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1. Introduction

For understanding the spread of infectious diseases in populations, mathematical epidemic models with ordinary differ-
ential equations are frequently considered. Hethcote [6] proposed a continuous SIR epidemic model. SIR epidemic models
assume that the recovery class has permanent immunity to the disease. It is well known that the continuous model exhibits
threshold behavior such that the disease dies out if a key parameter σ � 1 and the disease limits to endemic equilibrium if
σ > 1. McCluskey [10] considered continuous SIR epidemic models with a discrete and distributed time delay. The discrete
delay is used to express the fact that an individual may not be infectious until some time after becoming infected. The dis-
tributed delay allows infectivity to be a function of the duration since infection, up to some maximum duration. It may be
more realistic to consider the distributed delay rather than the discrete delay. In [10], the global dynamics of continuous SIR
epidemic models with the discrete delay and distributed delay were completely analyzed using the same threshold behavior
as in [6]. There also exist various types of continuous epidemic models (see for example, [4,11,20,7]).

In continuous epidemic models, the models assuming that the recovery class has only temporary immunity are so-called
“SIRS epidemic models”. Zhang and Teng [19] obtained the following continuous SIRS epidemic model with a distributed
time delay:⎧⎪⎨

⎪⎩
S ′(t) = λ − μ1 S(t) − β(I)S(t)

∫ ω
0 I(t − s)dη(s) + δR(t),

I ′(t) = β(I)S(t)
∫ ω

0 I(t − s)dη(s) − (μ2 + γ )I(t),

R ′(t) = γ I(t) − (μ3 + δ)R(t),

(1)

where β(I) is the probability per unit time that is an incidence rate. The system (1) is a kind of continuous SIRS epidemic
model about incidence rates (for various incidence rates, see for example, [9,18]). A little complicated epidemic model as
the system (1) may be helpful for understanding more realistic phenomenon of diseases. In [19], sufficient conditions for
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global asymptotic stability of the disease free equilibrium and permanence of the system (1) were obtained. It is difficult to
analyze global dynamics in continuous SIRS epidemic models with a time delay, compared with SIR models.

On the other hand, numerical approaches have been frequently used in continuous models. Traditional numerical
schemes such as the Euler and Runge–Kutta sometimes fail, by generating oscillations, bifurcations, chaos and false steady
states (see [2,5]). However, as one of numerical schemes, the nonstandard finite-difference scheme is well known and has
been applied to various problems in science (for example [1,3,15,16,13]). Mickens [12] concludes that the use of this scheme
leads to asymptotic dynamics and numerical results that are always qualitatively the same as the corresponding solutions
of several ordinary differential equations for any positive step size. Throughout this paper, we call the discretization in the
nonstandard finite-difference scheme the “Mickens’ nonstandard discretization”. Discretized epidemic models using Mick-
ens’ nonstandard discretization have also been studied. For example, Jódar et al. [8] considered a discretized mathematical
model for influenza with temporary immunity. However, global stability of the solution in the discretized models was not
mentioned. From the viewpoint of stability analysis, it is unknown whether the solutions of the discretized models have the
same properties as the original continuous models.

Our aim in this paper is to show the global behavior of the solution in a discretized SIRS epidemic model with time
delay, applying Mickens’ nonstandard discretization. The main idea is an application of the method given in Wang [17] to
the discretized epidemic model. In [17], the eventual lower bound of the infected class in a continuous epidemic model
with time delay was shown. By Wang’s technique, we obtain the same sufficient condition for permanence of the model
as for the continuous model. Sekiguchi [14] also applied Wang’s technique to a discretized SIR epidemic model with time
delay. But, the sufficient condition for positivity of the solution is not sharp, compared with that in the original continuous
model. Moreover, it is difficult to apply the discretization used in [14] to SIRS epidemic models. In this paper, we can derive
a discretized SIRS epidemic model with a time delay from Mickens’ nonstandard discretization, where the condition for
positivity of the solution is the same as that for the original continuous model. When positivity holds, the stability of the
solution can be discussed and the sufficient conditions can be obtained, corresponding to those in the original continuous
model.

