we represent the state of a Petri net by
an n-vector of nonnegative integers. The firing of a transition represents a change in
the state of the Petri net. A state is reachable if there exists some sequence of firings
which transforms the start state (the state associated with one token in the start place
and zero tokens elsewhere) into the desired state.

We define Q to be the reachable state space of a Petri net. Q is also called the marking

PI has oee token ,

g - {t 1)
e 1 t 6

(b) t i r i n g t 1.

U - {t 2, ~3} ~ t l t4

(d) F1rlnz c 4.

(e) Firing t2.

U - {t2, t 3}

(c) Firing t 3. /] ~ l)

U = [t 2, t 3, t4t
t I t4

FIG. 3.

(f) Fitlng t 2,

One possible execution of the Petri net of Fig. 1.

6 JAMES L. PETERSON

class of a Petri net. I f N represents the set of nonnegative integers then Q _c N s. Each
element of Q is an n-vector whose kth component represents the number of tokens in
place pk (1 ~< k ~ n). We denote by S both the start place and the vector (1, 0, 0,...);
F denotes both the set of final places and the set of vectors representing one token in
a final place and zero tokens elsewhere (the final states).

The next-state function, 3, is a (partial) flmction from N ~ • T into N n. For a state
vector, q, and a transition, t~., the next-state function, 3(q, tj), is defined if and only
if for allk, 1 <~h <~n,

q~ >~ #(p~, I(t3).

Thus a transition tj is enabled in a state q if and only if 3(q, tj) is defined. If 3(q, t~)
is defined, then the new state vector defined is the state resulting from the firing of t j .
The kth component of the new state is defined by

3(q, t~)e = qk -- # (P ~ , I(ts)) + # (P k , O(t~)).

Since qk ~ # (P ~ , I(tj)) if 3(q, tj) is defined and # (P k , O(t~)) >/O, we see that if
3(q, tj) is defined, then 3(q, tj) /> 0 and hence 3(q, t~) e N".

The definition of 3(q, G') can be recast as a vector replacement system [12]. We
specify, for each transition, t~-, two vectors, uj and vj , where (u~)k = - - (Pk , I(tj)) and
(vj)k -- - - # (P k , I(tj)) + # (P k , O(ts)). Then 3(q, tj) is defined if q + uj >~ 0, and if
3(q, tj) is defined, then 3(q, t~) = q + %.. The reachable state space of a Petri net
corresponds to the teachability set of a vector replacement system (see Section 5).

As with the label function, we extend the next-state function from a domain of
individual transitions to a domain of sequences of transitions. I f x is a sequence of
transitions (x e T*), then

3(q,x) = q if x = e ,

=3(3(q , tj),y) if x = t j y for t j e T , y e T * .

Of course 3(q, x) is defined if and only if the next-state functions of the above definition
are defined for their arguments.

We can now formally define the reachable state space, Q, as the smallest subset of N n
defined by

(a) S~9 .
(b) if q e Q, and 3(q, x) is defined for x e T*, then 3(q, x) e Q.

Since we are concerned only with reachable states, we restrict the next-state function
to the reachable state space, Q. Thus, 3: Q • T* --+ Q, and (except perhaps for the
start state) the mapping is onto.

It should be clear from the definition of the state space, the next-state function, and
the reachable state space that the automaton defined by (Q, 3, Z', S, F) is equivalent

COMPUTATION SEQUENCE SETS

to (P, T, ~', S, F) as a mathematical formulation of a Petri net. We use both definitions
interchangably.

2.4. Transition Sequences and Computation Sequences

Each separate execution of a Petri net defines, or is defined by, the sequence of
transitions which are fired during the execution of the net. We say that a sequence of
transitions, x ~ T*, is legal if it represents a possible sequence of transition firings from
the start state, S. Thus a sequence is legal if 3(S, x) is defined. A sequence is complete
if it is legal and 3(S, x) ~F.

To illustrate these concepts, consider the execution shown in Fig. 3. This execution
is completely defined by the transition sequence tlt3t, t2t 2. For this example, the
sequence is both legal and complete. The sequences tlt3t4 and tlt3t3t4t4t2t2 are legal but
not complete, since

b(S, tlt3q) = (0, 2, 2, 0, 1),

~(S, tlt3t3t4t4t2t2) = (0, 1, 0, 0, 1).

The sequences tit 4 , tztzt3t4, and t a are neither complete nor legal.
Associated with each sequence of transitions, x e T*, is the sequence of symbols,

y E X*, defined by y = a(x). A sequence of symbols which corresponds to a legal and
complete transition sequence is a computation sequence. Each computation sequence
represents one (or more than one) execution of the Petri net which begins with one
token in the start place and ends with one token in a final place, while all other places
have zero tokens both before and after the execution (although probably not during the
execution). The computation sequence set of a Petri net is the set of all computation
sequences for that net. We denote the computation sequence set of a Petri net, C,
by L(C). Formally,

L(C) = {y e Z] ~x ~ T* such that y -= e(x) and 3(S, x) ~F}.

