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The Saint–Venant torsional problem for homogeneous, monoclinic piezoelectric beams is formulated in
terms of Prandtl’s stress function and electric displacement potential function. The analytical approach
presented in this paper generalizes the known formulation of Prandtl’s solution which refers to homoge-
neous elastic beams. The Prandtl’s stress function and electric displacement potential function satisfy the
so called coupled Dirichlet problem (CDP) in the cross-sectional domain. A direct and a variational formu-
lation are developed. Exact analytical solutions for solid elliptical cross-section and hollow circular
cross-section and an approximate solution based on a variational formulation for thin-walled closed
cross-section are presented.
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1. Introduction

Saint–Venant’s torsion of a homogeneous, isotropic, elastic
cylindrical body is a classical problem of elasticity (Lurje, 1970;
Sadd, 2005; Sokolnikoff, 1956), which was solved using a semi-in-
verse method by assuming a state of pure shear in the cylindrical
body such that it gives rise to a resultant torque over the end
cross-sections. Extension of more complicated cases of anisotropic
or non-homogeneous materials has been considered by Lekhnitskii
(1971, 1981), Rooney and Ferrari (1995), Daví (1996), Bisegna
(1998, 1999), Horgan and Chan (1999), Rovenski et al. (2006,
2007) and Horgan (2007). In all cases of Saint–Venant’s torsion
mention above the states of strains and stresses are independent
of the axial coordinate.

In this paper, the Saint–Venant’s torsional problem is formu-
lated in the framework of the linear theory of piezoelectricity for
homogeneous, monoclinic piezoelectric cylinders with arbitrary
cross-sectional geometry. The specified loads considered in this
study are torque resultants prescribed at the cylinder’s end
cross-sections. Following Saint–Venant it is assumed that the char-
acter of elastic and electric fields depends only in a secondary way
of the exact distribution of the tractions on the ends of cylinder so
that the end torques are introduced in an integral manner in the
case of torsional problem. The formulation of the Saint–Venant’s
theory of uniform torsion for the piezoelectric beams has been ana-
lysed by Bisegna (1998, 1999), Daví (1996), Rovenski et al. (2006,
ll rights reserved.
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2007), Yang (2005) and Zehetner (2008). Bisegna (1998, 1999),
Daví (1996) and Rovenski et al. (2006, 2007) studied the Saint–Ve-
nant’s problem including axial force, bending and torsional mo-
ments, and shear forces in the framework of linear theory of
piezoelectricity for homogeneous, monoclinic piezoelectric cylin-
ders. A relaxed version of this problem including the torsion is also
formulated and solved by Bisegna (1998, 1999). The papers by
Bisegna (1998, 1999) use the Prandtl’ s stress function and electric
displacement potential function formulation for simply-connected
cross-sections which is based on Clebsch-type hypotheses. Daví
(1997) obtained the coupled boundary-value problem for the tor-
sional function and for the cross-sectional electric potential func-
tion from a constrained three-dimensional static problem by the
application of the usual assumptions of the Saint–Venant’s theory.
Rovenski et al. (2006, 2007) give the torsional and electric potential
function formulation of the Saint–Venant’s torsional problem for
monoclinic piezoelectric beams. In papers by Rovenski et al.
(2006, 2007) a coupled Neumann problem is derived for the tor-
sional and electric potential functions, where exact and numerical
solutions for elliptical and rectangular cross-sections are pre-
sented. The compensation of torsional deformations in rods with
the help of thin integrated piezoelectric actuator layers based on
the Saint–Venant’s theory of uniform torsion has been analysed
by Zehetner (2008). Torsion of circular cylinders made of ceramics
with tangential poling is studied by Yang (2005). In the book by
Yang (2005), the cylindrical surfaces are unelectroded while the
end faces are electroded, the end electrodes can be either opened
or shorted. For both two cases the expressions of torsional rigidity
are derived by Yang (2005).
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Fig. 2. Cross-section and its geometry.
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In the present paper, the Prandtl’s stress function and electric
displacement potential function formulation is developed for
multiply-connected cross-sections which leads to a coupled
Dirichlet boundary-value problem (CDP). Relationships between
the Prandtl’s stress function-electric displacement potential func-
tion and the torsional function, electric potential function are
derived. A stress-electric displacement based variational formula-
tion is used to derive a Bredt-type solution for thin-walled close
cross-sections. For simply-connected cross-sections a direct for-
mulation of the Saint–Venant’s torsional problem which uses
the Prandtl’s stress function and electric displacement potential
function was presented by Bisegna (1998, 1999). The Bisegna’s re-
sults about the Saint–Venant’s torsion of solid cross-sections are
recovered in Section 3 of the present paper. The structure of
the present study is: Section 2 formulates the governing field
equations and boundary conditions of the Saint–Venant’s tor-
sional problem for piezoelectric beams by the use of results of
Rovenski et al. (2006, 2007). In Section 3, the Prandtl’s stress
function and electric displacement potential function are intro-
duced. Here, the expressions for torsional and electric potential
functions in terms of Prandtl’s stress function and eletric dis-
placement potential function are also presented with the equa-
tions of CDP. Formulas for torsional rigidity and electric
torsional rigidity are derived in Section 4. A variational formula-
tion of the Saint–Venant’s torsional problem for beams made of
homogeneous piezoelectric materials is presented in Section 5.
Section 6 contains three examples: exact analytical solutions for
solid elliptical cross-section and hollow circular cross-section
and an approximate solution for thin-walled closed cross-section,
which is based on the demonstrated variational formulation.
Some conclusions are given in Section 7.

