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A class of automata based upon generalized Petri nets is introduced and defined. The 
language which a Petri net generates during an execution is called a computation 
sequence set (CSS). The class of CSS languages is shown to be closed under union, 
intersection, concatenation, and concurrency. All regular languages and ~ill bounded 
context-free languages are CSS, while all CSS are context-sensitive. Not all CSS 
languages are context-free, nor are all context-free languages CSS. Decidability 
problems for CSS hinge on the emptiness problem for CSS. This problem is equivalent 
to the reachability problem for vector addition systems, and is open. 

1. INTRODUCTION 

Petri nets have been used by several researchers for the description and analysis of 
systems of parallel processes [8, 9, 16, 17, 18]. Although the majority of current 
research with Petri nets is still directed toward parallel computation, in this paper we 
consider Petri nets as an automaton in the same way as finite state machines, pushdown 

stack automata, and Tur ing  machines. Viewed in this way, a language cen be naturally 
associated with the execution of a Petri net. Consideration of the properties of the 
class of languages generated by Petri nets yields both new properties of Petri nets and 
an interesting addition to formal language theory. 

We first define the new class of automata based on Petri nets. Then,  the language 
of a Petri net, called a computation sequence set (CSS), is defined. A computation 
sequence set contains all possible computation sequences which may represent an 
execution of a Petri net from its start state to a final state. Formal definitions of these 
concepts are given in Section 2. Section 3 investigates the closure properties of the 
class of computation sequence sets, and Section 4 relates this new class of languages to 
the classical hierarchy of regular, context-free, context-sensitive, and type-0 languages. 
Section 5 then considers some decidability questions and conclusions about CSS as 
a class of languages. 

This work supported, in part, by the National Science Foundation under Grant MCS75- 
16425. 
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2. THE PETRI NET 

We begin by giving a definition for the class of Petri nets. This definition follows 
the approach of [17] and is essentially the same as the Generalized Petri Nets of [6] 
although different notation is used. This general definition subsumes, or is equivalent 
to, most other definitions of Petri nets. 

2.1. Definition of the Petri Net 

A Petri net, C, is a 5-tuple defined by 

C = (P, T, Z', S, F),  

where 

P {Pl , P~ .... , p~} is a set of places, 

T := {t x , t~ ..... t,~} is a set of transitions, 

N is the input alphabet, a set of symbols or labels, 

S c P is the start place, 

F C P is the set offinalplaces. 

Each transition, tj ~ T, is an ordered triple defined by 

tj ----- (r  I~-, 0~) 

where 

~ is the symbol or label associated with tj (~j ~ 27), 

Ij is the bag of input places for t~. (Ij ~ p~o), 

Oj is the bag of output places for tj (Oj a P~). 

(The Appendix gives a brief summary of the theory and notation of bags. Bags are 
essentially an extension of sets which allow multiple occurrences of an element in a bag. 
The number of occurrences of an element x in a bag/3 is given by the function #(x,/3). 
Our use of bags is for descriptive purposes, so we use the notation and concepts of set 
theory with which the reader should be familiar. For a more complete development 
of bag theory, the reader is referred to [2].) 

The  sets P, T, Z' are assumed to be finite. The cardinality of  the set P is n and of  
the set T, m. Arbitrary elements of P and T are denoted by Pk (1 ~< k ~< n) and tj 
(1 ~ j ,~ m), respectively. The set Z' is not generally defined explicitly since it can 
be inferred from the definitions of the transitions (27 = {~. [ (~j, I j ,  Oj) ~ T}). We 
use a, aj and early lowercase Roman letters (a, b, c,...)to represent elements of 27. 
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An example Petri net is defined in Fig. 1. 

c = (P, T, z, S, F) 

P = {Pl, P2, P3, P,, Ps} 

T = { t l ,  t2,  ta,  t~} 
Z = {a, b, c} 

S = Pl 
F = {p,} 

t~ = (a, {p,}, {p~, p~, p~, p~}) 
t~ = (b, {p~, p~, p~}, {p,}) 
t~ = % {p~), {p,)) 
t, = (c, {p,}, {p~,  p3)) 

FIG. 1. Definition of an example Petri net. 

When working with Petri nets, we need to refer to the separate components of the 
ordered triples which define the transitions. To  allow us to specify easily the portion 
of a transition which we are discussing, we define three projection functions--the 
label function (a), the input function (I), and the output function (O). For a transition 
tj -- (ai,  I j ,  Oj), these functions are defined by 

r  = ~- ,  

To map sequences of transitions 
function by 

a(x) = ~  if x = e ,  

a(x)  = a(tj)  a ( y )  if x = t~y, tj ~ T,  y ~ T* .  

I( t j)  = I~, 

o ( t 3  = o~ .  

into sequences of symbols, we extend the label 

(We use e to denote the empty sequence. 27* denotes the set of all strings over an 
alphabet 27.) 

A convenient visual representation of a Petri net is a bipartite directed graph. Both 
places and transitions are represented as nodes in the graph. To distinguish them, 
places are represented by circles and transitions by bars. An arc is directed from a 
transition t s to a place Pk for each occurrence of Pk in the output bag, O(tj) ,  of the 
transition. An arc is directed from a place p~ to a transition t~. for each occurrence ofpk 
in the input bag, I(t~), of t j .  Since the ordering of places and transitions is unimportant, 
the start place is assumed to be P l -  Final places are indicated by a circle around the 
node representing them. The  Petri net of Fig. 1 is graphed in Fig. 2. 
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FIG. 2. 

~ j J  c 

Graphical representation of the Petri net of Fig. 1. 

The graph representation of a Petri net contains all the information which is 
necessary to define the net. Thus  we give graph representations of Petri nets rather 
than formal definitions for our illustrations. 

