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a b s t r a c t

This paper shows the application of generalized finite difference method (GFDM) to the
problem of seismic wave propagation. We investigated stability and star dispersion in 2D.

We obtained independent stability conditions and star dispersion of the phase velocity
for the P and S waves. Also, P and S waves group velocity dispersion have been obtained.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The generalized finite difference method (GFDM) is evolved from classical finite difference method (FDM). GFDM can
be applied over general or irregular clouds of points. The basic idea is to use moving least squares (MLS) approximation
to obtain explicit difference formulae which can be included in partial differential equation to establish, together with an
explicit method, a recursive relationship. The authors have made many contributions to the development of this method
[1–7].

In this paper, this meshless method is applied to seismic wave propagation. Stability conditions and grid dispersion
relations in 2D are derived.

2. Explicit generalized difference schemes for the seismic wave propagation problem for a perfectly elastic,
homogeneous and isotropic medium

2.1. Equation of motion

The equation of motion and Hooke’s law for a perfectly elastic, homogeneous, isotropic medium in 2D are
∂2U(x, y, t)

∂t2
= α2 ∂2U(x, y, t)

∂x2
+ β2 ∂2U(x, y, t)

∂y2
+ (α2

− β2)
∂2V (x, y, t)

∂x∂y
∂2V (x, y, t)

∂t2
= β2 ∂2V (x, y, t)

∂x2
+ α2 ∂2V (x, y, t)

∂y2
+ (α2

− β2)
∂2U(x, y, t)

∂x∂y

(1)

∗ Corresponding author.
E-mail addresses: francisco.urena@uclm.es (F. Ureña), jbenito@ind.uned.es (J.J. Benito), esalete@ind.uned.es (E. Salete), lu.gavete@upm.es (L. Gavete).

0377-0427/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2011.04.005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82113978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2011.04.005
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:francisco.urena@uclm.es
mailto:jbenito@ind.uned.es
mailto:esalete@ind.uned.es
mailto:lu.gavete@upm.es
http://dx.doi.org/10.1016/j.cam.2011.04.005


F. Ureña et al. / Journal of Computational and Applied Mathematics 236 (2012) 3016–3025 3017

with the initial conditions

U(x, y, 0) = f1(x, y); V (x, y, 0) = f2(x, y)
∂U(x, y, 0)

∂t
= f3(x, y);

∂V (x, y, 0)
∂t

= f4(x, y)
(2)

and the boundary condition
a1U(x0, y0, t) + b1

∂U(x0, y0, t)
∂n

= g1(t)

a2V (x0, y0, t) + b2
∂V (x0, y0, t)

∂n
= g2(t)

enΓ (3)

where f1(x, y), f2(x, y), f3(x, y), f4(x, y), g1(t) y g2(t) are known functions,

α =


λ + 2µ

ρ
, β =


µ

ρ

ρ is the density, λ and µ are Lamé elastic coefficients and Γ is the boundary of Ω .

2.2. Explicit generalized difference schemes

The aim is to obtain explicit linear expressions for the approximation of partial derivatives in the points of the domain.
First of all, an irregular grid or cloud of points is generated in the domain Ω ∪ Γ . On defining the central node with a set of
nodes surrounding that node, the star then refers to a group of established nodes in relation to a central node. Every node
in the domain has an associated star assigned to it.

Following [1,3,5–7], the explicit difference formulae for the spatial derivatives are obtained,
∂2U(x0, y0, n1t)

∂t2
=

un+1
0 − 2un

0 + un−1
0

(1t)2

∂2V (x0, y0, n1t)
∂t2

=
vn+1
0 − 2vn

0 + vn−1
0

(1t)2

(4)

∂2U(x0, y0, n1t)
∂x2

= −m0un
0 +

N
j=1

mjun
j ;

∂2V (x0, y0, n1t)
∂x2

= −m0v
n
0 +

N
j=1

mjv
n
j

∂2U(x0, y0, n1t)
∂y2

= −η0un
0 +

N
j=1

ηjun
j ;

∂2V (x0, y0, n1t)
∂y2

= −η0v
n
0 +

N
j=1

ηjv
n
j

∂2U(x0, y0, n1t)
∂x∂y

= −ζ0un
0 +

N
j=1

ζjun
j ;

∂2V (x0, y0, n1t)
∂x∂y

= −ζ0v
n
0 +

N
j=1

ζjv
n
j

(5)

where N is the number of nodes in the star whose central node has the coordinates (x0, y0) (in this work N = 8 and the are
selected by using the four quadrants criteria [1,6]).

m0, η0, ζ0 are the coefficients that multiply the approximate values of the functions U and V at the central node for the
time n1t (un

0 and vn
0 respectively) in the generalized finite difference explicit expressions for the space derivatives.

mj, ηj, ζj are the coefficients that multiply the approximate values of the functions U and V at the rest of the star nodes
for the time n1t (un

j and vn
j respectively) in the generalized finite difference explicit expressions for the space derivatives.