This paper is organized as follows. In Section 2, we derive a discretized SIRS epidemic model with time delay from the
continuous model (1). In the original continuous model, positivity and boundedness of the solution were clearly obtained.
They are also obtained in our discretized model. We obtain a sufficient condition for the global asymptotic stability of the
disease free equilibrium in Section 3. Applying Wang’s technique, we consider the permanence of the discrete epidemic
model in Section 4. In the discretized epidemic model, sufficient conditions for global asymptotic stability and permanence
are the same as for the original continuous epidemic model. Numerical examples for different epidemic parameters are
shown in Section 5.

2. A discretized SIRS epidemic model with time delay

In this section, applying Mickens’ nonstandard discretization to the continuous model (1), we first derive the following
discretized SIRS epidemic model with a distributed time delay:⎧⎪⎨

⎪⎩
Sn+1 − Sn = λ − μ1 Sn+1 − β(In)Sn+1

∑ω
k=0 In−kηk + δRn+1,

In+1 − In = β(In)Sn+1
∑ω

k=0 In−kηk − (μ2 + γ )In+1,

Rn+1 − Rn = γ In+1 − (μ3 + δ)Rn+1, n = 0,1,2, . . . ,

(2)

where Sn is the susceptible class, In is the infective class and Rn is the recovered class at nth step. Since the sufficient
conditions can be obtained, independently of the choice of a time step-size, we let the time step-size be one for the sake
of simplicity. The notions of all parameters in the system (2) are similar to those in [19]. The nonnegative constants μ1, μ2
and μ3 denote the death rates of the susceptible, infected and recovered classes, respectively. The constant λ > 0 denotes
the immigration rate, assuming all newborns to be susceptible. The constant γ > 0 is the recovery rate. The recovered class
becomes susceptible again at a constant rate δ � 0. β(I) is the probability per unit time and the incidence is used with
the form β(In)Sn+1

∑ω
k=0 In−kηk , which includes various delays. By a natural biological meaning, we assume that β(I) is a

positive function and that there exists a constant Iβ > 0 such that β(I) is nondecreasing on the interval [0, Iβ ]. The integer
ω � 0 is the time delay. The sequence {ηk}: −∞ < ηk < ∞ (k = 0,1, . . . ,ω) is nondecreasing and has bounded variation.

The initial conditions of the system (2) are given by

Sn = ψ
(1)
n , In = ψ

(2)
n , Rn = ψ

(3)
n for n = −ω,−ω + 1, . . . ,0, (3)

where ψ
(i)
n � 0 (n = −ω,−ω + 1, . . . ,0, i = 1,2,3). Again by a biological meaning, we further assume that ψ

(i)
0 > 0 for

i = 1,2,3.
When β(I) = β > 0 is a constant, the disease free equilibrium of the system (2) is

E0 = (
S0,0,0

)
, S0 = λ

μ1
.

For the system (2), we define a positive constant A ≡ ∑ω
k=0 ηk and a threshold value σ ,
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σ ≡ β(0)A
λ

μ1(μ2 + γ )
.

If σ > 1, an endemic equilibrium E∗ = (S∗, I∗, R∗) of the system (2) exists, where

S∗ = μ2 + γ

β A
, I∗ = (μ3 + δ)(λ − μ1 S∗)

μ2(μ3 + δ) + μ3γ
, R∗ = γ

μ3 + δ
I∗.

Theorem 1. Assume β(I) = β > 0 is a constant. If σ � 1, there exists only the disease free equilibrium E0 and if σ > 1, the endemic
equilibrium E∗ appears and is unique except for E0 .

2.1. Basic properties

We show that the sequences {Sn}, {In} and {Rn} of the system (2) are positive and are bounded above. The following re-
sults are independent of the initial values. For most continuous epidemic models, positivity of the solution is clear. Positivity
of the solution for the discretized system (2) is easily obtained.

Lemma 2. Any solution (Sn, In, Rn) of the system (2) is positive for all n ∈ N.