2.2. Execution Rules for a Petri Net 

The above definitions are concerned with the description of the structural properties 
of a Petri net. Since the Petri net is an abstract machine, it also has computational 
properties. The  computational properties refer to its behavior during an execution. 
The  execution of a Petri net is directed by the existence and location of tokens in 
the net. Tokens are abstract entities which we represent by black dots in the circles 
of the graphical representation of a Petri net. Tokens move about the Petii net in a 
manner dictated by the execution rules for Petri nets. These rules are 

(1) The  Petri net is initialized by placing one token (the start token) in the start 
place. 

(2) If  the net is in a final state, we may halt; otherwise the set of enabled transi- 
tions, U, is computed. 

(3) I f  U is nonempty, one transition from U is fired, and we may return to 
step (2). I f  U is empty, the execution halts. 

A transition is enabled if all of its input places have (a sufficient number of) tokens 
in them. A transition fires by removing tokens from all of its input places and placing 
tokens in all of its output places. These definitions are made more precise by 

DEFINITION. A transition, t~, is enabled if for each Pk e P, there are at least 
# ( P k ,  I(t~)) tokens in Pk. 

DEFINITION. An enabled transition, t~, fires by first removing # ( P k ,  I(tj)) tokens 
from each pe E P, and then adding # ( P k ,  O(tj)) tokens to each pe ~ P. 

Execution of a Petri net begins with one token in the start place. Each time that a 
transition fires, it may change the number and/or location of tokens in the Petri net 
and therefore the state of the net. A Petri net may halt whenever it reaches a final state 
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(one token in a final place and zero tokens elsewhere) or it may continue execution. 
If the set, U, of enabled transitions is empty, the Petri net must halt. 

Figure 3 illustrates the concept of the execution of a Petri net by using the graphical 
representation of Fig. 2 to present one possible execution. At each step, the Petri net 
and its tokens are given as well as the set U of enabled transitions and the selected 
transition which fires. 

2.3. The State Space of a Petri Net 

The state of a Petri net is defined by the number and location of tokens in the net. 
This can also be expl?essed as the number of tokens (possibly zero) in each place of 
the net and is commonly called a marking. The number of tokens in each place will 
always be a nonnegative integer number, and we represent the state of a Petri net by 
an n-vector of nonnegative integers. The firing of a transition represents a change in 
the state of the Petri net. A state is reachable if there exists some sequence of firings 
which transforms the start state (the state associated with one token in the start place 
and zero tokens elsewhere) into the desired state. 

We define Q to be the reachable state space of a Petri net. Q is also called the marking 

PI has  oee  token ,  

g - {t 1) 
e 1 t 6 

(b) t i r i n g  t 1.  

U - {t 2, ~3} ~ t l  t4 

(d) F1rlnz c 4. 

(e) Firing t2. 

U - {t2, t 3} 

(c) Firing t 3. / ] ~ l )  

U = [t 2, t 3, t4t 
t I t4 

FIG. 3. 

(f) Fitlng t 2, 

One possible execution of the Petri net of Fig. 1. 
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class of a Petri net. I f  N represents the set of nonnegative integers then Q _c N s. Each 
element of Q is an n-vector whose kth component represents the number of tokens in 
place pk (1 ~< k ~ n). We denote by S both the start place and the vector (1, 0, 0,...); 
F denotes both the set of final places and the set of vectors representing one token in 
a final place and zero tokens elsewhere (the final states). 

The next-state function, 3, is a (partial) flmction from N ~ • T into N n. For a state 
vector, q, and a transition, t~., the next-state function, 3(q, tj), is defined if and only 
if for allk, 1 <~h <~n, 

q~ >~ #(p~, I(t3). 

Thus a transition tj is enabled in a state q if and only if 3(q, tj) is defined. If  3(q, t~) 
is defined, then the new state vector defined is the state resulting from the firing of t j .  
The  kth component of the new state is defined by 

3(q, t~)e = qk -- # ( P ~ ,  I(ts)) + # ( P k ,  O(t~)). 

Since qk ~ # ( P ~ ,  I(tj)) if 3(q, tj) is defined and # ( P k ,  O(t~)) >/O, we see that if 
3(q, tj) is defined, then 3(q, tj) /> 0 and hence 3(q, t~) e N". 

The  definition of 3(q, G') can be recast as a vector replacement system [12]. We 
specify, for each transition, t~-, two vectors, uj and vj ,  where (u~)k = - - (Pk ,  I(tj)) and 
(vj)k --  - - # ( P k ,  I(tj)) + # ( P k ,  O(ts)). Then 3(q, tj) is defined if q + uj >~ 0, and if 
3(q, tj) is defined, then 3(q, t~) = q + %.. The reachable state space of a Petri net 
corresponds to the teachability set of a vector replacement system (see Section 5). 

As with the label function, we extend the next-state function from a domain of 
individual transitions to a domain of sequences of transitions. I f  x is a sequence of 
transitions (x e T*), then 

3(q,x) = q  if x = e ,  

=3(3(q ,  tj),y) if x = t j y  for t j e T ,  y e T * .  

Of course 3(q, x) is defined if and only if the next-state functions of the above definition 
are defined for their arguments. 

We can now formally define the reachable state space, Q, as the smallest subset of N n 
defined by 

(a) S~9 .  
(b) if q e Q, and 3(q, x) is defined for x e T*, then 3(q, x) e Q. 

Since we are concerned only with reachable states, we restrict the next-state function 
to the reachable state space, Q. Thus,  3: Q • T* --+ Q, and (except perhaps for the 
start state) the mapping is onto. 

