

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Sections, selections and Prohorov's theorem

Valentin Gutev^{a,1}, Vesko Valov^{b,*,2}

^a School of Mathematical Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
 ^b Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, PO Box 5002, North Bay, ON P1B 8L7, Canada

ARTICLE INFO

Article history: Received 15 January 2009 Available online 24 June 2009 Submitted by B. Cascales

Keywords: Set-valued mapping Lower semi-continuous Upper semi-continuous Selection Section Radon probability measure

ABSTRACT

The famous Prohorov theorem for Radon probability measures is generalized in terms of usco mappings. In the case of completely metrizable spaces this is achieved by applying a classical Michael result on the existence of usco selections for l.s.c. mappings. A similar approach works when sieve-complete spaces are considered.

© 2009 Elsevier Inc. All rights reserved.

(1.1)

1. Introduction

All spaces in this paper are assumed to be completely regular and Hausdorff. For a space X, let $\mathscr{B}(X)$ be the Borel σ -algebra associated to X, i.e. the smallest σ -algebra that contains all closed subsets of X. Thus, $\mathscr{B}(X)$ is closed with respect to complements and countable unions, its elements are often called *Borel* subsets of X.

A countably additive function $\mu : \mathscr{B}(X) \to [0, +\infty]$ is called a *Radon measure* on X if

$$\mu(B) = \sup \{ \mu(K) \colon K \subset B \text{ and } K \text{ is compact} \}, B \in \mathscr{B}(X).$$

A *Radon probability measure* is a Radon measure μ , with $\mu(X) = 1$. In the sequel, we will denote by $\mathscr{P}(X)$ the set of all Radon probability measures on *X*. Every measure $\mu \in \mathscr{P}(X)$ uniquely defines a positive linear functional $\mu(g) = \int g d\mu$, where *g* runs over the bounded continuous functions on *X*. As a topological space, we consider $\mathscr{P}(X)$ endowed with the weakest topology with respect to which all these functionals are continuous. Thus, a net $\{\mu_{\alpha}\} \subset \mathscr{P}(X)$ converges to $\mu \in \mathscr{P}(X)$ if and only if $\{\mu_{\alpha}(g)\}$ converges to $\mu(g)$ for every bounded continuous function $g: X \to \mathbb{R}$. With respect to this topology, for every closed $F \subset X$ and $\varepsilon > 0$,

$$\{\mu \in \mathscr{P}(X): \mu(F) < \varepsilon\} \text{ is open in } \mathscr{P}(X).$$

$$(1.2)$$

The famous Prohorov theorem [13] states that if *X* is a Polish space (i.e., a completely metrizable separable space), then for every compact $T \subset \mathscr{P}(X)$ and every $\varepsilon > 0$ there exists a compact $K \subset X$, with $\mu(X \setminus K) < \varepsilon$ for all $\mu \in T$. Spaces having this property, called *Prohorov spaces*, are widely investigated in the literature.

* Corresponding author.

E-mail addresses: gutev@ukzn.ac.za (V. Gutev), veskov@nipissingu.ca (V. Valov).

¹ Research of the author is supported in part by the NRF of South Africa.

 $^{^{2}\,}$ The author was partially supported by NSERC Grant 261914-03.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2009.06.063

In this paper, we give a simple proof that all sieve-complete spaces are Prohorov (Theorem 3.1). In the special case of completely metrizable spaces, this result follows by the Michael theorem on the existence of usco selections for l.s.c. mappings, [10, Theorem 1.1]. The general case of arbitrary sieve-complete spaces follows by a selection-like result [5, Corollary 7.2] which utilizes "usco sections" instead of "usco selections".

The idea to use some selection theorem for the proof of Prohorov's theorem goes back to a question of Bouziad [2]. In fact, our approach provides a natural generalization of Prohorov's theorem in which the compact subset $T \subset \mathcal{P}(X)$ is replaced by a paracompact one $Z \subset \mathcal{P}(X)$, and the compact $K \subset X$ —by an usco mapping from Z into the compact subsets of X. This gives a solution to another problem of Bouziad [2] whether there is a "continuous" version of Prohorov's theorem, see Corollary 3.2.

The paper is organized as follows. Section 2 is devoted to the main ingredient of our approach which is a construction of l.s.c. mappings generated by Radon probability measures (Proposition 2.1). Section 3 contains the proof of Theorem 3.1 which is preceded by that one for the special case of completely metrizable spaces.

2. A construction of l.s.c. mappings

For a space X, let 2^X be the family of all nonempty subsets of X, and let $\mathscr{C}(X)$ be the subfamily of 2^X which consists of all compact members of 2^X . A part of our considerations will involve $\mathscr{C}(X)$ endowed with the *Vietoris topology* τ_V . Recall that τ_V is generated by all collections of the form

$$\langle \mathscr{V} \rangle = \left\{ S \in \mathscr{C}(X) \colon S \subset \bigcup \mathscr{V} \text{ and } S \cap V \neq \emptyset, \text{ whenever } V \in \mathscr{V} \right\},$$

where \mathscr{V} runs over the finite families of open subsets of *X*. For convenience, for an open subset $V \subset X$, we write $\langle V \rangle$ rather than $\langle \{V\} \rangle$.