The replacement in Eq. (1) of the explicit expressions obtained for the partial derivatives leads to

un+1
0 = 2un

0 − un−1
0 + (1t)2


α2


−m0un

0 +

N
1

mjun
j


+ β2


−η0un

0 +

N
1

ηjun
j



+ (α2
− β2)


−ζ0v

n
0 +

N
1

ζjv
n
j



vn+1
0 = 2vn

0 − vn−1
0 + (1t)2


β2


−m0v

n
0 +

N
1

mjv
n
j


+ α2


−η0v

n
0 +

N
1

ηjv
n
j



+ (α2
− β2)


−ζ0un

0 +

N
1

ζjun
j


.

(6)
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Fig. 1. Irregular star (9 nodes).

Fig. 2. The wavenumber k⃗ and h⃗j position vector of the node j.

3. Stability criterion

For the stability analysis the first idea is to make a harmonic decomposition of the approximated solution at grid points
and at a given time level (n). Then we can write the finite difference approximation in the nodes of the star at time n, as

un
0 = Aξ neik

T x0; un
j = Aξ neik

T xj ; vn
0 = Bξ neik

T x0; vn
j = Bξ neik

T xj (7)

where x0 is the position vector of the central node of the star, xj, j = 1, . . . ,N are the position vectors of the rest of the nodes
in the star and hj are the relative position vectors of the nodes in the star in respect to the central node whose coordinates
are hjx = xj − x0, hjy = yj − y0 (Fig. 1).

ξ is the amplification factor whose value will determine the stability condition, w is the angular frequency in the grid.

xj = x0 + hj; ξ = e−iw1t

k (see Fig. 2) is the column vector of the wave numbers

k =


kx
ky


= k


cosϕ
sinϕ


.

Then we can write the stability condition as: ∥ξ∥ ≤ 1.
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Substituting Eq. (7) into Eq. (6), cancellation of ξ neiν
T x0 , leads to

Aξ = 2A −
A
ξ

+ (1t)2

α2


−Am0 + A

N
1

mjeik
T hj


+ β2


−Aη0 + A

N
1

ηjeik
T hj



+ (α2
− β2)


−Bζ0 + B

N
1

ζjeik
T hj



Bξ = 2B −
B
ξ

+ (1t)2

β2


−Bm0 + B

N
1

mjeik
T hj


+ α2


−Bη0 + B

N
1

ηjeik
T hj



+ (α2
− β2)


−Aζ0 + A

N
1

ζjeik
T hj


(8)

where

m0 =

N
1

mj; η0 =

N
1

ηj; ζ0 =

N
1

ζj. (9)

Substituting Eq. (9) into Eq. (8), the system of equations is obtained

A


ξ − 2 +

1
ξ

+ (1t)2α2
N
1

mj(1 − eik
T hj ) + (1t)2β2

N
1

ηj(1 − eik
T hj )



+ B(1t)2(α2
− β2)

N
1

ζj(1 − eik
T hj ) = 0

A(1t)2(α2
− β2)

N
1

ζj(1 − eik
T hj ) + B


ξ − 2 +

1
ξ

+ (1t)2β2
N
1

mj(1 − eik
T hj )

+ (1t)2α2
N
1

ηj(1 − eik
T hj )


= 0.