2. Saint–Venant torsion of piezoelectric beams

The analytical solution of the Saint–Venant’s torsional problem
originates form the next displacement and electric potential
hypothesis

u ¼ �#yz; v ¼ #xz; w ¼ #xðx; yÞ; u ¼ #/ðx; yÞ; ð1Þ

where u, v, w are the displacements in x, y, and z directions (Fig. 1),
# is the rate of twist with respect to axial coordinate z, x = x(x,y) is
the torsional function and u = u(x,y) is the electric potential func-
tion (Rovenski et al., 2006, 2007). Fig. 1 shows the considered
twisted piezoelectric beam whose cross-section A may be simply
connected or multiply-connected bounded plane domain.

The boundary curve of A is indicated by @A = @A0 [ @A1

[ @A2 . . . @Ap, where @A0 is the outer boundary curve and the inner
boundary curves are @Ai(i = 1 � p), furthermore the outward unit
normal vector to @A is denoted by n = nxex + nyey (Fig. 2).

The unit vectors of the Cartesian coordinate system used are ex,
ey and ez, the length of the beam is L. The strain–displacement and
Fig. 1. Saint–Venant torsion of piezoelectric beam.
electric field-electric potential relationships give (Cady, 1964;
Yang, 2005, 2006; Rovenski et al., 2006, 2007)

ex ¼ ey ¼ ez ¼ cxy ¼ 0; cxz ¼ #
@x
@x
� y

� �
; cyz ¼ #

@x
@y
þ x

� �
; ð2Þ

Ex ¼ �#
@/
@x

; Ey ¼ �#
@/
@y

; Ez ¼ 0: ð3Þ

In Eq. (2), ex, ey, ez, are the longitudinal strains, cxy, cyz, cxz, are the
shearing strains, and in Eq. (3) Ex, Ey, Ez are the components of elec-
tric field vector E. In the present problem the mechanical equilib-
rium and Gauss equation can be written in the form (Rovenski
et al., 2006, 2007)

@sxz

@x
þ @syz

@y
¼ 0;

@Dx

@x
þ @Dy

@y
¼ 0 in A; ð4Þ

where sxz, syz are the shearing stresses Dx, Dy are the components of
electric displacement vector D = Dxex + Dyey + Dzez. Here, we note
(Rovenski et al., 2006, 2007)

rx ¼ ry ¼ rz ¼ sxy ¼ 0; and Dz ¼ 0; ð5Þ

in all points of the twisted piezoelectric beam, where rx, ry, rz are
the normal stresses and according to Eq. (4) there are no present
body forces and body charges. The mantle of the beam is stress
and charge free, that is we have

sxznx þ syzny ¼ 0; Dxnx þ Dyny ¼ 0 on @A: ð6Þ

The g-form of the constitutive equations (Ikeda, 1990) is used which
gives the next result for the torsional problem assuming that the
considered beam made of monoclinic piezoelectric material

cxz ¼ s55sxz þ s45syz þ g15Dx þ g25Dy;

cyz ¼ s45sxz þ s44syz þ g14Dx þ g24Dy; ð7Þ

Ex ¼ �
@u
@x
¼ �g15sxz � g14syz þ g11Dx þ g12Dy;

Ey ¼ �
@u
@y
¼ �g25sxz � g24syz þ g12Dx þ g22Dy: ð8Þ

In Eqs. (7) and (8) s55, s45, s44 are the flexibility (elastic complience)
coefficients and g15, g25, g14, g24 are the piezoelectric impermeabil-
ity coefficients and g11, g12, g22 are the dielectric impermeability
coefficients (Cady, 1964; Ikeda, 1990; Yang, 2005, 2006).