Many Petri nets may generate the same CSS. We define two Petri nets to be equivalent
if their CSS are equal. The CSS is the language of the Petri net and is considered the
characterizing feature of the net.

The next-state function is again extended to be defined over computation sequences
as well as transition sequences by defining 3(q, y) = q' for any string y ~ 27* for which
there exists a transition sequence, x a T*, with y = a(x) and 3(q, x) = q'. Note that
with this definition ~ may no longer be single-valued, but may yield a set of states.
If 3 is not single-valued, then the Petri net is nondeterministic. We define a CSS to be
nondeterministic if every Petri net which generates it is nondeterministic. A deter-
ministic CSS is then a CSS for which there exists a deterministic Petri net which
generates it. Figure 4 is a nondeterministic Petri net with a nondeterministic CSS.

8 JAMES L. PETERSON

~(c)- ~,~Jc kl i - j or j-k, i, j,k>_1]

FIG. 4. An inherently nondeterministic Petri net.

(The proof that no equivalent Petri net is deterministic is similar to the proof in
[4] that this CSS is an inherently nondeterministic context-free language.)

3. CLOSURE PROPERTIES OF COMPUTATION SEQUENCE SETS

Having defined the Petri net automaton and its associated language, we turn now to
investigating the properties of the class of CSS languages. We begin our investigation
by considering the closure properties of CSS under union, intersection, concatenation,
and concurrent composition. We first define a restricted class of Petri nets whose special
properties are convenient in the proofs of closure under these forms of composition.

The general definition of Petri nets in Section 2 allows the construction of "patho-
logical" Petri nets, such as the net of Fig. 5, whose strange properties make the proofs

c a a b

t I t 2 t 3 t 4

FIG. 5. A "pathological" Petrl net.

which follow unnecessarily complicated. In particular, the transitions with empty
input or output bags require special attention. We avoid these problems by showing
that such transitions can be eliminated without changing the language of the Petri net.
This is done by introducing a new place, p~, to the net. This place is made an input and
output to every transition in the net. As long as there is a token in this place, the

COMPUTATION SEQUENCE SETS

possible transition sequences are identical to the transition sequences of the original net;
when this token is removed, all transitions are disabled. Using this approach we
introduce a new start place S ' and final place, Pl �9 New transitions are added which
mimic the old transitions except that the first transition to fire places a token in p~,
and the last transition to fire removes this token. From this construction, we
define a restricted class of Petri nets in standard form by

DEFINITION. A Petri net, C = (P, T, X, S, F) is in standard form if

(1)
(2)
(3)

I(tj) ~ ;g and O(t~) ~ ;g for all t~ c T,

S e} O(tj) for all t j e T,

there exists a place Pr e P such that

(a) F = {Pl} (if e ~L(C)) o r F = {Pl , S} (if e eL(C)),

(b) h 6 I(tj) for all t j e T,

(c) 8(q, tj) is undefined for all t j e T and q e Q which have a token in Pl
(i.e., qf > 0).

A Petri net in standard form has no transitions with empty input or output bags.
It also has a start place which is an output of no transition and a special "final" place
which is an input to no transition.

The execution of a Petri net in standard form starts with one token in the start place.
The first transition removes this token and after this firing the start place is always
empty. Eventually (if the transition sequence is complete) a token is placed in the
final place. This token cannot be removed from the final place both because no
transition has an input from the final place and because all transitions are disabled.
The restrictive nature of the standard form Petri nets is useful when defining com-
positions of Petri nets. To show that standard form Petri nets are not less powerful
than general Petri nets, we prove the following theorem.

THEOREM 1. Every Petri net is equivalent to a Petri net in standard form.

Let C = (P, T, Z', S, F) be a Petri net. Define C' ~ (P', T', 2, S', F') by

P ' : : P w {S ' , p r , PJ}, where {S', p r ,p r} C~ P = ;~,

F' := {S ' ,pl} if S e F ,

-= {py} if S q}F.

We define four kinds of transitions in the set T'. First, for all tj e T, we include a
transition t / = (a(tj), I(tj) + {Pr}, O(tj) + {Pr}) in T'. To start the net we consider

10 JAMES L. PETERSON

that two kinds transitions in T could fire first; those with I(t~) = {S} and those with
I(tj) -- ~ . For each of these we define t~ by

tj' = (a(tj), {S'}, O(tj) + {S, pr}) if I(tj) = ~ ,

= (a(t~), {S'}, O(ti) + {Pr}) if I(t~) = {S}.

Similarly the last transition to fire could be either a transition with O(tj) = ; ~ o r
O(t~) = {Pk} such that Pk ~F. For each of these we define t 7 by

t 7 = (a(t~.), {Pr} + I(tj), (Pl}).