(10)

If B is obtained from the second equation and is included into the first equation, then
2 cosw1t − 2 + (1t)2


α2

N
1

mj(1 − eik
T hj ) + β2

N
1

ηj(1 − eik
T hj )


2 cosw1t − 2 + (1t)2

×


β2

N
1

mj(1 − eik
T hj ) + α2

N
1

ηj(1 − eik
T hj )


= (1t)4(α2

− β2)2


N
1

ζj(1 − eik
T hj )

2

. (11)

Operating, the following conditions are obtained:

Real part

(1 − cosw1t)2 − 2(1 − cosw1t)
(1t)2

4
(α2

+ β2)

N
1

(mj + ηj)(1 − cos kThj)

+
(1t)4

4

α2
N
1

mj(1 − cos kThj) + β2
N
1

ηj(1 − cos kThj)


β2

N
1

mj(1 − cos kThj)

+ α2
N
1

ηj(1 − cos kThj)


−


α2

N
1

mj sin kThj + β2
N
1

ηj sin kThj


β2

N
1

mj sin kThj

+ α2
N
1

ηj sin kThj


− (α2

− β2)2

 N
1

ζj(1 − cos kThj)

2

−


N
1

ζj sin kThj

2
 = 0. (12)
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Imaginary part

2(1 − cosw1t)(α2
+ β2)

N
1

(mj + ηj) sin kThj − (1t)2


α2
N
1

mj(1 − cos kThj)

+ β2
N
1

ηj(1 − cos kThj)


β2

N
1

mj sin kThj + α2
N
1

ηj sin kThj



+


α2

N
1

mj sin kThj + β2
N
1

ηj sin kThj


β2

N
1

mj(1 − cos kThj)

+ α2
N
1

ηj(1 − cos kThj)


+ 2(α2

− β2)2


N
1

ζj(1 − cos kThj)

N
1

ζj sin kThj


= 0. (13)

Operating with the Eqs. (12) and (13), cancelling with conservative criteria, the condition for stability of star is obtained as

1t <

 4

(α2 + β2)[(|m0| + |η0|) +


(m0 + η0)2 + ζ 2

0 ]

. (14)

4. Star dispersion

The GFDM needs the discretization of the domain using a cloud of nodes, and if the distance between nodes becomes too
large in comparison with the source wavelength (and in our case even the position of the nodes), waves disperse in the grid
and produce a variation of velocity with different frequencies. The existence of grid dispersion of the phase velocity implies
the existence of the grid group velocity in the grid and its dispersion.

4.1. Star dispersion relations for the P and S waves

The Eq. (12) leads to

ω =
1

1t
arccosΦ (15)

where

Φ = 1 −
(1t)2

4


(α2

+ β2)(a1 + a3) + ((α2
+ β2)2(a1 + a3)2

+ 4[(α2
− β2)2(a25 − a26) + (α2a2 + β2a4)(β2a2 + α2a4) − (α2a1 + β2a3)(β2a1 + α2a3)])

1
2


(16)

with

a1 =

N
1

mj(1 − cos kThj) ⇒
∂a1
∂k

= a1,k =

N
1

mjd sin kd

a2 =

N
1

mj sin kThj ⇒
∂a2
∂k

= a2,k =

N
1

mjd cos kd

a3 =

N
1

ηj(1 − cos kThj) ⇒
∂a3
∂k

= a3,k =

N
1

ηjd sin kd

a4 =

N
1

ηj sin kThj ⇒
∂a4
∂k

= a4,k =

N
1

ηjd cos kd

a5 =

N
1

ζj(1 − cos kThj) ⇒
∂a5
∂k

= a5,k =

N
1

ζjd sin kd

a6 =

N
1

ζj sin kThj ⇒
∂a6
∂k

= a6,k =

N
1

ζjd cos kd

(17)
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and

kThj = k(hjx cosϕ + hjy sinϕ) = kd.

Is known

ω = 2π
cgrid

λgrid
(18)

where cgrid and λgrid are the phase velocity (αgrid or βgrid) and the wavelength (λgrid
P or λ

grid
S ) in the star respectively.

Defining the relations:

s =
2

λ
grid
S


(r2 + 1)[(|m0| + |η0|) +


(m0 + η0)2 + ζ 2

0 ]

(19)

sP =
2

λ
grid
P


(r2 + 1)[(|m0| + |η0|) +


(m0 + η0)2 + ζ 2

0 ]

(20)

p =

β1t


(r2 + 1)[(|m0| + |η0|) +


(m0 + η0)2 + ζ 2

0 ]

2
(21)

r =
α

β
(22)

sP =
s
r
. (23)

Substituting Eqs. (15), (20), (21) and (23) into Eq. (18), the star dispersion relations for P and S waves are obtained:

αgrid

α
=

arccosΦ

2πsp
(24)

βgrid

β
=

arccosΦ

2πsp
. (25)