It should be clear from the definition of the state space, the next-state function, and 
the reachable state space that the automaton defined by (Q, 3, Z', S, F)  is equivalent 
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to (P, T, ~', S, F)  as a mathematical formulation of a Petri net. We use both definitions 
interchangably. 

2.4. Transition Sequences and Computation Sequences 

Each separate execution of a Petri net defines, or is defined by, the sequence of 
transitions which are fired during the execution of the net. We say that a sequence of 
transitions, x ~ T*, is legal if it represents a possible sequence of transition firings from 
the start state, S. Thus  a sequence is legal if 3(S, x) is defined. A sequence is complete 
if it is legal and 3(S, x) ~F. 

To illustrate these concepts, consider the execution shown in Fig. 3. This execution 
is completely defined by the transition sequence tlt3t, t2t 2. For this example, the 
sequence is both legal and complete. The  sequences tlt3t4 and tlt3t3t4t4t2t2 are legal but 
not complete, since 

b(S, tlt3q ) = (0, 2, 2, 0, 1), 

~(S, tlt3t3t4t4t2t2) = (0, 1, 0, 0, 1). 

The sequences tit 4 , tztzt3t4, and t a are neither complete nor legal. 
Associated with each sequence of transitions, x e T*, is the sequence of symbols, 

y E X*, defined by y = a(x). A sequence of symbols which corresponds to a legal and 
complete transition sequence is a computation sequence. Each computation sequence 
represents one (or more than one) execution of the Petri net which begins with one 
token in the start place and ends with one token in a final place, while all other places 
have zero tokens both before and after the execution (although probably not during the 
execution). The computation sequence set of a Petri net is the set of all computation 
sequences for that net. We denote the computation sequence set of a Petri net, C, 
by L(C). Formally, 

L(C) = {y e Z ] ~x ~ T* such that y -= e(x) and 3(S, x) ~F}. 

Many Petri nets may generate the same CSS. We define two Petri nets to be equivalent 
if their CSS are equal. The CSS is the language of the Petri net and is considered the 
characterizing feature of the net. 

The next-state function is again extended to be defined over computation sequences 
as well as transition sequences by defining 3(q, y) = q' for any string y ~ 27* for which 
there exists a transition sequence, x a T*, with y = a(x) and 3(q, x) = q'. Note that 
with this definition ~ may no longer be single-valued, but may yield a set of states. 
If 3 is not single-valued, then the Petri net is nondeterministic. We define a CSS to be 
nondeterministic if every Petri net which generates it is nondeterministic. A deter- 
ministic CSS is then a CSS for which there exists a deterministic Petri net which 
generates it. Figure 4 is a nondeterministic Petri net with a nondeterministic CSS. 
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~(c)- ~,~Jc kl i -  j or j-k, i, j,k>_1] 

FIG. 4. An inherently nondeterministic Petri net. 

(The proof that no equivalent Petri net is deterministic is similar to the proof in 
[4] that this CSS is an inherently nondeterministic context-free language.) 

3. CLOSURE PROPERTIES OF COMPUTATION SEQUENCE SETS 

Having defined the Petri net automaton and its associated language, we turn now to 
investigating the properties of the class of CSS languages. We begin our investigation 
by considering the closure properties of CSS under union, intersection, concatenation, 
and concurrent composition. We first define a restricted class of Petri nets whose special 
properties are convenient in the proofs of closure under these forms of composition. 

The general definition of Petri nets in Section 2 allows the construction of "patho- 
logical" Petri nets, such as the net of Fig. 5, whose strange properties make the proofs 

c a a b 

t I t 2 t 3 t 4 

FIG. 5. A "pathological" Petrl net. 

which follow unnecessarily complicated. In particular, the transitions with empty 
input or output bags require special attention. We avoid these problems by showing 
that such transitions can be eliminated without changing the language of the Petri net. 
This is done by introducing a new place, p~, to the net. This place is made an input and 
output to every transition in the net. As long as there is a token in this place, the 
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possible transition sequences are identical to the transition sequences of the original net; 
when this token is removed, all transitions are disabled. Using this approach we 
introduce a new start place S '  and final place, Pl �9  New transitions are added which 
mimic the old transitions except that the first transition to fire places a token in p~, 
and the last transition to fire removes this token. From this construction, we 
define a restricted class of Petri nets in standard form by 

DEFINITION. A Petri net, C = (P, T, X, S, F)  is in standard form if 

(1) 
(2) 
(3) 

I(tj) ~ ;g and O(t~) ~ ;g for all t~ c T, 

S e} O(tj) for all t j e  T, 

there exists a place Pr e P such that 

(a) F = {Pl} (if e ~L(C)) o r F  = {Pl ,  S} (if e eL(C)),  

(b) h 6 I(tj) for all t j e  T, 

(c) 8(q, tj) is undefined for all t j e  T and q e Q which have a token in Pl 
(i.e., qf > 0). 

A Petri net in standard form has no transitions with empty input or output bags. 
It also has a start place which is an output of no transition and a special "final" place 
which is an input to no transition. 

The execution of a Petri net in standard form starts with one token in the start place. 
The first transition removes this token and after this firing the start place is always 
empty. Eventually (if the transition sequence is complete) a token is placed in the 
final place. This token cannot be removed from the final place both because no 
transition has an input from the final place and because all transitions are disabled. 
The restrictive nature of the standard form Petri nets is useful when defining com- 
positions of Petri nets. To show that standard form Petri nets are not less powerful 
than general Petri nets, we prove the following theorem. 

THEOREM 1. Every Petri net is equivalent to a Petri net in standard form. 