Fig. 3. P0P
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curve in the cross-sectional domain.
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3. Prandtl’s stress function and electric displacement potential
function formulation

The equation of mechanical equilibrium and Gauss Eq. (4) and
boundary conditions formulated in Eq. (6) can be written in the
form

r � s ¼ 0; r � D ¼ 0 in A;

n � s ¼ 0; n � D ¼ 0 on @A; ð9Þ

where r ¼ @
@x ex þ @

@y ey is del operator, s = sxzex + syzey, D = Dxex +
Dyey and in Eq. (9), the scalar product of two vectors is denoted
by dot. Let U = U(x,y) and F = F(x,y) be such functions whose second
order mixed partial derivatives are the same according to Young’ s
theorem, but they are otherwise arbitrary functions. The general
solution of Eq. (9)1,2 by these functions can be represented as (Pra-
ndtl, 1903)

s ¼ #rU � ez; D ¼ #rF � ez; ð10Þ

where the cross between two vectors is the sign of vectorial prod-
uct. U = U(x,y) is called the Prandtl’s stress function and the name
of F = F(x,y) is the electric displacement potential function. From
boundary condition (9)3 it follows that (Fig. 2)

n � s ¼ #ðez � nÞ � rU ¼ #t � rU ¼ 0 on @A; ð11Þ

where, t = ez � n is the unit tangential vector to the boundary curve
@A (Fig. 2). It means that

U ¼ Ui ¼ constant on @Aði ¼ 0� pÞ: ð12Þ

Similar result can be derived for F = F(x,y) from Eq. (9)4:

F ¼ Fi ¼ constant on @Aði ¼ 0� pÞ: ð13Þ

Since U + CU, F + CF with arbitrary constants CU, CF and U, F give the
same shearing stress and electric displacement vector fields it can
be prescribed

U ¼ U0 ¼ 0 and F ¼ F0 ¼ 0 on @A0: ð14Þ

The combination of Eqs. (2) and (3) with Eqs. (7) and (8) and Eq.
(10) gives

ez �rx� R ¼M; M ¼ S � rU þ G � rF; R ¼ xex þ yey; ð15Þ

ez �r/ ¼ N; N ¼ GT � rU �H � rF: ð16Þ

In Eqs. (15) and (16) matrixes of Cartesian tensors S, G and H are as
follows

S¼
s44 �s45

�s45 s55

� �
; G¼

g24 �g14

�g25 g15

� �
; H¼

g22 �g12

�g12 g11

� �
; ð17Þ

and GT is the transpose of G. Eqs. (15) and (16) formulate the con-
nection in differential form between the torsional function
x = x(x,y), electric potential function / = /(x,y) and Prandtl’s stress
function U = U(x,y), electric displacement potential function
F = F(x,y). Next, starting from Eqs. (15) and (16) two integral type
relations will be derived. Fig. 3 shows the curve P0P

_

whose all points
are in A [ @A. From Eq. (15) it follows that (Fig. 3)

�t � rx� R � n ¼ n � ðS � rU þ G � rFÞ; ð18Þ

since t = ez � n. Integration of Eq. (18) along the curve P0P
_

yields
(Fig. 3)

xðPÞ �xðP0Þ ¼ �
Z

P0P
_

n � ðS � rU þ G � rFÞds� aðP0; PÞ;

aðP0; PÞ ¼
Z

P0P
_

n � Rds: ð19Þ
By the same method as which was used to obtain Eq. (19) starting
from Eq. (16) the expression of electric potential in terms of U and F
is derived as

/ðPÞ � /ðP0Þ ¼ �
Z

P0P
_

n � ðGT � rU �H � rFÞds: ð20Þ

In Eqs. (19) and (20) s is an arc-length defined on curve P0P
_

and the
equation of curve P0P

_

is ~OQ ¼ RðsÞ (Fig. 3). The torsional function
x = x(x,y) and the electric potential function / = /(x,y) are one val-
ued functions so that we have