Proof. From the first equation of (2), we have

Sn+1 = λ + Sn + δRn+1

1 + μ1 + β(In)
∑ω

k=0 In−kηk
for n > 0.

Using the second and third equations of (2), we can rewrite

Sn+1 = C1(λ + Sn) + γ δ In + δ(1 + μ2 + γ )Rn

C2 + C3β(In)
∑ω

k=0 In−kηk
,

where

C1 = (1 + μ2 + γ )(1 + μ3 + δ),

C2 = (1 + μ1)(1 + μ2 + γ )(1 + μ3 + δ),

C3 = (1 + μ2)(1 + μ3) + δ(1 + μ2) + γ (1 + μ3).

From the initial condition (3) and S0 > 0, it is easy to see S1 > 0. From the second and third equations of (2), we obtain

In+1 = β(In)Sn+1
∑ω

k=0 In−kηk + In

1 + μ2 + γ
, Rn+1 = Rn + γ In+1

1 + μ3 + δ
for n > 0.

From the initial condition (3) and S1 > 0, we have I1 > 0 and R1 > 0. The rest of this lemma can be proved in the same
way. �

Now, we define the total population Nn ≡ Sn + In + Rn . Then, from the system (2), we know that

Nn+1 − Nn = λ − μ1 Sn+1 − μ2 In+1 − μ3 Rn+1. (4)

Throughout the paper, it is biologically natural to assume that μ1 � min(μ2,μ3), that is, the death rates of the infective
and recovered classes may increase because of disease. From the hypothesis, we obtain

Nn � λ + Nn−1

1 + μ1

� λ

1 + μ1
×

{
1 + 1

1 + μ1
+ · · · +

(
1

1 + μ1

)n−1}
+

(
1

1 + μ1

)n

N0

= λ

μ1

{
1 −

(
1

1 + μ1

)n}
+

(
1

1 + μ1

)n

N0

� max

{
λ

μ1
, N0

}
.

If λ/μ1 � N0, it is easy to see that Nn � λ/μ1 = S0 for all large n. If λ/μ1 < N0, from Eq. (4), we obtain

N1 � λ + N0
<

λ = N0.

1 + μ1 μ1
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Hence, we have N1 < N0 and there exists i ∈ N such that Ni � λ/μ1 = S0. Therefore, we may use Ni as a starting value
instead of N0.

Theorem 3. For any solution (Sn, In, Rn) of the system (2), the total population Nn = Sn + In + Rn satisfies

lim sup
n→+∞

Nn � S0 = λ

μ1
.

3. Global asymptotic stability of the disease free equilibrium

In this section, we obtain a sufficient condition for global asymptotic stability of the disease free equilibrium E0 in the
system (2). We assume that β(I) is independent of I , which implies that β(I) = β > 0 is a constant.

Using a Lyapunov function, we show a sufficient condition for global asymptotic stability of the disease free equilib-
rium E0. The Lyapunov function is similar to that for the original continuous model in [19].

Theorem 4. If σ < 1, the disease free equilibrium E0 is globally asymptotically stable.

Proof. We construct the following Lyapunov function:

Vn = In + c1 Rn + c2

ω∑
k=0

(
n∑

l=n−k

Il

)
ηk + c3

2

(
Sn − S0)2

,

where ci > 0 (i = 1,2,3) will be offered later and S0 = λ/μ1. Using (2), the difference of Vn satisfies


V = Vn+1 − Vn = In+1 − In + c1(Rn+1 − Rn) + c2

ω∑
k=0

(In+1ηk − In−kηk) + c3

2

{(
Sn+1 − S0)2 − (

Sn − S0)2}
.

From Sn � S0 for all n � 0, we have


V � −μ1c3
(

Sn+1 − S0)2 − {
c1(μ3 + δ) − c3δ

(
Sn+1 − S0)}Rn+1

+ {
β Sn+1 − c2 − c3β Sn+1

(
Sn+1 − S0)} ω∑

k=0

In−kηk + {
c1γ + c2 A − (μ2 + γ )

}
In+1

� −μ1c3
(

Sn+1 − S0)2 − c1(μ3 + δ)Rn+1 + {
c1γ + c2 A − (μ2 + γ )

}
In+1

+ {
β Sn+1 − c2 − c3β Sn+1

(
Sn+1 − S0)} ω∑

k=0

In−kηk.