Let C = (P, T, Z', S, F)  be a Petri net. Define C' ~ (P', T', 2,  S',  F') by 

P '  : : P w {S ' , p r ,  PJ}, where {S', p r ,p r}  C~ P = ;~, 

F' := {S ' ,pl}  if S e F ,  

-= {py} if S q}F. 

We define four kinds of transitions in the set T'. First, for all tj e T, we include a 
transition t /  = (a(tj), I(tj) + {Pr}, O(tj) + {Pr}) in T'. To  start the net we consider 
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that two kinds transitions in T could fire first; those with I(t~) = {S} and those with 
I(tj) -- ~ .  For each of these we define t~ by 

tj' = (a(tj), {S'}, O(tj) + {S, pr}) if I(tj) = ~ ,  

= (a(t~), {S'}, O(ti) + {Pr}) if I(t~) = {S}. 

Similarly the last transition to fire could be either a transition with O(tj) = ; ~ o r  
O(t~) = {Pk} such that Pk ~F. For each of these we define t 7 by 

t 7 = (a(t~.), {Pr} + I(tj), (Pl}). 

These transitions define a legal and complete transition sequence 

t"t 't" .. .t" t" ( l > 2 )  Jx J2 Ja -J t -x  J 

in C'  for every legal and complete sequence lJlt~2 " "  t j ,  in C. In  addition, we must 
consider sequences of length 1. For any a 6 27 for which 3(S, a) ~F,  we add to T '  
a transition (a, {S'}, {Pl}). This completes the specification of T'. From the construction, 
the languages of C and C '  are equal, and hence, the two Petri nets are equivalent. 
C '  is in standard form. Figure 6 illustrates the construction on the Petri net of Fig. 5. 
We now proceed to investigate the closure properties of CSS. 

( 
\ 

Ftc .  6. A s tandard  fo rm Petri  ne t  equivalent  to the  Petri  ne t  of  Fig. 5. 

We consider two CSS L a and L 2 and two Petri nets in standard form, C~ = 
(P1, T~, 27, S t ,  FI)  and C2 = (P2, T2,27, $2,  F2) with L 1 = L(C1) and L~ = L(C2). 
We construct a new Petri net, C'  = (P' ,  T' ,  27, S' ,  F ' )  whose language, L '  = L(C'), 
is the desired composition ofL 1 andL  2 . Figure 7 gives example Petri nets for C 1 and C2 
which we use in our discussions to illustrate the construction of C'. 
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t I t 3 t5 

(.a)" L(C 2) = {ancb n l n > 1 } 

11 

(b) z (e  2) - {~(r 

FIG. 7. Illustration Petri nets. 

3.1. Concatenation 

The concatenation of two languages can be formally expressed as 

L1L2 = { x I X 2  I x 1  6L~ and x 2 ~L~}. 

THEOREM 2. I f  L 1 and L~ are CSS, then the concatenation of  L 1 and L 2 is CSS. 

We define a Petri net, C '  --~ (P ' ,  T' ,  X, S ' ,  F ' ) ,  where 

P ' = P 1 U P 2 ,  

T'  = T 1 u T 2 U {(a~, {pf}, Oj) ] (a~, {$2}, Oj) ~ T~, pf  eF1}, 

S '  ~ S 1 , 

F'  = F 2 if 8~ 6 F2 , 

= F x U F 2 otherwise. 

With this definition we have overlapped the final places of Ca with the start place 
of C 2 . The  transition which signals the termination of C1 by placing a token in an 
element o f F  1 acts to initiate C 2 by placing a token in a place equivalent to $2 �9 Since 
both nets are in s tandard form, all transitions of the C 1 subnet are disabled when the 
token is placed in a final place o f f  1 , and all transitions of the C~ subnet are disabled 
until a token is placed in one of these places. Any "extra"  tokens produced by an 
execution of the C1 subnet remain in that net  after the token is placed in an element 
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of F 1 , so that C' cannot reach a final state unless both C t and C a have reached final 
substates. Thus,  if a sentence is generated by C', it must be composed of a sentence 
which was generated by C x followed by a sentence generated by Ca, and is in the 
concatenation ofL 1 and L a . Similarly, any computation sequence in the concatenation 
has a path from S 1 to an element of Fz in C', and is an element of L'. This  shows that 
CSS are closed under  concatenation. Figure 8 illustrates this construction. 

FIc~. 8. A Petri net whose CSS is the concatenation of the Petri nets of Fig. 7. 

3.2. Union 

Since languages are sets of strings, a common method of composition is to take the 
union of two languages. This  is defined as 

L 1 U L  2 = { x l x ~ L  l o r x ~ L a } .  

THEOREM 3. I l L  1 and L 2 are CSS, then the union of  L t and L 2 is CSS. 

We construct C' with L(C ' )  - -  L 1 t)  L2 �9 The definition of C' is 

p '  _ p~ u p2 W { S'},  

T'  = T~ ~3 r 2 w {(aj, {S'}, Oj) ] (a j ,  {$1}, 05) E T 1 or (a t , {$2), Oj) ~ To}, 

F ' = F ,  w F a ~ 3 { S '  } if S l e F l o r S a E F a ,  

= F 1 U F 2 otherwise. 

This construction introduces one new start place and transitions which make this 
new start place equivalent to both 81 and S a . Placing the start token in S'  enables a 
transition corresponding to every transition which would be enabled by placing a start 
token in S 1 or S 2 . When one of these transitions fires, the output tokens are placed in 
a subnet defined by (P1, T1) or (/)2, Ta) and execution continues exactly as it would 
in C 1 or C 2 . The null sequence is included by the definition o fF ' .  This construction 
generates L 1 u L a . Thus  CSS are closed under union. The construction of C' from 
C 1 and C a is illustrated in Fig. 9 for the C 1 and C2 of Fig. 7. 