4.2. Star dispersion for group velocity

By definition the group velocity is the derivative of w (see Eq. (15)) with respect to k, thus

αgrid
group =

∂w

∂k
=

1t
4

β2Υ
√
1 − Φ2

(26)

where

Υ = (r2 + 1)(a1,k + a3,k) +
1
2
[2(r2 + 1)2(a1 + a3)(a1,k + a3,k) + 4[2(r2 − 1)2(a5a5,k − a6a6,k)

+ (r2a2,k + a4,k)(a2 + r2a4) + (r2a2 + a4)(a2,k + r2a4,k) − (r2a1,k + a3,k)(a1 + r2a3)

− (r2a1 + a3)(a1,k + r2a3,k)]] × [(r2 + 1)2(a1 + a3)2 + 4[(r2 − 1)2(a25 − a26)

+ (r2a2 + a4)(a2 + r2a4) − (r2a1 + a3)(a1 + r2a3)]]−
1
2 . (27)

Defining

F = (r2 + 1)(a1 + a3) + [(r2 + 1)2(a1 + a3)2

+ 4[(r2 − 1)2(a25 − a26) + (r2a2 + a4)(a2 + r2a4) − (r2a1 + a3)(a1 + r2a3)]]
1
2 (28)

and substituting Eqs. (21) and (28) into Eq. (26), the star dispersion for P and S waves are

α
grid
group

α
=

1

2
√
2r

ΥF −

 pF
(r2+1)[(|m0|+|η0|)+


(m0+η0)2+ζ 2

0 ]
√
2

2
(29)
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β
grid
group

β
=

1

2
√
2

ΥF −

 pF
(r2+1)[(|m0|+|η0|)+


(m0+η0)2+ζ 2

0 ]
√
2

2
. (30)

5. Irregularity of the star (IIS) and dispersion

In this section we are going to define the index of irregularity of a star (IIS) and also the index of irregularity of a cloud of
nodes (IIC).

The coefficientsm0, η0, ζ0 are functions of:

• The number of nodes in the star.
• The coordinates of each star node referred to the central node of the star.
• The weighting function (see [1,6]).

If the number of nodes by star is fixed, in this case 9 (N = 8), and the weighting function

w(hjx, hjy) =
1

(


h2
jx + h2

jy)
3

(31)

the expression

1
(r2 + 1)[(|m0| + |η0|) +


(m0 + η0)2 + ζ 2

0 ]

(32)

is function of the coordinates of each node of star referred to its central node.
The coefficientsm0, η0, ζ0, are functions of 1

h2jx+h2jy
.

Denoting τl as the average of the distances between of the nodes of the star l and its central node and denoting τ the
average of the τl values in the stars of the mesh, then

hj = τ


hjx

hjy


(33)

m0 = m0τ
2
; η0 = η0τ

2
; ζ0 = ζ0τ

2. (34)

The stability criterion can be rewritten

1t <
2τ

β


(r2 + 1)


(|m0| + |η0|) +


(m0 + η0)2 + ζ0

2

(35)

where the bar over the letters means average.
For the regular mesh case, the inequality (35) is

1t <
τ

β
√
r2 + 1

2(
√
2 − 1)

√
3

√
5

. (36)

Multiplying the right-hand side of inequality (36) by the factor
√
5(

√
2 + 1)

3(|m0| + |η0| +


(m0 + η0)2 + ζ0

2
)

(37)

the inequality (35) is obtained.
For each one of the stars of the cloud of nodes, we define the IIS for a star with central node in (x0, y0) as Eq. (37)

IIS(x0,y0) =

√
5(

√
2 + 1)

3(|m0| + |η0| +


(m0 + η0)2 + ζ0

2
)

(38)

that takes the value of one in the case of a regular mesh and 0 < IIS ≤ 1.
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Fig. 3. Regular mesh (121 nodes).

If the index IIS decreases, then absolute values of m0, η0, ζ0 increase and then according to Eq. (35), 1t decreases and
star dispersion increases (see Eqs. (24), (25), (29) and (30)).

The irregularity index of a cloud of nodes (IIC) is defined as the minimum of all the IIS of the stars of a cloud of nodes

IIC = min{IIS(xz ,yz )/z = 1, . . . ,NT } (39)

where NT is the total number of nodes of the domain.