These transitions define a legal and complete transition sequence

t"t 't" .. .t" t" (l > 2) Jx J2 Ja -J t -x J

in C' for every legal and complete sequence lJlt~2 " " t j , in C. In addition, we must
consider sequences of length 1. For any a 6 27 for which 3(S, a) ~F, we add to T '
a transition (a, {S'}, {Pl}). This completes the specification of T'. From the construction,
the languages of C and C ' are equal, and hence, the two Petri nets are equivalent.
C ' is in standard form. Figure 6 illustrates the construction on the Petri net of Fig. 5.
We now proceed to investigate the closure properties of CSS.

(
\

Ftc . 6. A s tandard fo rm Petri ne t equivalent to the Petri ne t of Fig. 5.

We consider two CSS L a and L 2 and two Petri nets in standard form, C~ =
(P1, T~, 27, S t , FI) and C2 = (P2, T2,27, $2, F2) with L 1 = L(C1) and L~ = L(C2).
We construct a new Petri net, C' = (P' , T' , 27, S' , F ') whose language, L ' = L(C'),
is the desired composition ofL 1 andL 2 . Figure 7 gives example Petri nets for C 1 and C2
which we use in our discussions to illustrate the construction of C'.

C O M P U T A T I O N S E Q U E N C E S E T S

t I t 3 t5

(.a)" L(C 2) = {ancb n l n > 1 }

11

(b) z (e 2) - {~(r

FIG. 7. Illustration Petri nets.

3.1. Concatenation

The concatenation of two languages can be formally expressed as

L1L2 = { x I X 2 I x 1 6L~ and x 2 ~L~}.

THEOREM 2. I f L 1 and L~ are CSS, then the concatenation of L 1 and L 2 is CSS.

We define a Petri net, C ' --~ (P ' , T' , X, S ' , F ') , where

P ' = P 1 U P 2 ,

T' = T 1 u T 2 U {(a~, {pf}, Oj)] (a~, {$2}, Oj) ~ T~, pf eF1},

S ' ~ S 1 ,

F' = F 2 if 8~ 6 F2 ,

= F x U F 2 otherwise.

With this definition we have overlapped the final places of Ca with the start place
of C 2 . The transition which signals the termination of C1 by placing a token in an
element o f F 1 acts to initiate C 2 by placing a token in a place equivalent to $2 �9 Since
both nets are in s tandard form, all transitions of the C 1 subnet are disabled when the
token is placed in a final place o f f 1 , and all transitions of the C~ subnet are disabled
until a token is placed in one of these places. Any "extra" tokens produced by an
execution of the C1 subnet remain in that net after the token is placed in an element

12 JAMES L. PETERSON

of F 1 , so that C' cannot reach a final state unless both C t and C a have reached final
substates. Thus, if a sentence is generated by C', it must be composed of a sentence
which was generated by C x followed by a sentence generated by Ca, and is in the
concatenation ofL 1 and L a . Similarly, any computation sequence in the concatenation
has a path from S 1 to an element of Fz in C', and is an element of L'. This shows that
CSS are closed under concatenation. Figure 8 illustrates this construction.

FIc~. 8. A Petri net whose CSS is the concatenation of the Petri nets of Fig. 7.

3.2. Union

Since languages are sets of strings, a common method of composition is to take the
union of two languages. This is defined as

L 1 U L 2 = { x l x ~ L l o r x ~ L a } .

THEOREM 3. I l L 1 and L 2 are CSS, then the union of L t and L 2 is CSS.

We construct C' with L(C ') - - L 1 t) L2 �9 The definition of C' is

p ' _ p~ u p2 W { S'},

T' = T~ ~3 r 2 w {(aj, {S'}, Oj)] (a j , {$1}, 05) E T 1 or (a t , {$2), Oj) ~ To},

F ' = F , w F a ~ 3 { S ' } if S l e F l o r S a E F a ,

= F 1 U F 2 otherwise.

This construction introduces one new start place and transitions which make this
new start place equivalent to both 81 and S a . Placing the start token in S' enables a
transition corresponding to every transition which would be enabled by placing a start
token in S 1 or S 2 . When one of these transitions fires, the output tokens are placed in
a subnet defined by (P1, T1) or (/)2, Ta) and execution continues exactly as it would
in C 1 or C 2 . The null sequence is included by the definition o fF ' . This construction
generates L 1 u L a . Thus CSS are closed under union. The construction of C' from
C 1 and C a is illustrated in Fig. 9 for the C 1 and C2 of Fig. 7.

3.3. Intersection

As with union, the intersection composition is similar to the set theory definition of

intersection and is given for CSS by

L l n L 2 = { x l x ~ L a a n d x ~ L a } .

COMPUTATION SEQUENCE SETS 13

FIe. 9.

a a b b

a b

A Petri net whose CSS is the union of the CSS of the Petri nets of Fig. 7.

THEOREr~t 4. I f L 1 and L 2 are CSS, then the intersection o f L 1 and L 2 is CSS.