3.3. Intersection 

As with union, the intersection composition is similar to the set theory definition of 

intersection and is given for CSS by 

L l n L  2 = { x l x ~ L  a a n d x ~ L a } .  
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FIe. 9. 

a a b b 

a b 

A Petri net whose CSS is the union of the CSS of the Petri nets of Fig. 7. 

THEOREr~t 4. I f  L 1 and L 2 are CSS, then the intersection o f  L 1 and  L 2 is CSS. 

The construction of a Petri net to generate the intersection of two CSS is rather 
complex. At a given point  in a computat ion sequence if a transition fires in one Petri  net, 
there must be a transition in the other Petri  net with the same label which can fire also. 
When there exists more than one transition in each Petri net with the same label, we 
consider all possible pairs of transitions from the two nets. For  each of these pairs, 
we create a new transition which can fire if and only if both transitions in the old nets 
can fire. This  is done by making the input  (output) bag of the new transition the bag 
sum of the input  (output) bags of the pair  of transitions from the old Petri  nets. Thus  
if tj ~ T 1 and tk ~ Tz are such that a(tj) : a(t~) : ajk , then we have a transit ion 
tik --  (ajk, I~- + Ik ,  Q- q- Ok) in T' .  Some of these transitions will have inputs which 
include the start place. I f  for a transition tjk in T '  as defined above, I(t~k ) = { $ 1 ,  $2} , 

then we add a transit ion tjk with I(t~k ) : {S'}, and other components equal. Similarly, 
for any transit ion tj~ with O(tjk  ) : {Pfl ' Pf,} with pyl ~ F  1 and Pl,  ~ F 2 ,  we add a new 
transition t" " ~k which is equal to t~k except that  O(t jk  ) {p/}.  F '  is { p / ,  S'} if S 1 e F  t 
and Sz ~Fz and {p /}  otherwise. Figure 10 illustrates this construction. 

3.4. Concurrency 

Concurrent composition allows all possible interleavings of a computat ion sequence 
from one CSS with a computat ion sequence from another CSS. Riddle [19] has 
introduced the A operator to represent this concurrency. The  concurrency operator 
has also been called the "shuffle" operator [5]. I t  is defined for two strings by 

ax  t A bx 2 = a(x  1 A bx2) + b(ax 1 A x2) , 

a A E = E A a = a ,  
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( 

FIG. 10. 

14 

C 

() 

49 

f59 

A Petri net whose CSS is the intersection of the Petri nets of Fig. 7. 

where a, b c Z', and Xx, x2 e 27". The  concurrent composition of two languages is then 

L 1A L 2 = { x  1 /1 x 2 [ x I e L  1 and xz EL~}. 

For  example, ab A c = abc 4- acb 4- cab, (a + b) A c = ac 4- ca 4- bc 4- cb. (The 
shuffle operator was defined so that  it appears that  strict alternation of elements of 
two strings is required. That  is, if x = x l x  2 "" xk  and y = Y l Y 2  "'" Y ~ ,  then shuffle 

(x ,  y )  = XxYxX2y ~ "" x k y  k . However, x i a n d y i  are allowed to be (possible null) strings, 
not  simply elements, of the alphabet.) 

I t  is easily shown that  regular, context-sensitive and type-0 languages are closed 
under  concurrency, while context-free languages are not. For  CSS, we have 

THEOREM 5. I f  L 1 a n d L  2 are CSS, then the concurrent composition o f  L 1 and  L 2 is CSS. 

The  construction of a Petri net to generate the concurrent composition o f L  1 and L~ 
given nets to generate these CSS is basically the construction of a Petri  net which places 
tokens in both the start places of C 1 and C 2 , and then accepts the input  if tokens are 
in any two final places (one from each net), and no other places. To start the combined 
Petri net we introduce a new start  place, S ' .  The  first transition which fires in the 
concurrent composition of two CSS will come from either C 1 or C~. I f  the first 
transit ion which fires is from C 1 ,  then we modify it to also place a token in $2 ,  
allowing the Petri  net C 2 to then start whenever it wishes. A similar strategy is used if 
the first transition is from C 2 . Thus  C'  is defined by 

P '  = / ) 1  U P2 ~) {S', p /} ,  

T '  = T~ u T .  u Ts~ , 

F '  = { p / } ,  
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where, 

rsF = {(oj. {s'}. os + {&}) l (~;. {&}. 0 3  e rl} 

u {(~s. {s'}. os + {sl}) r (~j. {s~}. 0 3  e T,} 

tJ {(e~, I s -b {Pk), {P/))  [ (ors, I s ,  {Pl}) e r~ ,  Pl ~F1,  Pk ~F2} 

ty {(ors, I t + {Pk), {P/}) [(es,  Is ,  {Pl}) e 7'2, pleF~ ,Pk eF1}. 

The last two types of transitions added to T '  by Tsv remove the tokens from final 
places in C 1 and C 2 and place them in a new final place when the last transition of the 
composition is fired. This construction is demonstrated in Fig. 11. 

a , b 

FIc. 11. A Petri net whose CSS is the concurrent composition of the Petri nets of Fig. 7. 

The construction is correct only for E-free CSS. However, if L 1 = {e} t3 LI+ with 
ECLa+ , then L 1 A Lz =L2  td (LI+ A L2). Thus,  since CSS are closed under union, 
CSS are closed under concurrent composition. 

3.5. Other Operations on CSS 

The closure properties of CSS under many other operations can be investigated, 
but for our purposes the above four are most relevant. It is easily shown that CSS are 
also closed under reversal, e-free homomorphism, and E-free regular substitution [17]. 
Hack has shown that CSS are closed under e-free homomorphism, e-free Finite State 
Transducer mappings, and inverse homomorphisms. He has also shown that CSS are 
not closed under Kleene star or general substitution [7]. 