Another topology on $\mathscr{C}(X)$ that will play an important role in this paper is the *upper Vietoris topology* τ_V^+ , i.e. the topology generated by the family

 $\{\langle V \rangle \colon V \subset X \text{ is open}\}.$

Clearly, τ_V^+ is a coarser topology than the Vietoris one τ_V , i.e. $\tau_V^+ \subset \tau_V$. In this regard, let us make the explicit agreement that if τ is a topology on $\mathscr{C}(X)$, then the prefix " τ -" will be used to express properties related to the topology τ , say τ -open sets, τ -closure, etc.

Finally, let us recall that a set-valued mapping $\Phi: Z \to 2^Y$ is *lower semi-continuous*, or l.s.c., if the set

$$\Phi^{-1}(U) = \{ z \in Z \colon \Phi(z) \cap U \neq \emptyset \}$$

is open in *Z* for every open $U \subset Y$.

Proposition 2.1. Let X be a space, and let $\varepsilon \in (0, 1)$. Define a set-valued mapping $\Psi_{\varepsilon} : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ by

$$\Psi_{\varepsilon}(\mu) = \{ K \in \mathscr{C}(X) \colon \mu(X \setminus K) < \varepsilon \}, \quad \mu \in \mathscr{P}(X).$$

Then, Ψ_{ε} is a nonempty-valued τ_V -l.s.c. mapping.

Proof. Take $\mu \in \mathscr{P}(X)$. Since $\mu(X) = 1 > 1 - \varepsilon$, by (1.1), there is $K \in \mathscr{C}(X)$ such that $\mu(K) > 1 - \varepsilon$, so $\Psi_{\varepsilon}(\mu) \neq \emptyset$. Let $K \in \Psi_{\varepsilon}(\mu)$ and let \mathscr{V} be a finite family of open subsets of X, with $K \in \langle \mathscr{V} \rangle$. Then, $X \setminus \bigcup \mathscr{V} \subset X \setminus K$, it is closed in X and $\mu(X \setminus \bigcup \mathscr{V}) < \varepsilon$. Hence, by (1.2), there exists a neighbourhood U of μ such that $\nu(X \setminus \bigcup \mathscr{V}) < \varepsilon$ for every $\nu \in U$. If $\nu \in U$, then $\nu(\bigcup \mathscr{V}) > 1 - \varepsilon$ and, by (1.1), there is a compact subset $H \subset \bigcup \mathscr{V}$, with $\nu(H) > 1 - \varepsilon$. We now have that $H \cup K \in \langle \mathscr{V} \rangle$, while $H \cup K \in \Psi_{\varepsilon}(\nu)$ because $\nu(X \setminus (H \cup K)) \leq \nu(X \setminus H) < \varepsilon$. \Box

Proposition 2.2. Let X be a space, $\varepsilon \in (0, 1)$, $\Psi_{\varepsilon} : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ be defined as in Proposition 2.1, and let $\Phi_{\varepsilon}(\mu)$ be the τ_V^+ -closure of $\Psi_{\varepsilon}(\mu)$, for each $\mu \in \mathscr{P}(X)$. Then, $\mu(X \setminus K) \leq \varepsilon$ for every $K \in \Phi_{\varepsilon}(\mu)$ and $\mu \in \mathscr{P}(X)$.

Proof. Take $\mu \in \mathscr{P}(X)$ and $K \in \mathscr{C}(X)$ such that $\mu(X \setminus K) > \varepsilon$. By (1.1), there exists a compact subset $H \subset X \setminus K$, with $\mu(H) > \varepsilon$. Let $V = X \setminus H$. We now have that $K \in \langle V \rangle$, while $\varepsilon < \mu(H) = \mu(X \setminus V) \leq \mu(X \setminus S)$ for every $S \in \langle V \rangle$. Consequently, $K \notin \Phi_{\varepsilon}(\mu)$ because $\Psi_{\varepsilon}(\mu) \subset \mathscr{C}(X) \setminus \langle V \rangle$. \Box

We conclude this section with a well-known property of compact sets in the upper Vietoris topology.

Proposition 2.3. Let $\mathscr{K} \subset \mathscr{C}(X)$ be a τ_V^+ -compact set. Then, $\bigcup \mathscr{K}$ is compact in X.