The construction of a Petri net to generate the intersection of two CSS is rather
complex. At a given point in a computat ion sequence if a transition fires in one Petri net,
there must be a transition in the other Petri net with the same label which can fire also.
When there exists more than one transition in each Petri net with the same label, we
consider all possible pairs of transitions from the two nets. For each of these pairs,
we create a new transition which can fire if and only if both transitions in the old nets
can fire. This is done by making the input (output) bag of the new transition the bag
sum of the input (output) bags of the pair of transitions from the old Petri nets. Thus
if tj ~ T 1 and tk ~ Tz are such that a(tj) : a(t~) : ajk , then we have a transit ion
tik -- (ajk, I~- + Ik , Q- q- Ok) in T' . Some of these transitions will have inputs which
include the start place. I f for a transition tjk in T ' as defined above, I(t~k) = { $ 1 , $2} ,

then we add a transit ion tjk with I(t~k) : {S'}, and other components equal. Similarly,
for any transit ion tj~ with O(tjk) : {Pfl ' Pf,} with pyl ~ F 1 and Pl, ~ F 2 , we add a new
transition t" " ~k which is equal to t~k except that O(t jk) {p/}. F ' is { p / , S'} if S 1 e F t
and Sz ~Fz and {p /} otherwise. Figure 10 illustrates this construction.

3.4. Concurrency

Concurrent composition allows all possible interleavings of a computat ion sequence
from one CSS with a computat ion sequence from another CSS. Riddle [19] has
introduced the A operator to represent this concurrency. The concurrency operator
has also been called the "shuffle" operator [5]. I t is defined for two strings by

ax t A bx 2 = a(x 1 A bx2) + b(ax 1 A x2) ,

a A E = E A a = a ,

JAMES L. PETERSON

(

FIG. 10.

14

C

()

49

f59

A Petri net whose CSS is the intersection of the Petri nets of Fig. 7.

where a, b c Z', and Xx, x2 e 27". The concurrent composition of two languages is then

L 1A L 2 = { x 1 /1 x 2 [x I e L 1 and xz EL~}.

For example, ab A c = abc 4- acb 4- cab, (a + b) A c = ac 4- ca 4- bc 4- cb. (The
shuffle operator was defined so that it appears that strict alternation of elements of
two strings is required. That is, if x = x l x 2 "" xk and y = Y l Y 2 "'" Y ~ , then shuffle

(x , y) = XxYxX2y ~ "" x k y k . However, x i a n d y i are allowed to be (possible null) strings,
not simply elements, of the alphabet.)

I t is easily shown that regular, context-sensitive and type-0 languages are closed
under concurrency, while context-free languages are not. For CSS, we have

THEOREM 5. I f L 1 a n d L 2 are CSS, then the concurrent composition o f L 1 and L 2 is CSS.

The construction of a Petri net to generate the concurrent composition o f L 1 and L~
given nets to generate these CSS is basically the construction of a Petri net which places
tokens in both the start places of C 1 and C 2 , and then accepts the input if tokens are
in any two final places (one from each net), and no other places. To start the combined
Petri net we introduce a new start place, S ' . The first transition which fires in the
concurrent composition of two CSS will come from either C 1 or C~. I f the first
transit ion which fires is from C 1 , then we modify it to also place a token in $2 ,
allowing the Petri net C 2 to then start whenever it wishes. A similar strategy is used if
the first transition is from C 2 . Thus C' is defined by

P ' = /) 1 U P2 ~) {S', p /} ,

T ' = T~ u T . u Ts~ ,

F ' = { p / } ,

C O M P U T A T I O N S E Q U E N C E S E T S 15

where,

rsF = {(oj. {s'}. os + {&}) l (~;. {&}. 0 3 e rl}

u {(~s. {s'}. os + {sl}) r (~j. {s~}. 0 3 e T,}

tJ {(e~, I s -b {Pk), {P/)) [(ors, I s , {Pl}) e r~ , Pl ~F1, Pk ~F2}

ty {(ors, I t + {Pk), {P/}) [(es, Is , {Pl}) e 7'2, pleF~ ,Pk eF1}.

The last two types of transitions added to T ' by Tsv remove the tokens from final
places in C 1 and C 2 and place them in a new final place when the last transition of the
composition is fired. This construction is demonstrated in Fig. 11.

a , b

FIc. 11. A Petri net whose CSS is the concurrent composition of the Petri nets of Fig. 7.

The construction is correct only for E-free CSS. However, if L 1 = {e} t3 LI+ with
ECLa+ , then L 1 A Lz =L2 td (LI+ A L2). Thus, since CSS are closed under union,
CSS are closed under concurrent composition.

3.5. Other Operations on CSS

The closure properties of CSS under many other operations can be investigated,
but for our purposes the above four are most relevant. It is easily shown that CSS are
also closed under reversal, e-free homomorphism, and E-free regular substitution [17].
Hack has shown that CSS are closed under e-free homomorphism, e-free Finite State
Transducer mappings, and inverse homomorphisms. He has also shown that CSS are
not closed under Kleene star or general substitution [7].

It is conjectured that CSS are not closed under complement.