Let us choose ci > 0 (i = 1,2,3) to satisfy

c1γ + c2 A < μ2 + γ , (5)

β Sn+1 − c2 − c3β Sn+1
(

Sn+1 − S0) < 0. (6)

Then, (6) holds if the following inequality is true:

β
(
1 + c3 S0)2

< 4c2c3. (7)

Since σ < 1, which implies that β A S0 < μ2 + γ , we choose c2 = β S0 + ε. Here ε is a small positive number such that
β A S0 + Aε < μ2 + γ . Since β S0 − 2c2 < 0 and (β S0 − 2c2)

2 > (β S0)2, we can choose c3 > 0 to satisfy (7). We may further
choose c1 > 0 to satisfy (5). Therefore, 
V is negative definite and is equal to zero if and only if Sn+1 = S0, In+1 = 0 and
Rn+1 = 0. The proof is complete. �
4. Permanence of the system (2)

The system (2) is said to be permanent if there are positive constants m and M such that

m � lim inf
n→+∞ Sn � lim sup

n→+∞
Sn � M

holds for any sequence Sn of the system (2), and for In and Rn , there also exist positive constants m and M . In each class
Sn , In and Rn , m and M are independent of initial conditions.
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Applying Wang’s technique in [17], we prove the following main result in this paper.

Theorem 5. If σ > 1, then the system (2) is permanent for any initial conditions (3).

Proof. Firstly, from (2) and Lemma 2, for any ε0 > 0, there exists sufficiently large n0 > 0 such that In � λ/μ1 + ε0 as
n � n0. Then, we have

Sn = λ + Sn + δRn+1

1 + μ1 + β(In)
∑ω

k=0 In−kηk
>

λ

1 + μ1 + β(In)
∑ω

k=0 In−kηk
.

Set βM(ε0) = maxI∈[0,λ/μ1+ε0] β(I). Thus, we have

Sn � λ

1 + μ1 + βM
∑ω

k=0 In−kηk
� λ

1 + μ1 + βM(λ/μ1 + ε0)A
.

Notice that ε0 can be arbitrarily small. Then, we have

lim inf
n→+∞ Sn � mS ≡ λ

1 + μ1 + βM Aλ/μ1
, βM = max

I∈[0,λ/μ1]β(I).

Next, let us consider the positive sequences {Sn} and {In} of (2). According to these sequences, we define

Vn ≡ In + μ2 + γ

A

ω∑
k=0

n∑
l=n−k

Ilηk. (8)

Then, for n � 0 we obtain


V = Vn+1 − Vn = In+1 − In + μ2 + γ

A

ω∑
k=0

(In+1ηk − In−kηk) =
(

β(In)Sn+1 − μ2 + γ

A

) ω∑
k=0

In−kηk.

Since σ = β(0)Aλ/μ1(μ2 + γ ) > 1, there exist 0 < α < Iβ and ρ > 0 such that

Aβ(0)

μ2 + γ
× λ

μ1 + αβ(α)A

{
1 −

(
1

1 + μ1 + αβ(α)A

)ρω}
> 1.

Note that

S
 ≡ λ

μ1 + αβ(α)A

{
1 −

(
1

1 + μ1 + αβ(α)A

)ρω}
.

We claim that it is impossible that In � α for all n � n1 � �ρω	. The function �x	 gives the smallest integer not less
than x. Suppose the contrary, then for n � n1 + ω,

Sn+1 = λ + Sn + δRn+1

1 + μ1 + β(In)
∑ω

k=0 In−kηk
>

λ + Sn

1 + μ1 + αβ(α)A

>
λ

1 + μ1 + αβ(α)A

{
1 + 1

1 + μ1 + αβ(α)A
+ · · · +

(
1

1 + μ1 + αβ(α)A

)n−n1−ω−1}

+
(

1

1 + μ1 + αβ(α)A

)n−n1−ω

Sn1+ω+1.