It is conjectured that CSS are not closed under complement. 

57I/I3/I-2 
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Hopcroft and Ullman [10] have compiled a table of closure properties of regular, 
context-free, context-sensitive, and type-0 languages for several closure operations. 
A similar study for CSS as a class of languages might shed some further light on the 
character of the CSS languages and indirectly, on their relationship to these other 
classes of languages. Knowledge of the relationship between CSS languages and these 
other classes of languages might be useful for establishing decidability results for CSS 
from the known results for these languages. 

4. COMPARISON OF C S S  LANGUAGES TO OTHER LANGUAGE CLASSES 

Thus, we turn now to investigating the relationship between CSS and the classes 
of regular, context-free, and context-sensitive languages. 

4.1. Regular Languages 

One of the simplest and most studied classes of formal languages is the class of 
regular languages. These languages are generated by regular grammars and finite 
state machines. They can be characterized by regular expressions. Problems of 
equivalence or inclusion between two regular languages are decidable and algorithms 
exist for their solution [10]. With such a desirable set of properties it is encouraging 
that we have the following theorem. 

THEOREM 6. Every regular language is CSS. 

The proof of this theorem is based on the fact that every regular language is generated 
by some finite state machine. A finite state machine is defined as a 5-tuple, (Q, 8, Z, S,F), 
where Q is a finite state space, 8 a next-state function from Q • z into Q, z an 
alphabet, S ~ Q a start state, and F _C Q a set of final states. We can construct an 
equivalent Petri net as (Q, T, Z, S, F), where the set of transitions is 

T = { (~ ,  {qj}, {qk}) I 8(qj, ,~,) = qk}- 

This Petri net will generate the same language as the finite state machine. Thus, every 
legular language is CSS. 

4.2. Context-Free Languages 

The converse to Theorem 6 is not true. Figure 7 displays a Petri net which generates 
the eontex-free language {a~cb n ] n ~ 1 }. Since this language is not regular, we know 
that not all CSS are regular. Figure 12 shows that not all CSS are context-free by 
exhibiting a CSS which is context-sensitive, but not context-free. Unlike the situation 
with regular languages, however, there also exist context-free languages which are not 
CSS. An example of such a language is the context-free language (ww~Iw ~ Z*). 
This is shown in the following theorem. 
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~(c) = {a~b=c n [ ~ >_0}  

FIG. 12. A context-sensitive, but not context-free CSS. 

THEOREM 7. There exist context-free languages which are not CSS. 

Assume there exists an n-place, m-transition Petri net which generates {ww R [ w ~ X*}. 
Let k be the number  of symbols in Z', k > 1. For  an input  string x x  R, let l - -  ] x [, 
the length of x. Since there are k t possible input  strings x, the Petri net must  have k s 
distinct reachable states after 1 transitions in order to remember  the complete string x. 
If we do not have this many states, then for some strings Xl and x~, we have 8(S, Xl) = 
8(S, x2) for x 1 :/: x z . Then,  

~(s, xlx~ R) = ~(~(s, xO, x~ R) 

= ~(a(s, x~), x~R) 

= a ( s ,  x~x2 R) 

e F  

and the Petri net will incorrectly generate XlX2 R, 
For each transition t j ,  there exists a vector v~ such that if 3(q, tj) is defined then 

3(q, t~) q + %-. Thus  after I inputs, a Petri  net will be in a state q given by 

l 

q = S + ~ vj, 
i=1 

for a sequence of transitions ty~, tj~ ,..., tj~. Another way of expressing the above sum is 

q = S + ~  a j v j ,  
j = l  

where aj is the number  of times transit ion tj occurs in the sequence. We have also the 
constraint that 

~ a ~ = l .  
J = l  
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At best the vectors v 1 , v 2 ,..., vm will be linearly independent and each vector of 
coefficients (a t ,  a2 ,..., am) will represent a unique state q. Since the sum of the 
coefficients is l, the vector of coefficients is a partition of the integer l into m parts. 
Knuth [13] gives the number of partitions of an integer l into m parts as 

NOW since  

l + m - -  l) .  
m - - 1  

(l + m - -  1) (l -t- m - -  1) ... (l + 1) 
m - -  1 = ( m  - -  1)! < (1 + m)  '~, 

there are strictly less than (1 + m) m reachable states in Q after 1 inputs. For large 
enough l, we have then that 

l + m - -  1 k~" 
m - - 1  ) < ( l +  m)m < 

It  is impossible for there to be k ~ distinct states in Q for each of the k ~ possible input 
strings. Thus  it is impossible for a Petri net to generate the set ww R. Notice that this 
proof depends only on the number of places, transitions, and symbols. It  is not 
affected by the deterministic or nondeterministic nature of the net. 

Having shown that not all context-free languages are CSS and not all CSS are 
context-free, the question arises, What is the class of languages which are both 
context-free and CSS ? At present we cannot fully answer this question, but we can 
give an indication of some of the members of this intersection. One subset of both 
classes of languages is regular languages. Another subset is the set of bounded context- 
free languages [4]. 

4.3. Bounded Context-Free Languages 

A context-free language, L, is a bounded context-free language over an alphabet Z', 
if there exist strings w 1 , w 2 ,..., w m from Z'* such that 

L _C Wl*W2 ~< "'" Wq,n ~. 

Ginsburg [4] has developed a detailed examination of  the properties of bounded 
context-free languages and gives the following characterization theorem ([4, Theo- 
rem 5.4.1]). 