57I/I3/I-2

16 JAMES L. PETERSON

Hopcroft and Ullman [10] have compiled a table of closure properties of regular,
context-free, context-sensitive, and type-0 languages for several closure operations.
A similar study for CSS as a class of languages might shed some further light on the
character of the CSS languages and indirectly, on their relationship to these other
classes of languages. Knowledge of the relationship between CSS languages and these
other classes of languages might be useful for establishing decidability results for CSS
from the known results for these languages.

4. COMPARISON OF C S S LANGUAGES TO OTHER LANGUAGE CLASSES

Thus, we turn now to investigating the relationship between CSS and the classes
of regular, context-free, and context-sensitive languages.

4.1. Regular Languages

One of the simplest and most studied classes of formal languages is the class of
regular languages. These languages are generated by regular grammars and finite
state machines. They can be characterized by regular expressions. Problems of
equivalence or inclusion between two regular languages are decidable and algorithms
exist for their solution [10]. With such a desirable set of properties it is encouraging
that we have the following theorem.

THEOREM 6. Every regular language is CSS.

The proof of this theorem is based on the fact that every regular language is generated
by some finite state machine. A finite state machine is defined as a 5-tuple, (Q, 8, Z, S,F),
where Q is a finite state space, 8 a next-state function from Q • z into Q, z an
alphabet, S ~ Q a start state, and F _C Q a set of final states. We can construct an
equivalent Petri net as (Q, T, Z, S, F), where the set of transitions is

T = { (~ , {qj}, {qk}) I 8(qj, ,~,) = qk}-

This Petri net will generate the same language as the finite state machine. Thus, every
legular language is CSS.

4.2. Context-Free Languages

The converse to Theorem 6 is not true. Figure 7 displays a Petri net which generates
the eontex-free language {a~cb n] n ~ 1 }. Since this language is not regular, we know
that not all CSS are regular. Figure 12 shows that not all CSS are context-free by
exhibiting a CSS which is context-sensitive, but not context-free. Unlike the situation
with regular languages, however, there also exist context-free languages which are not
CSS. An example of such a language is the context-free language (ww~Iw ~ Z*).
This is shown in the following theorem.

,,,j

a

C O M P U T A T I O N SEQUENCE SETS 17

~(c) = {a~b=c n [~ >_0}

FIG. 12. A context-sensitive, but not context-free CSS.

THEOREM 7. There exist context-free languages which are not CSS.

Assume there exists an n-place, m-transition Petri net which generates {ww R [w ~ X*}.
Let k be the number of symbols in Z', k > 1. For an input string x x R, let l - -] x [,
the length of x. Since there are k t possible input strings x, the Petri net must have k s
distinct reachable states after 1 transitions in order to remember the complete string x.
If we do not have this many states, then for some strings Xl and x~, we have 8(S, Xl) =
8(S, x2) for x 1 :/: x z . Then,

~(s, xlx~ R) = ~(~(s, xO, x~ R)

= ~(a(s, x~), x~R)

= a (s , x~x2 R)

e F

and the Petri net will incorrectly generate XlX2 R,
For each transition t j , there exists a vector v~ such that if 3(q, tj) is defined then

3(q, t~) q + %-. Thus after I inputs, a Petri net will be in a state q given by

l

q = S + ~ vj,
i=1

for a sequence of transitions ty~, tj~ ,..., tj~. Another way of expressing the above sum is

q = S + ~ a j v j ,
j = l

where aj is the number of times transit ion tj occurs in the sequence. We have also the
constraint that

~ a ~ = l .
J = l

18 JAMES L. PETERSON

At best the vectors v 1 , v 2 ,..., vm will be linearly independent and each vector of
coefficients (a t , a2 ,..., am) will represent a unique state q. Since the sum of the
coefficients is l, the vector of coefficients is a partition of the integer l into m parts.
Knuth [13] gives the number of partitions of an integer l into m parts as

NOW since

l + m - - l) .
m - - 1

(l + m - - 1) (l -t- m - - 1) ... (l + 1)
m - - 1 = (m - - 1)! < (1 + m) '~,

there are strictly less than (1 + m) m reachable states in Q after 1 inputs. For large
enough l, we have then that

l + m - - 1 k~"
m - - 1) < (l + m)m <

It is impossible for there to be k ~ distinct states in Q for each of the k ~ possible input
strings. Thus it is impossible for a Petri net to generate the set ww R. Notice that this
proof depends only on the number of places, transitions, and symbols. It is not
affected by the deterministic or nondeterministic nature of the net.

Having shown that not all context-free languages are CSS and not all CSS are
context-free, the question arises, What is the class of languages which are both
context-free and CSS ? At present we cannot fully answer this question, but we can
give an indication of some of the members of this intersection. One subset of both
classes of languages is regular languages. Another subset is the set of bounded context-
free languages [4].

4.3. Bounded Context-Free Languages

A context-free language, L, is a bounded context-free language over an alphabet Z',
if there exist strings w 1 , w 2 ,..., w m from Z'* such that

L _C Wl*W2 ~< "'" Wq,n ~.