I
c

t � rxds ¼ 0;
I

c
t � r/ds ¼ 0; ð21Þ

for any closed curve c which is in A [ @A. A detailed form of Eq. (21)
is as follows

I
c

n � ðS � rU þ G � rFÞds ¼ �2AðcÞ;I
c

n � ðGT � rU �H � rFÞds ¼ 0; ð22Þ

where A(c) is the area enclosed by curve c and n is the outer unit
normal vector to the closed curve c. The local and global conditions
of single valuedness for functions x = x(x,y) and / = /(x,y) with the
Dirichlet boundary conditions (12)–(14) leads to the next (CDP) for
U = U(x,y) and F=F(x,y):

r � ðS � rU þ G � rFÞ ¼ �2; r � ðGT � rU �H � rFÞ ¼ 0 in A;

ð23Þ

U ¼ 0; F ¼ 0 on @A0; ð24Þ

U ¼ Ui ¼ constant on @Ai F ¼ Fi ¼ constant on @Aiði¼ 1� pÞ;
ð25Þ

I
@Ai

n � ðS � rU þ G � rFÞds ¼ 2Ai;I
@Ai

n � ðGT � rU �H � rFÞds ¼ 0ði ¼ 1� pÞ: ð26Þ

In Eq. (26)1, Ai is the area enclosed by closed curve @Ai(i = 1 � p). The
derivation of Eq. (23) is based on Eqs. (15) and (16). In the present
problem the local conditions of single valuedness for x and / in
terms of U and F are formulated in Eq. (23) and the global conditions
of single valuedness for x and / in terms of U and F are given by Eq.
(26). A detailed analysis of the local and global conditions for single
valuedness for a function in multiply-connected plane domain can
be found in the book by Muskhelishvili (1953).
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4. Torsional rigidity

The torsional rigidity of the piezoelectric beam is obtained from
following equation (Fig. 1)

T ¼ ez �
Z

A
R � sdA ¼ #ez �

Z
A

R � ðrU � ezÞdA

¼ �#
Z

A
R � rUdA: ð27Þ

The definition of the torsional rigidity is S = T/# which gives

S ¼ �
Z

A
R � rUdA: ð28Þ

Following Lurje (1970), starting from Eq. (27) it can be proven that

S ¼ 2
Z

A
UdAþ

Xp

i¼1

UiAi

 !
: ð29Þ

By the application of Leibniz’s rule of the differentiation of product
function and divergence theorem of Gauss–Stokes and boundary
conditions (25), it can be written

�
Z

A
R � rUdA ¼ �

Z
A
r � ðRUÞdAþ

Z
A

Ur � RdA

¼ �
I
@A

n � RUdsþ 2
Z

A
UdA

¼ 2
Z

A
UdAþ

Xp

i¼1

UiAi

 !
; ð30Þ

which proves the validity of formula (29). Next, a new formula will
be proven for the torsional rigidity. From Eq. (23) it follows that

2
Z

A
UdAþ

Z
A

Ur�MdAþ
Z

A
Fr�NdA

¼ 2
Z

A
UdAþ

I
@A

n �MUds�
Z

A
rU �MdAþ

I
@A

n �NFds

�
Z

A
rF �NdA¼ 2

Z
A

UdAþ
Xp

i¼1

UiAi

 !
�
Z

A
ðrU �S �rUþ2rU�

�G �rF�rF �H �rFÞdA¼ 0: ð31Þ

The combination of Eq. (29) with Eq. (31) gives

S ¼
Z

A
ðrU � S � rU þ 2rU � G � rF �rF �H � rFÞdA: ð32Þ

By the same method as it has been used to show the validity of for-
mula (32) it can be proven thatZ

A
Fr � ðGT � rU �H � rFÞdA ¼

Z
A
rU � G � rFdA

�
Z

A
rF �H � rFdA ¼ 0: ð33Þ

The substitution of Eq. (33) into Eq. (32) yields to an another new
formula for the torsional rigidity which was derived for simply con-
nected cross-sections by Bisegna (1999)