THEOREM 8. The family of bounded context-free languages is the smallest family of 
sets defined by 

(1) I f  W is a finite subset of Z*, then W is a bounded context-free language. 
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(2) I f  W 1 and W2 are bounded context-free, then W a u W 2 and W 1 W  ~ are bounded 

context-free. 

(3) I f  W is bounded context-free, and x, y ~ Z*,  then {xiWyi  l i > 0} is bounded 

context-free. 

We have already shown that every regular language (and hence every finite subset 
of Z*) is CSS. We have also shown that CSS are closed under union and concatenation. 
Thus we have only to show that CSS are closed under the operation described in (3) 
above to show that bounded context-free languages are CSS. 

For any case where x, y, or W is E, x i W y  i reduces to a language of the form x ' W ,  
Wy*, x*, xiy i, o r  W which are CSS, for x, y ~ 27* and W CSS. For nonnull x and y, 
we define Cx and Cy by 

X = X l X  2 "'" X k , X i ~ ~ ,  

c ,  = (P~, T~, ~, S~,  F~), 

P~ : { p ~ ,  P~ .... , P~+~}, 

T~ = {(x~, {Px,}, {Px,+,} [ 1 ~ i ~ k}, 

F~ : {P~k+l}, 

Y ~ YlYz "'" Yt , Yi e X, 

C,, = (Pu,  T~,  Z,  S v ,  Fu), 

Pv = {Pu~, Pv2 .... , Pv,+~}, 

T~ = f ly , ,  {p~,}, {p~,+) I ~ ~ i < ~), 

S v = p~,~, 

F v : {pv Z+I }" 

With these definitions,L(C~) = {x) andL(Cu) = {y).  Let Cw = (Pw , Tw , Z,  S w  , Fw) 
be aPetri net in standard form with L(  Cw) = W; then we define C' = ( P' ,  T',  Z,  S ' ,F ' )  

by 

P'  = P x u  P ~ w  P w u { p ) ,  

T '  = T~ U T~ u Tw w T ~  u Tzw W Twu W Tyu, 

S'  = S ~ ,  

F '  = F~ , 

where 

Txx : {(xk, {P~k}, {P, P~I})}, 

T~w - -  {(a(tj), {Pxl}, O(tj)) I t~ ~ T w and I(ts) : Sw},  

Twv = {(a(t3),I(t~), {Pv~+l}) [ tj ~ Tw and O(tj) ~Fw},  

T ~  = {(Yl, {P, P~ .3 ,  (P~,})}' 

The place p acts as a counter of the number of times that x has been generated and 
assures that y will be generated the same number of times if the string is correct. The 
additional transitions allow the proper sequencing of the Cx,  C w ,  and C v nets. 
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With this construction, all bounded context-free languages are shown to be CSS. 
Are there context-free languages which are also CSS but  not bounded ? Unfortinately, 
yes. Ginsburg shows that the regular expression (a + b)* is not bounded context-free. 
Since this language is both context-free and CSS, we see that bounded context-free lan- 
guages are a proper  subset of the family of languages which are both CSS and context- 
free. (a + b)*ca~b ~ is both context-free and CSS but  neither regular nor bounded.  

4.4. Context-Sensitive Languages 

We turn now to context-sensitive languages. F rom the example in Fig. 12 we know 
that some CSS are context-sensitive; below we prove that all CSS are context-sensitive. 
Since we know that all context-free languages are also context-sensitive and there exist 
context-free languages which are not CSS,  there exist context-sensitive languages which 
are not CSS. Thus  the inclusion is proper.  

THEOREM 9. All CSS are context-sensitive. 

There  are two ways to show that a language is context-sensitive: Construct a 
context-sensitive grammar which generates it, or specify a nondeterministic linear 
bounded automaton which recognizes it. We use the latter technique for the proof  
given here. A proof using a context-sensitive grammar is given in [17]. 

A linear bounded automaton is similar to a Tur ing  machine. I t  has a finite state 
control, a read/write head, and a (two-way infinite) tape. The  limiting feature which 
distinguishes it from a Tur ing  machine is that  the amount  of tape which can be used 
by the linear bounded automaton to recognize a given input  string is bounded by a 
linear function of the length of the input  string. In  this sense it is similar to the push-  
down automaton used to recognize context-free languages (since the maximum length 
of the stack is bounded by a linear function of the input  string length) except that the 
linear bounded automaton has random access (in the same sense as a Tur ing  machine) 
to its memory, while the pushdown automaton has access to only one end of its memory. 

To recognize a CSS with a linear bounded automaton, we simulate the Petri net 
by remembering,  after each input,  the number  of tokens in each place. How fast can 
the number  of tokens in a Petri net grow, as a function of the length of the input  ? 
After the transition sequence t j l ,  tj2 ,..., tit we have seen that the Petri net is in a state 
defined by 

q : 8(S, t~l .... , t~,) : S + ~ v~,, 
i=1 

where v~- is the vector describing the change in state caused by firing transition t~. 
Since the vj are fixed by the structure of the Petri  net, there is a maximum vector v 
which is (component-wise) greater than all v~ (1 ~ j ~ m). Thus  

q < S + l . v .  
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n 
If  [ v ] = ~-~i=1 ~'i , then the number of tokens, ~7, in a Petri net after l transitions is 
bounded by 

~ < l §  

Thus the number of tokens, and the amount of memory needed to remember them, 
is bounded by a linear function of the input length. Hence CSS can be recognized by 
linear bounded automata, showing that CSS are context-sensitive. 

'ry'pe-O (T-O} 

Co~text - S e n s i t  s (CS) 

CSS Context-Free (CF) 

Regular (R) Sounded Context-Free (BCF) 

FIG. 13. Relationship of CSS to other classes of languages. 