Ginsburg [4] has developed a detailed examination of the properties of bounded
context-free languages and gives the following characterization theorem ([4, Theo-
rem 5.4.1]).

THEOREM 8. The family of bounded context-free languages is the smallest family of
sets defined by

(1) I f W is a finite subset of Z*, then W is a bounded context-free language.

COMPUTATION SEQUENCE SETS 19

(2) I f W 1 and W2 are bounded context-free, then W a u W 2 and W 1 W ~ are bounded

context-free.

(3) I f W is bounded context-free, and x, y ~ Z*, then {xiWyi l i > 0} is bounded

context-free.

We have already shown that every regular language (and hence every finite subset
of Z*) is CSS. We have also shown that CSS are closed under union and concatenation.
Thus we have only to show that CSS are closed under the operation described in (3)
above to show that bounded context-free languages are CSS.

For any case where x, y, or W is E, x i W y i reduces to a language of the form x ' W ,
Wy*, x*, xiy i, o r W which are CSS, for x, y ~ 27* and W CSS. For nonnull x and y,
we define Cx and Cy by

X = X l X 2 "'" X k , X i ~ ~ ,

c , = (P~, T~, ~, S~, F~),

P~ : { p ~ , P~ , P~+~},

T~ = {(x~, {Px,}, {Px,+,} [1 ~ i ~ k},

F~ : {P~k+l},

Y ~ YlYz "'" Yt , Yi e X,

C,, = (Pu, T~, Z, S v , Fu),

Pv = {Pu~, Pv2 , Pv,+~},

T~ = f ly , , {p~,}, {p~,+) I ~ ~ i < ~),

S v = p~,~,

F v : {pv Z+I }"

With these definitions,L(C~) = {x) andL(Cu) = {y). Let Cw = (Pw , Tw , Z, S w , Fw)
be aPetri net in standard form with L(Cw) = W; then we define C' = (P' , T', Z, S ' ,F ')

by

P' = P x u P ~ w P w u { p) ,

T ' = T~ U T~ u Tw w T ~ u Tzw W Twu W Tyu,

S' = S ~ ,

F ' = F~ ,

where

Txx : {(xk, {P~k}, {P, P~I})},

T~w - - {(a(tj), {Pxl}, O(tj)) I t~ ~ T w and I(ts) : Sw},

Twv = {(a(t3),I(t~), {Pv~+l}) [tj ~ Tw and O(tj) ~Fw},

T ~ = {(Yl, {P, P~ .3 , (P~,})}'

The place p acts as a counter of the number of times that x has been generated and
assures that y will be generated the same number of times if the string is correct. The
additional transitions allow the proper sequencing of the Cx, C w , and C v nets.

20 .]'AMES L. PETERSON

With this construction, all bounded context-free languages are shown to be CSS.
Are there context-free languages which are also CSS but not bounded ? Unfortinately,
yes. Ginsburg shows that the regular expression (a + b)* is not bounded context-free.
Since this language is both context-free and CSS, we see that bounded context-free lan-
guages are a proper subset of the family of languages which are both CSS and context-
free. (a + b)*ca~b ~ is both context-free and CSS but neither regular nor bounded.

4.4. Context-Sensitive Languages

We turn now to context-sensitive languages. F rom the example in Fig. 12 we know
that some CSS are context-sensitive; below we prove that all CSS are context-sensitive.
Since we know that all context-free languages are also context-sensitive and there exist
context-free languages which are not CSS, there exist context-sensitive languages which
are not CSS. Thus the inclusion is proper.

THEOREM 9. All CSS are context-sensitive.

There are two ways to show that a language is context-sensitive: Construct a
context-sensitive grammar which generates it, or specify a nondeterministic linear
bounded automaton which recognizes it. We use the latter technique for the proof
given here. A proof using a context-sensitive grammar is given in [17].

A linear bounded automaton is similar to a Tur ing machine. I t has a finite state
control, a read/write head, and a (two-way infinite) tape. The limiting feature which
distinguishes it from a Tur ing machine is that the amount of tape which can be used
by the linear bounded automaton to recognize a given input string is bounded by a
linear function of the length of the input string. In this sense it is similar to the push-
down automaton used to recognize context-free languages (since the maximum length
of the stack is bounded by a linear function of the input string length) except that the
linear bounded automaton has random access (in the same sense as a Tur ing machine)
to its memory, while the pushdown automaton has access to only one end of its memory.

To recognize a CSS with a linear bounded automaton, we simulate the Petri net
by remembering, after each input, the number of tokens in each place. How fast can
the number of tokens in a Petri net grow, as a function of the length of the input ?
After the transition sequence t j l , tj2 ,..., tit we have seen that the Petri net is in a state
defined by

q : 8(S, t~l , t~,) : S + ~ v~,,
i=1

where v~- is the vector describing the change in state caused by firing transition t~.
Since the vj are fixed by the structure of the Petri net, there is a maximum vector v
which is (component-wise) greater than all v~ (1 ~ j ~ m). Thus

q < S + l . v .