S ¼
Z

A
ðrU � S � rU þrF �H � rFÞdA: ð34Þ

Formula (34) shows that S is always positive since S and H are sec-
ond order two-dimensional positive definite tensors (Ikeda, 1990).
This statement is in accordance with the mechanical meaning of
S. Next, the concept of electrical torsional rigidity is introduced.
The torque of electric displacement field is defined as (Rovenski
et al., 2006, 2007)
TD ¼ ez �
Z

A
R � ðDxex þ DyeyÞdA: ð35Þ

In the case of Saint–Venant torsion the next formula can be written

TD ¼ #ez �
Z

A
R � ðrF � ezÞdA ¼ �#

Z
A

R � rFdA: ð36Þ

The electrical torsional rigidity SD of a piezoelectric beam is ob-
tained as (Rovenski et al., 2006, 2007)

SD ¼
TD

#
¼ �

Z
A

R � rFdA: ð37Þ

By the same method as which was used to derive formula (29) it can
be proven that

SD ¼ 2
Z

A
FdAþ

Xp

i¼1

FiAi

 !
: ð38Þ

An another expression can be available for SD by the use of follow-
ing identity which follows from Eqs. (23)–(26)

2
Z

A
FdAþ

Xp

i¼1

FiAi

 !
�
Z

A
ðrF � S � rU þrF � G � rFÞdA

¼ 0: ð39Þ

Comparison of Eq. (38) with Eq. (39) gives the next result

SD ¼
Z

A
ðrF � S � rU þrF � G � rFÞdA: ð40Þ
5. Variational formulation

In this section, a variational formulation is presented for the
torsional deformation of homogeneous, linearly piezoelectric,
monoclinic beams. Variational formulation uses the Prandtl’s
stress function and electric displacement potential function as
the independent quantities of the considered variational function.
The mechanical meaning of the presented variational functional
is analysed. Variational principles are useful in solving many
complicated boundary-value problems through two major ap-
proaches: approximate solutions of boundary-value problems
and FEM implementations. Another important applications of
variational principles are the derivation of approximate equations
for given boundary-value problems (Reddy, 1986, 2002; Washizu,
1968).

Define for Saint–Venant torsion of piezoelectric beam the func-
tional P = P(U,F) as

PðU; FÞ ¼
Z

A
ðrU � S � rU þ 2rU � G � rF �rF �H � rFÞdA

� 4
Z

A
UdAþ

Xp

i¼1

UiAi

 !
: ð41Þ

The independent quantities subject to variation in functional (41)
are U and F with the following subsidary conditions

U ¼ 0 on @A0; U ¼ Ui ¼ constant on @Aiði ¼ 1� pÞ; ð42Þ
F ¼ 0 on @A0; F ¼ Fi ¼ constant on @Aiði ¼ 1� pÞ: ð43Þ
Theorem 1. The stationary condition of functional (41) with respect
to U and F under the conditions (42) and (43) yields Eqs. (23) and
(26).
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Proof. The stationary condition of P = P(U,F) with respect to U
and F under the conditions (42) and (43) can be written in the form

dP ¼ 2
Z

A
rdU �MþrdF � N½ �dA� 2

Z
A

dUdAþ
Xp

i¼1

dUiAi

 !( )

¼ 2
I
@A

dUn �Mds�
Z

A
dUr �MdAþ

I
@A

dFn � Nds
�

�
Z

A
dFr �NdA� 2

Z
A

dUdAþ
Xp

i¼1

dUiAi

 !)

¼ 2
Xp

i¼1

dUi

I
@Ai

n �Mdsþ dFi

I
@Ai

n � Nds

" #
�
Z

A
dUr �MdA

(

�
Z

A
dFr �NdA� 2

Z
A

dUdAþ
Xp

i¼1

dUiAi

 !)

¼ 2
Xp

i¼1

dUi

I
@Ai

n �Mds� 2Ai

" #
�
Z

A
dU r �Mþ 2½ �dA

(

þ
Xp

i¼1

dFi

I
@Ai

n � Nds�
Z

A
dFr �NdA

)
¼ 0: ð44Þ

Here, the followings are applied S = ST, H = HT. The validity of state-
ment formulated in Theorem 1 follows from Eq. (44) and the funda-
mental lemma of the calculus of variation (Elsgolts, 1977) since dU
and dF are arbitrary functions in A and dUi, dFi are arbitrary con-
stants defined on @Ai(i = 1 � p) and dU = 0, dF = 0 on @A0. h

Theorem 2 gives the mechanical meaning of functional defined
by Eq. (41).