From Lemma 2, Sn satisfies

Sn+1 >
λ

μ1 + αβ(α)A

{
1 −

(
1

1 + μ1 + αβ(α)A

)n−n1−ω}
,

and we have that, for n � n1 + ω + �ρω	,

Sn+1 >
λ

μ1 + αβ(α)A

{
1 −

(
1

1 + μ1 + αβ(α)A

)�ρω	}
� λ

μ1 + αβ(α)A

{
1 −

(
1

1 + μ1 + αβ(α)A

)ρω}
= S
.

Hence, for n � n1 + ω + �ρω	, we have


V >

(
β(0)S
 − μ2 + γ

A

) ω∑
In−kηk = μ2 + γ

A

(
Aβ(0)S


μ2 + γ
− 1

) ω∑
In−kηk.
k=0 k=0
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Set

ε = min
θ

In1+�ρω	+2ω+θ , θ = −ω,−ω + 1, . . . ,0.

Now, we show that In � ε for n � n1 + �ρω	 + ω. In fact, if there is an integer n̄ � 0 such that

In � ε for n1 + �ρω	 + ω � n � n1 + �ρω	 + 2ω + n̄,

In+1 < ε for n = n1 + �ρω	 + 2ω + n̄.

Moreover, we can choose a positive integer j such that

I j = ε, n1 + �ρω	 + ω � n � n1 + �ρω	 + 2ω + n̄.

However, for n = n1 + �ρω	 + 2ω + n̄, we have

In+1 − I j = β(In)Sn+1
∑ω

k=0 In−kηk + In

1 + μ2 + γ
− 1 + μ2 + γ

1 + μ2 + γ
I j � β(0)S
 A − (μ2 + γ )

1 + μ2 + γ
I j

= μ2 + γ

1 + μ2 + γ

{
Aβ(0)S


μ2 + γ
− 1

}
ε > 0,

which is a contradiction. Thus, In � ε for n � n1 + �ρω	 + ω. Therefore, for n � n1 + �ρω	 + ω,


V >
μ2 + γ

1 + μ2 + γ

{
Aβ(0)S


μ2 + γ
− 1

}
ε > 0,

which implies that Vn → +∞ as n → +∞. But, from Theorem 3 and (8), there exists a sufficiently large integer n′
1 > 0 such

that, for n > n′
1,

Vn � λ

μ1
+ μ2 + γ

A

ω∑
k=0

(
n∑

l=n−k

λ

μ1

)
ηk � λ

μ1

{
1 + (μ2 + γ )(ω + 1)

}
,

which is a contradiction. Hence, the claim is proved.
In the rest, we are left to consider the following two cases;

i. In � α for all large n.
ii. In oscillates about α for all large n.

We show that In � mI for all large n, where 0 < mI � α is a constant which will be given later. Clearly, we only need to
consider case ii. Let positive integers n1 and n2 be sufficiently large that

In1 � α, In2 � α, In < α for n1 < n < n2.

If n2 − n1 � ω + �ρω	, since

In = β(In−1)Sn
∑ω

k=0 In−k−1ηk + In−1

1 + μ2 + γ
� In−1

1 + μ2 + γ
,

we have

In �
(

1

1 + μ2 + γ

)n−n1

In1 >

(
1

1 + μ2 + γ

)n2−n1

In1 > mI ≡
(

1

1 + μ2 + γ

)ω+�ρω	
α.

Hence In > mI for n ∈ [n1,n2].
If n2 − n1 > ω + �ρω	, we can easily obtain that In > mI for n ∈ [n1,n1 +ω + �ρω	]. Assume that there exists an integer

n̂ � 0 such that

In � mI for n1 + ω + �ρω	 � n � n1 + ω + �ρω	 + n̂,

In+1 < mI for n = n1 + ω + �ρω	 + n̂.