COMPUTATION SEQUENCE SETS 21

n
If [v] = ~-~i=1 ~'i , then the number of tokens, ~7, in a Petri net after l transitions is
bounded by

~ < l §

Thus the number of tokens, and the amount of memory needed to remember them,
is bounded by a linear function of the input length. Hence CSS can be recognized by
linear bounded automata, showing that CSS are context-sensitive.

'ry'pe-O (T-O}

Co~text - S e n s i t s (CS)

CSS Context-Free (CF)

Regular (R) Sounded Context-Free (BCF)

FIG. 13. Relationship of CSS to other classes of languages.

Figure 13 summarizes the relationships among the classes of languages which are
regular, bounded context-free, CSS, context-free, and context-sensitive. An arc
between two classes of languages indicates proper containment.

5. DECIDABILITY PROBLEMS AND CONCLUSIONS

A large number of problems for CSS and Petri nets are currently unanswered. The
decidability of the following list of decision problems (among others) needs resolution.

Given two CSS, are they equal ? (The Equality Problem)

Given two CSS, is one a subset of the other ? (The Containment Problem)

Given a CSS, is it regular, bounded context-free, or context-free ?

Given a CSS, is it finite or infinite ?

Given a CSS, is it empty ?

The last problem above is the emptiness problem for CSS. This problem is central
to the decidability properties of CSS languages. If the emptiness problem is undecidable,
then all of the above questions are undecidable [17].

Another viewpoint on the emptiness problem for CSS can be obtained by considering
the equivalence between the state space of the Petri net and vector replacement
systems. Keller [12] has defined a vector replacement system as a triple (q0, U, V),

22 JAMES L. PETERSON

where U and V are sets of n-vectors over the integers, with u~. ~ v~- for u~- ~ U and
vj E V (1 ~ j ~] U] =] V]). A reachability set, Q, is defined by

(a) qo cQ,
(b) i f x ~ Q a n d x + u j ~ / 0 , t h e n x + v ~ E Q (u j E U , v j~V) .

Comparing this with the definition of the state space of a Petri net (Section 2.3),
we see that the emptiness problem for CSS is similar to the reachability problem for
vector replacement systems: Given a vector replacement system with reachability
set Q and an arbitrary vector x, is x ~ Q ? This reachability problem is equivalent to the
reachability problem for vector addition systems [11, 14].

A short proof along the lines of Nash's proof of the equivalence of the (general)
reachability to the zero reachability problem [11] shows that the emptiness problem
for CSS is equivalent to the reaehability problem for vector replacement and addition
systems. The decidability of these questions is an open problem.

The use of concepts from formal language theory in the investigation of Petri nets is
still a new field of research. Some preliminary investigations along this line have been
made by other researchers. Baker [1] considered briefly the prefix languages of Petri
nets defined by the set of legal (but not necessarily complete) computation sequences.
This has been developed further by Hack [7], who considers the properties of four
related classes of languages which can be defined for Petri nets. These languages result
from considering either prefix or final-state languages either with or without null
labels (a(tj) = E).

Another interesting connection between formal language theory and Petri nets has
been considered by Crespi-Reghizzi and Mandrioli [3]. Their work points out the
relationship between Petri net languages and the matrix context-free languages. Petri
net languages can also be related to the Szilard languages [20] for matrix context-free
languages.

Although some of the fundamental properties of CSS have been established, many
questions concerning CSS are still unanswered. We feel that CSS, and other classes
of languages which can be associated with Petri nets, are an important new type of
folmal languages. CSS provide a useful bridge between formal language theory and
research in the area of parallel computation using Petri nets, and, we believe, add
significant new concepts to both existing theories.

APPENDIX: A BRIEF THEORY OF BAGS

The theory of bags (also called multisets) has been developed by Cerf et al. [2]. Bags
are an extension of the concept of sets. A bag, like a set, is a collection of elements
from some domain. Unlike a set, however, an element may occur in a bag more than

COMPUTATION SEQUENCE SETS 23

once. A function, # (' , "), is defined on elements of a domain and bags over that
domain which yields the number of occurrences of the element in the bag. That is,

#(x , fi) = k >~ 0 if there are exactly k occurrences of the element x in the bag/3.

Since the theory of sets is included in the theory of bags (for the special case when
the range of the # function is {0, 1}), we adopt most of the notation and many of the
basic concepts of sets for our work with bags. Figure A lists some of the concepts of
bags, gives the notation we use, and the formal definition in terms of the # function.