Theorem 2. Let U = U(x,y) and F = F(x,y) be the solution of the CDP
formulated by Eqs. (23)–(26), then we have

S ¼ �PðU; FÞ: ð45Þ
Proof. From Eqs. (29), (32) and (41) it follows that

PðU; FÞ ¼ S� 2S ¼ �S; ð46Þ

according to Eq. (45). h
6. Examples

6.1. Torsion of a solid elliptical cross-section

The equation of the boundary contour of the solid elliptical
cross-section shown in Fig. 4 is

ax2 þ 2cxyþ by2 ¼ 1 ðx; yÞ 2 @A; ð47Þ
Fig. 4. Solid elliptical cross-section.
where a > 0, ab � c2 > 0. The assumed forms of the Prandtl’s stress
function and electric displacement potential function are as follows

Uðx; yÞ ¼ CUðax2 þ 2cxyþ by2 � 1Þ; Fðx; yÞ
¼ CFðax2 þ 2cxyþ by2 � 1Þ ðx; yÞ 2 A [ @A; ð48Þ

where CU and CF are unknown constants. With arbitrary values of CU

and CF the prescribed boundary conditions formulated in Eq. (24)
are satisfied.

However, in order to be U = U(x,y) and F = F(x,y) given by Eq.
(48) the valid Prandtl’s stress function and electric displacement
potential function for elliptical cross-section shown in Fig. 4, CU

and CF must satisfy the following system of equations which is ob-
tained from Eq. (23)

QCU þ GCF ¼ �1; GCU � HCF ¼ 0; ð49Þ
Q ¼ s44a� 2s45cþ s55b; G ¼ g24a� ðg14 þ g25Þcþ g15b;

H ¼ g22a� 2g12cþ g11b: ð50Þ

Solution of system of Eqs. (49) for CU and CF is

CU ¼ �
H

QH þ G2 ; CF ¼ �
G

QH þ G2 : ð51Þ

The stress and electric displacement fields can be computed by the
applications of Eq. (10)

sxz ¼ �
2#H

QH þ G2 ðcxþ byÞ; syz ¼
2#H

QH þ G2 ðaxþ cyÞ; ð52Þ

Dx ¼ �
2#G

QH þ G2 ðcxþ byÞ; Dy ¼
2#G

QH þ G2 ðaxþ cyÞ: ð53Þ

To obtain the torsional rigidity S formula (28) will be used. Accord-
ing to Eqs. (28) and (48)1 it can be written

S ¼ 2H

QH þ G2

Z
A
ðax2 þ 2cxyþ by2ÞdA ¼ Hp

ðQH þ G2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab� c2

p : ð54Þ

By the same method as is applied to get S it can be derived the fol-
lowing formula for the electrical torsional rigidity

SD ¼
Gp

ðQH þ G2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab� c2

p : ð55Þ

The determination of the torsional function x = x(x,y) is based on
Eq. (19), where P0P

_

is an arbitrary curve in A connecting point P0

to point P (Fig. 4). Let the point P0 be the point O and let the curve
P0P
_

be the line segment OP as shown in Fig. 4. In this case

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; x ¼ s cos a; y ¼ s sin a;

n ¼ � sinaex þ cos aey: ð56Þ

In the present problem (Fig. 4) R � n ¼ 0 and a ¼ constant on P0P. By
a lengthy but elementary computations the following formula can
be deduced from Eq. (19) for the torsional function of the solid ellip-
tical cross-section shown in Fig. 4

xðx;yÞ ¼ 1
QHþG2 H x2ð�s45aþ s55cÞ þ xyð�s44aþ s55bÞ

��
þ y2ð�s44cþ s45bÞ

�
þG x2ð�g25aþ g15cÞ þ xyð�g24aþ g14c

�
� g25cþ g15bÞ þ y2ð�g24cþ g14bÞ

�	
; ð57Þ

assuming that x(0,0) = 0. By the same method as is used to obtain
the torsional function x = x(x,y), starting from Eq. (20) one gets for
the electric potential function / = /(x,y) the next result under the
condition /(0,0) = 0

/ðx;yÞ ¼ 1

QHþG2 H x2ð�g14aþ g15cÞþ xyð�g24aþ g25c� g14cþ g15bÞ
��

þ y2ð�g24cþ g25bÞ
�
þG x2ð�g11cþg12aÞþ xyðg22a�g11bÞ

�
þ y2ðg22c�g12bÞ

�	
: ð58Þ



Fig. 6. Thin-walled closed cross-section.