6. Numerical results

Let us solve the Eq. (1), in Ω = [0, 1] × [0, 1] ⊂ R2, with Dirichlet boundary conditions
U(0, y, t) = 0 ∀y ∈ [0, 1]
U(1, y, t) = sin 1 sin y cos(

√
2βt) ∀y ∈ [0, 1]

U(x, 0, t) = 0 ∀x ∈ [0, 1]
U(x, 1, t) = sin x sin 1 cos(

√
2βt) ∀x ∈ [0, 1]

V (0, y, t) = 0 ∀y ∈ [0, 1]
V (1, y, t) = cos 1 cos y cos(

√
2βt) ∀y ∈ [0, 1]

V (x, 0, t) = 0 ∀x ∈ [0, 1]
V (x, 1, t) = cos x cos 1 cos(

√
2βt) ∀x ∈ [0, 1]

(40)

and initial conditions

U(x, y, 0) = sin x sin y; V (x, y, 0) = cos x cos y;
∂U(x, y, 0)

∂t
= 0;

∂V (x, y, 0)
∂t

= 0 (41)

using the regular meshes (see Fig. 3 with 121 nodes) and irregular meshes (see Figs. 4 and 5) with 121 nodes. The analytical
solution is

U(x, y, t) = cos(
√
2βt) sin x sin y; V (x, y, t) = cos(

√
2βt) cos x cos y. (42)

The weighting function is given by Eq. (31) and the criterion for the selection of star nodes is the quadrant criterion (see
[1,4,5]). The global error is evaluated for each time increment, in the last time step considered, using the following formula

Global error =


NT
j=1

(sol(j)−exac(j))2

NT

|exacmax|
× 100 (43)

where sol(j) is the GFDM solution at the node jexac(j) is the exact value of the solution at the node j, exacmax is themaximum
value of the exact solution in the cloud of nodes considered and NT is the total number of nodes of the domain.

Tables 1 and 2 show the global errors, with 1t = 0.01, for several values of α and β , in regular meshes (see Fig. 3).
Table 3 shows the values of the global error for several values of 1t , using the irregular mesh with 121 nodes (see Fig. 4),

with IIC = 0.6524.
Table 4 shows the values of the global error for several values of 1t , using the irregular mesh with 121 nodes (see Fig. 5),

with IIC = 0.8944.
Table 5 shows the results of the dispersion of the star with the greatest index of irregularity for different angles of

propagation (see Fig. 2) and the values p = 0.8, s = 0.2 and r = 2.
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Fig. 4. Irregular mesh (IIC = 0.65).

Fig. 5. Irregular mesh (IIC = 0.89).

Table 1
Influence of the number of nodes in the global error with α = 1; β = 0.6.

N of nodes Global error U Global error V

121 0.002816 0.003851
289 0.001166 0.001618
441 0.000652 0.000896
676 0.000328 0.000443

Table 2
Influence of the number of nodes in the global error with α = 1; β = 0.5.

N of nodes Global error U Global error V

121 0.001569 0.001754
289 0.000604 0.000679
441 0.000386 0.000431
676 0.000245 0.000275

Table 3
Influence of 1t in the global error with α = 1; β = 0.5; IIC = 0.6524.

1t Global error U Global error V

0.0316 0.015060 0.007900
0.0223 0.010170 0.006447
0.01 0.003566 0.003099
0.007 0.002245 0.001945
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Table 4
Influence of 1t in the global error with α = 1; β = 0.5; IIC = 0.8944.

1t Global error U Global error V

0.0316 0.004900 0.010400
0.0223 0.003900 0.007300
0.01 0.002020 0.002460
0.007 0.001520 0.001530

Table 5
Relation between the IIC and the star dispersion.

ϕ/IIC 1.0000 0.8944 0.6524

30 0.9999 0.8254 0.3251

45 0.9998 0.8314 0.3078

60 0.9999 0.8146 0.3102

7. Conclusions

This paper shows a scheme in generalized finite differences, for seismic wave propagation in 2D. The von Neumann
stability criterion has been expressed as a function of the coefficients of the star equation and the velocity ratio.

The investigated star dispersion has been related with the irregularity of the star using the irregularity indicator of the
cloud of nodes. The use of irregular meshes, adjusted to the geometry of the problem, may create high dispersion in certain
stars which is related to high values of the irregularity index of cloud of nodes (IIC). In this case the cloud of nodes can be
redefined by an adaptive process [2] until a new cloud with suitable dispersion and irregularity index values is obtained.
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