Figure 13 summarizes the relationships among the classes of languages which are 
regular, bounded context-free, CSS, context-free, and context-sensitive. An arc 
between two classes of languages indicates proper containment. 

5. DECIDABILITY PROBLEMS AND CONCLUSIONS 

A large number of problems for CSS and Petri nets are currently unanswered. The 
decidability of the following list of decision problems (among others) needs resolution. 

Given two CSS, are they equal ? (The Equality Problem) 

Given two CSS, is one a subset of the other ? (The Containment Problem) 

Given a CSS, is it regular, bounded context-free, or context-free ? 

Given a CSS, is it finite or infinite ? 

Given a CSS, is it empty ? 

The last problem above is the emptiness problem for CSS. This problem is central 
to the decidability properties of CSS languages. If  the emptiness problem is undecidable, 
then all of the above questions are undecidable [17]. 

Another viewpoint on the emptiness problem for CSS can be obtained by considering 
the equivalence between the state space of the Petri net and vector replacement 
systems. Keller [12] has defined a vector replacement system as a triple (q0, U, V), 
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where U and V are sets of n-vectors over the integers, with u~. ~ v~- for u~- ~ U and 
vj E V (1 ~ j ~ ] U ] = ] V ]). A reachability set, Q, is defined by 

(a) qo cQ, 
(b) i f x ~ Q a n d x + u j ~ / 0 ,  t h e n x + v ~ E Q ( u j E U ,  v j~V) .  

Comparing this with the definition of the state space of a Petri net (Section 2.3), 
we see that the emptiness problem for CSS is similar to the reachability problem for 
vector replacement systems: Given a vector replacement system with reachability 
set Q and an arbitrary vector x, is x ~ Q ? This reachability problem is equivalent to the 
reachability problem for vector addition systems [11, 14]. 

A short proof along the lines of Nash's proof of the equivalence of the (general) 
reachability to the zero reachability problem [11] shows that the emptiness problem 
for CSS is equivalent to the reaehability problem for vector replacement and addition 
systems. The decidability of these questions is an open problem. 

The use of concepts from formal language theory in the investigation of Petri nets is 
still a new field of research. Some preliminary investigations along this line have been 
made by other researchers. Baker [1] considered briefly the prefix languages of Petri 
nets defined by the set of legal (but not necessarily complete) computation sequences. 
This has been developed further by Hack [7], who considers the properties of four 
related classes of languages which can be defined for Petri nets. These languages result 
from considering either prefix or final-state languages either with or without null 
labels (a(tj) = E). 

Another interesting connection between formal language theory and Petri nets has 
been considered by Crespi-Reghizzi and Mandrioli [3]. Their work points out the 
relationship between Petri net languages and the matrix context-free languages. Petri 
net languages can also be related to the Szilard languages [20] for matrix context-free 
languages. 

Although some of the fundamental properties of CSS have been established, many 
questions concerning CSS are still unanswered. We feel that CSS, and other classes 
of languages which can be associated with Petri nets, are an important new type of 
folmal languages. CSS provide a useful bridge between formal language theory and 
research in the area of parallel computation using Petri nets, and, we believe, add 
significant new concepts to both existing theories. 

APPENDIX: A BRIEF THEORY OF BAGS 

The theory of bags (also called multisets) has been developed by Cerf et al. [2]. Bags 
are an extension of the concept of sets. A bag, like a set, is a collection of elements 
from some domain. Unlike a set, however, an element may occur in a bag more than 
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once. A function, # ( ' ,  "), is defined on elements of a domain and bags over that 
domain which yields the number of occurrences of the element in the bag. That  is, 

#(x ,  fi) = k >~ 0 if there are exactly k occurrences of the element x in the bag/3. 

Since the theory of sets is included in the theory of bags (for the special case when 
the range of the # function is {0, 1}), we adopt most of the notation and many of the 
basic concepts of sets for our work with bags. Figure A lists some of the concepts of  
bags, gives the notation we use, and the formal definition in terms of the # function. 

Concept  Nota t ion  

M e m b e r s h i p  x �9 B 

Size of  bag I B ] 

Bag equali ty A = B 

Bag inclusion A C B 

Strict  bag inclus ion A C B 

Bag un ion  d u B 

Bag intersect ion A c~ B 

Bag s u m  A + B 

Bag difference A --  B 

E m p t y  bag 

Limi ted  repeti t ion D ~ 
over a domain  D 

T h e  set of  all bags D ~ 
over a domain  D 

Defini t ion 

# ( x ,  B)  > 0 

[ B I  = 5 3 ~ # ( x , B )  

Vx[#(x,  A)  = # ( x ,  B)I 

Vx[#(x, A) < #(x, B)J 
A _ C B a n d A  4: B 

Vx[#(x,  A u B) = m a x ( # ( x ,  A),  # (x ,  B))] 

Vx[#(x,  A t~ B) = m i n ( # ( x ,  A), # (x ,  B))] 

Vx[#(x, A + B) = #(x,  A) + #(x,  B)] 
Vx[#(x, ,4 - B) = #(x, A) - #(x, n n B)] 
Vx[#(x, ~) = 0J 
VB �9 D", Vx �9 D [ # ( x ,  B)  ~ n], D" C_ D o~ 

VB e D% Vx e B[x �9 D] 

Fro. A. Concepts ,  notat ion,  and definition of  bags.  

For bags over a finite domain, D = { d l ,  d2 ,..., d~}, a natural correspondence exists 
between a bag fi ~ D ~ and the n-vector ~(fl) over the nonnegative integers defined by 

T(fi)i = # ( a i ,  fl), 1 ~< i ~< n. 

This is known as the Parikh mapping [15] of  the bag. 
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