I. Ecsedi, A. Baksa / International Journal of Solids and Structures 47 (2010) 3076–3083 3081
6.2. Torsion of hollow circular cross-section

Fig. 5 shows the considered hollow circular cross-section which
is bounded by two concentric circles with radii R0 and R1. Follow-
ing the same technique as is applied in above it is assumed that

Uðx; yÞ ¼ CUðR2
0 � x2 � y2Þ; Fðx; yÞ ¼ CFðR2

0 � x2 � y2Þ: ð59Þ

It is evident in the present problem

U ¼ 0; F ¼ 0 on @A0 and
U ¼ constant on @A1; F ¼ constant on @A1:

From Eq. (59) it is obtained that

CU ¼
1

�sþ �g2

�g

; CF ¼
1

�g þ �s�g
�g

; �s ¼ s44 þ s55;

�g ¼ g24 þ g15; �g ¼ g11 þ g22: ð61Þ

It can be shown by a direct computation the functions

Uðx; yÞ ¼ R2
0 � x2 � y2

�sþ �g2

�g

; Fðx; yÞ ¼ R2
0 � x2 � y2

�g þ �s�g
�g

; ð62Þ

satisfy the global conditions of compatibility formulated in Eq. (26).
The stress and electric displacement fields are as follows

sxz ¼ �
2#y

�sþ �g2

�g

; syz ¼
2#x

�sþ �g2

�g

; Dx ¼ �
2#y

�g þ �s�g
�g

; Dy ¼
2#x

�g þ �s�g
�g

: ð63Þ

To get the values of torsional rigidity and electrical torsional rigidity
we use Eqs. (28) and (37)

S ¼ R4
0 � R4

1

�sþ �g2

�g

p; SD ¼
R4

0 � R4
1

�g þ �s�g
�g

p: ð64Þ
6.3. Torsion of thin-walled closed cross-section

Fig. 6 shows the cross-section of a thin-walled piezoelectric
beam of closed profile. The middle curve of closed profile is de-
noted by cm and the area enclosed by cm is indicated by Am. The
arc-length defined on cm is r and the tangential and normal unit
vectors to curve cm are m and m, respectively (Fig. 6). Equation of
cm is

Rm ¼ OP
!
¼ RmðrÞ; ð65Þ

so that we have

m ¼ dRm

dr
; m ¼m� ez: ð66Þ

An approximate solution of the torsional problem for thin-walled
closed profile is formulated by the use of usual assumptions of
Fig. 5. Hollow circular cross-section.
Bredt’s theory (Murray, 1985; Vlasov, 1961) and Theorem 1 of the
present paper.

We assume that

� The shear stress and electric displacement vector do not depend
on the thickness coordinate 1 (Fig. 6) and they have the forms
s ¼ sðrÞm; D ¼ DðrÞm: ð67Þ
� The Prandtl’s stress function and electric displacement potential
function according to Bredt’s theory can be represented as
U ¼ U1

2
1� 21

t

� �
; F ¼ F1

2
1� 21

t

� �
; ð68Þ

where t = t(r) is wall-thickness.

� The next approximations will be used for rU and rF

rU ¼ �U1

t
m; rF ¼ � F1

t
m: ð69Þ

Following Murray (1985) it can be writtenZ
A

UdAþ A1U1 ¼ U1Am;

Z
A

FdAþ A1F1 ¼ F1Am: ð70Þ

Introduction of assumptions above formulated into Eq. (41) we
obtain

PðU1; F1Þ ¼ U2
1Ia þ 2U1F1Ic � F2

1Ib � 4AmU1; ð71Þ

where

Ia ¼
I

cm

aðrÞ
t

dr; Ib ¼
I

cm

bðrÞ
t

dr; Ic ¼
I

cm

cðrÞ
t

dr; ð72Þ

aðrÞ ¼ m � S � m; bðrÞ ¼ m �H � m; cðrÞ ¼ m � G � m: ð73Þ

Stationary condition of functional (71) with respect to U1 and F1

yields the following system of equations

U1Ia þ F1Ic ¼ 2Am; U1Ic � F1Ib ¼ 0: ð74Þ

Solution of system of Eq. (74) for U1 and F1 is as follows

U1 ¼
2Am

Ia þ I2
c

Ib

; F1 ¼
2Am

IaIb
Ic
þ Ic

: ð75Þ
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A simple computation, which is based on Eqs. (10) and (69), gives
for the shear stress vector and electric displacement vector the fol-
lowing results:

s ¼ 2Am#

Ia þ I2
c

Ib


 �
t

m; D ¼ 2Am#
IaIb
Ic
þ Ic


 �
t

m: ð76Þ

By the application of Theorem 2 gives for the torsional rigidity

S ¼ �PðU1; F1Þ ¼ 2AmU1 ¼
4A2

m

Ia þ I2
c

Ib

: ð77Þ

The electrical torsional rigidity SD is computed from Eqs. (38) and
(70)2

SD ¼
4A2

m
IaIb
Ic
þ Ic

: ð78Þ

The concepts of the shear and electric displacement flows are intro-
duced such as

q ¼ sðrÞtðrÞ; p ¼ DðrÞtðrÞ: ð79Þ

A simple computation based on Eqs. (15) and (76) yields

q ¼ #U1 ¼ constant; p ¼ #F1 ¼ constant; ð80Þ

according to the condition of mechanical equilibrium (Murray,
1985; Vlasov, 1961) and the charge balance condition which can
be formulated in the present problem as (Fig. 7)Z

A�
r � DdA ¼

Z
@A�0

n � Ddsþ
Z
@A�1

n � Ddsþ
Z

c0
n � Dds0

þ
Z

c00
n � Dds00 ¼ pðr0Þ � pðr00Þ ¼ 0: ð81Þ

The plane domain A* is in A bounded by @A� ¼ @A�0 [ @A�1 [ c0 [ c00,
where on the curves c0 and c00 r = r0 and r = r00, respectively as
shown in Fig. 7. From Eqs. (27), (36) and (80) the next Bredt’s-type
formulae can be derived for p and q (Murray, 1985; Vlasov, 1961)

q ¼ T
2Am

; p ¼ TD

2Am
: ð82Þ

The application of the presented formulae is illustrated in the exam-
ple of thin-walled circular tube with uniform wall-thickness. The
cross-section shown in Fig. 5 can be considered as a thin-walled cir-
cular tube whose center line is a circle of radius R = 0.5(R0 + R1) if
t = R0 � R1 is small in comparison with R. A simple computation
gives (Fig. 5)

aðaÞ¼m �S �m¼ s44 cos2 a�2s45 cosasinaþs55 sin2 a; ð83Þ
bðaÞ¼m �H �m¼g22 cos2 a�2g12 cosasinaþg11 sin2 a; ð84Þ
cðaÞ¼m �G �m¼ g24 cos2 a�ðg14þg25Þcosasinaþg15 sin2 a; ð85Þ
Fig. 7. Illustration of A* and its boundary curve.
since m = excosa + eysina, r = Ra. From Eqs. (83)–(85) it follows that

Ia ¼
R
t

�sp; Ib ¼
R
t

�gp; Ic ¼
R
t

�gp: ð86Þ

Here, only formulae of S and SD are derived

S ¼ 4R3tp
�sþ �g2

�g

; SD ¼
4R3tp
�g þ �s�g

�g

: ð87Þ

The above formulae for S and SD can be obtained from Eq. (64) by
putting in them

R0 ¼ Rþ t
2
; R1 ¼ R� t

2
; ð88Þ

and by the use of the next approximation for t� R(t/R ? 0)

R4
0 � R4

1 ¼ 4R3t 1þ 1
4

t
R

� �4
" #

	 4R3t: ð89Þ
7. Conclusions

In this paper, the Saint–Venant’s torsion is formulated in the
framework of the linear theory of piezoelectricity for homoge-
neous, monoclinic piezoelectric cylinders with arbitrary cross-sec-
tional geometry. The paper generalizes the known elastic solution
of Saint–Venant’s torsional problem developed by Prandtl to piezo-
electric beams. A coupled Dirichlet problem (CDP) is derived for
the Prandtl’s stress function-electric displacement potential func-
tion. A direct and a variational formulation are developed. Exact
analytical solutions for solid elliptical cross-section and for hollow
circular cross-section and an approximate solution, based on the
treated variational formulation, for thin-walled closed cross-sec-
tion are presented. Some new formulae for the torsional rigidity
and electric torsional rigidity are also derived.
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