Concept Nota t ion

M e m b e r s h i p x �9 B

Size of bag I B]

Bag equali ty A = B

Bag inclusion A C B

Strict bag inclus ion A C B

Bag un ion d u B

Bag intersect ion A c~ B

Bag s u m A + B

Bag difference A -- B

E m p t y bag

Limi ted repeti t ion D ~
over a domain D

T h e set of all bags D ~
over a domain D

Defini t ion

(x , B) > 0

[B I = 5 3 ~ # (x , B)

Vx[#(x, A) = # (x , B)I

Vx[#(x, A) < #(x, B)J
A _ C B a n d A 4: B

Vx[#(x, A u B) = m a x (# (x , A), # (x , B))]

Vx[#(x, A t~ B) = m i n (# (x , A), # (x , B))]

Vx[#(x, A + B) = #(x, A) + #(x, B)]
Vx[#(x, ,4 - B) = #(x, A) - #(x, n n B)]
Vx[#(x, ~) = 0J
VB �9 D", Vx �9 D [# (x , B) ~ n], D" C_ D o~

VB e D% Vx e B[x �9 D]

Fro. A. Concepts , notat ion, and definition of bags.

For bags over a finite domain, D = { d l , d2 ,..., d~}, a natural correspondence exists
between a bag fi ~ D ~ and the n-vector ~(fl) over the nonnegative integers defined by

T(fi)i = # (a i , fl), 1 ~< i ~< n.

This is known as the Parikh mapping [15] of the bag.

ACKNOWLEDGMENTS

I gra teful ly acknowledge the help o f Professor T . H. Bredt and the careful, helpful, and
encourag ing remarks o f M. Hack in the preparat ion of this paper. Mr. Hack ' s review and
c o m m e n t s have helped to correct some early errors in the paper.

24 JAMES L. PETERSON

REFERENCES

1. H. BAKER, Petri nets and languages, Computation Structures Group Memo 68, Project MAC,
Massachusetts Institute of Technology, 1972.

2. V. G. CERE, E. B. FERNANDEZ, K. P. GOSTELOW, AND S. A. VOLANSKY, Formal control-flow
properties of a graph model of computation, Report ENG-7178, Computer Science Depart-
ment, University of California, Los Angeles, 1971.

3. S. CRESPI-REGHIZZI AND D. MANDRIOLI, Petri nets and commutative grammars, Rapporto
Interno 74-5, Laboratorio di Calcolatori, Istituto di Elettrotecnica ed Elettronica del
Politecnico di Milano, 1974.

4. S. GtNSBURG, " T h e Mathematical Theory of Context-Free Languages," McGraw-Hill ,
New York, 1966.

5. S. GINSBURG AND S. GREIBACH, Principal AFL, J. Comput. System Sci. 4 (1970), 308-338.
6. M. HACK, Decision problems for Petri nets and vector addition systems, Computation

Structures Group Memo 95, Project MAC, Massachusetts Institute of Technology, 1974.
7. M. HACK, Petri net languages, Computat ion Structures Group Memo 124, Project MAC,

Massachusetts Institute of Technology, 1975.
8. A. W. HOLT AND F. COMMONER, Events and conditions, in "Record of the Project MAC

Conference on Concurrent Systems and Parallel Computation," pp. 3-52, ACM, New York,
1970.

9. A. W. HOLT, H. SAINT, R. M. SHAPIRO, AND S. WARSHALL, Final report on the information
systems project, Report RADC-TR-68-305, Rome Air Development Center, Griffiss Air
Force Base, New York, 1968.

10. J. E. HOPCRAFT AND J. D. ULLMAN, "Formal Languages and Thei r Relation to Automata,"
Addison-Wesley, Reading, Mass., 1969.

11. R. M. KARP AND R. E. MILLER, Parallel program schemata, J. Comput. System Sci. 3 (1969),
167-195.

12. R. M. KELLER, Vector replacement systems: A formalism for modeling asynchronous
systems, Technical Report 117, Department of Electrical Engineering, Princeton University,
1972.

13. D. E. KNUTH, "The Art of Computer Programming," Vol. 3: "Sorting and Searching,"
Addison-Wesley, Menlo Park, Calif., 1973.

14. B. O. NASH, Reachability problems in vector addition systems, Amer. Math. Monthly 80
(1973), 292-295.

15. R. J. PAR1KH, On context-free languages, J. Assoc. Comput. Mach. 13 (1966), 570--581.
16. S. S. PATIL, Coordination of asynchronous events, P h . D . Thesis, Department of Electrical

Engineering, Massachusetts Institute of Technology, 1970.
17. J. L. PETERSON, Modelling of parallel systems, Ph. D. Thesis, Department of Electrical

Engineering, Stanford University, 1973.
18. C. A. PETRI, Kommunikation mit automaten, Ph. D. Thesis, University of Bonn, Germany,

1962 [German; English transl.: Supplement 1 to Technical Report RADC-TR-65-337,
Vol. 1, Rome Air Development Center, Griffiss Air Force Base, New York, 1966.]

19. W. E. RIDDLE, The modeling and analysis of supervisory systems, P h . D . Thesis, Depart-
ment of Computer Science, Stanford University, 1972.

20. A. SALOMAA, "Formal Languages," Academic Press, New York, 1973.