Moreover, we can choose a positive integer j such that

I j = min In � mI for n1 � n � n1 + ω + �ρω	 + n̂.

n
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Fig. 1. Numerical solution with λ = 0.4, μ1 = 0.1, μ2 = 0.2, μ3 = 0.1, β = 0.2, γ = 0.9, δ = 0.5 and σ ≈ 0.72 < 1.

Then, for n = n1 + ω + �ρω	 + n̂,

In+1 − I j >
μ2 + γ

1 + μ2 + γ

{
Aβ(0)S


μ2 + γ
− 1

}
mI > 0.

This is a contradiction to the proposition that In+1 < mI . Therefore, In � mI for n ∈ [n1,n2]. Since these positive integers n1
and n2 are chosen in an arbitrary way, we conclude that In � mI for all large n in case ii. Hence, lim infn→+∞ In � mI .

Note that from the third equation of (2), we have

lim inf
n→+∞ Rn � mR ≡ γ

μ3 + δ
mI .

From Theorem 3 and the above discussion, we have

mS � lim inf
n→+∞ Sn � lim sup

n→+∞
Sn � S0,

mI � lim inf
n→+∞ In � lim sup

n→+∞
In � S0,

mR � lim inf
n→+∞ Rn � lim sup

n→+∞
Rn � S0.

Hence, the proof is complete. �
5. Numerical example

For the system (2), Theorem 4 implies that the disease dies out if σ < 1, and Theorem 5 implies that the disease persists
if σ > 1. The global properties of the solution in the system (2) are the same as those in the original continuous model (1).
In order to confirm the validity of our results, we consider the following SIRS epidemic model with a discrete time delay:⎧⎨

⎩
Sn+1 − Sn = λ − μ1 Sn+1 − β Sn+1 In−ω + δRn+1,

In+1 − In = β Sn+1 In−ω − (μ2 + γ )In+1,

Rn+1 − Rn = γ In+1 − (μ3 + δ)Rn+1.

(9)

Then, rearrangement to the system (9) yields the following explicit form:

Sn+1 = (λ + Sn)(1 + μ2 + γ )(1 + μ3 + δ) + γ δ In + δ(1 + μ2 + γ )Rn

(1 + μ1)(1 + μ2 + γ )(1 + μ3 + δ) + β{(1 + μ2)(1 + μ3) + δ(1 + μ2) + γ (1 + μ3)}In−ω
,

In+1 = In + β Sn+1 In−ω

1 + μ2 + γ
,

Rn+1 = Rn + γ In+1

1 + μ3 + δ
.

Now, we present a numerical example. For simplicity, we choose the initial conditions ω = 10, ψ
(1)
n = 10, ψ

(2)
n = 0.1n + 3,

ψ
(3)
n = 1 for n ∈ [−ω,0] with respect to the system (2). In Figs. 1 and 2, the numbers of susceptible, infective and recovered

individuals (on the vertical axis) are plotted versus the time steps n (on the horizontal axis). Fig. 1 shows the solution of
the system (9) when σ < 1. We can see that the disease free equilibrium E0 of the system (9) is globally asymptotically
stable. On the other hand, Fig. 2 shows the solution when σ > 1, and indicates that the system (9) is permanent.
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Fig. 2. Numerical solution with λ = 1.5, μ1 = 0.1, μ2 = 0.2, μ3 = 0.1, β = 0.5, γ = 0.9, δ = 0.5 and σ ≈ 6.8 > 1.

6. Discussion

In this paper, we obtain a discretized SIRS epidemic model with time delay (2) and show the sufficient conditions for
global behaviors of the solution. Our sufficient conditions are corresponding to those of the original continuous model (1).

For continuous epidemic models with pulse vaccination and time delay, it is well known that the global attractivity of
the infection-free periodic solution and the permanence of the models (see for example, [4,11]). The sufficient conditions
for the global properties and the proofs are different from those in continuous epidemic models without pulse vaccination.
In a separate paper, we will prove that in a discretized epidemic model with pulse vaccination and time delay, sufficient
conditions for global properties correspond to those in the original continuous model.
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