Proof. Take an open in *X* cover \mathscr{U} of $\bigcup \mathscr{K}$. Then, $\Omega = \{(\bigcup \mathscr{E}): \mathscr{E} \subset \mathscr{U} \text{ is finite}\}$ is a τ_V^+ -open cover of \mathscr{K} . Hence, Ω contains a finite subcover of \mathscr{K} , so there exists a finite $\mathscr{V} \subset \mathscr{U}$, with $\mathscr{K} \subset \bigcup \{(\bigcup \mathscr{E}): \mathscr{E} \subset \mathscr{V} \text{ is finite}\}$. This \mathscr{V} is a finite cover of $\bigcup \mathscr{K}$. \Box

Recall that a set-valued mapping $\psi: Z \to 2^X$ is upper semi-continuous, or u.s.c., if the set

$$\psi^{\#}(U) = \left\{ z \in Z \colon \psi(z) \subset U \right\}$$

is open in *Z* for every open $U \subset X$. We say that $\psi : Z \to 2^X$ is usco if it is u.s.c. and compact-valued. Let us explicitly mention that if $\psi : Z \to \mathscr{C}(X)$ is usco, then $\psi(T) = \bigcup \{\psi(z) : z \in T\}$ is compact for every compact $T \subset Z$.

A space X is *sieve-complete* [3] if it has an open complete sieve. Every Čech-complete space is sieve-complete, and it was shown in [3] (see, also, [11]) that the two concepts are equivalent in the presence of paracompactness.

Theorem 3.1. Let X be a sieve-complete space, and let $Z \subset \mathscr{P}(X)$ be paracompact. Then, for every $\varepsilon > 0$ there is an usco mapping $\varphi : Z \to \mathscr{C}(X)$ such that $\mu(X \setminus \varphi(\mu)) < \varepsilon$ for every $\mu \in Z$.

Turning to the proof of Theorem 3.1, let us first demonstrate the special case of a completely metrizable *X*. In this case, let $\Psi_{\varepsilon} : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ be defined as in Proposition 2.1, and let $\Phi(\mu)$ be the τ_V -closure of $\Psi_{\varepsilon}(\mu)$, for each $\mu \in \mathscr{P}(X)$. By Proposition 2.1 and [9, Proposition 2.3], $\Phi : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ is τ_V -l.s.c. Also, $(\mathscr{C}(X), \tau_V)$ is completely metrizable because so is *X*, [6–8]. Hence, by [10, Theorem 1.1], $\Phi \upharpoonright Z$ has a τ_V -usco selection $\theta : Z \to 2^{\mathscr{C}(X)}$. That is, θ is a τ_V -usco mapping such that $\theta(\mu) \subset \Phi(\mu)$ for every $\mu \in Z$. Then, define $\varphi : Z \to \mathscr{C}(X)$ by letting $\varphi(\mu) = \bigcup \theta(\mu)$, $\mu \in Z$. This φ is as required. Indeed, each $\theta(\mu)$, $\mu \in Z$, is τ_V -compact, hence τ_V^+ -compact as well, and, by Proposition 2.3, each $\varphi(\mu)$, $\mu \in Z$, is a compact subset of *X*. If *V* is a neighbourhood of $\varphi(\mu)$ for some $\mu \in Z$, then $\langle V \rangle$ is a neighbourhood of $\theta(\mu)$. This implies that φ is u.s.c. Finally, take $\mu \in Z$ and $K \in \theta(\mu) \subset \Phi(\mu)$. Since $\tau_V^+ \subset \tau_V$, we have that $\Phi(\mu)$ is a subset of the τ_V^+ -closure of $\Psi_{\varepsilon}(\mu)$. Therefore, by Proposition 2.2, $\mu(X \setminus \varphi(\mu)) \leq \mu(X \setminus K) \leq \varepsilon$ because $K \subset \varphi(\mu)$.

The proof of Theorem 3.1 for the general case of arbitrary sieve-complete spaces follows exactly the same idea but is now based on the upper Vietoris topology and another selection-like result for usco mappings.

Proof of Theorem 3.1. Let *X* and $Z \subset \mathscr{P}(X)$ be as in that theorem, and let $\varepsilon \in (0, 1)$. Also, for each $\mu \in \mathscr{P}(X)$, let $\Phi_{\varepsilon}(\mu)$ be the τ_V^+ -closure of $\Psi_{\varepsilon}(\mu)$, where $\Psi_{\varepsilon} : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ is defined as in Proposition 2.1. By Proposition 2.1 and [9, Proposition 2.3], $\Phi_{\varepsilon} : \mathscr{P}(X) \to 2^{\mathscr{C}(X)}$ is τ_V^+ -l.s.c. because $\tau_V^+ \subset \tau_V$. By [12, Lemma 3.1], $(\mathscr{C}(X), \tau_V^+)$ is sieve-complete because so is *X*. Hence, by [5, Corollary 7.2], $\Phi_{\varepsilon} \upharpoonright Z$ has a τ_V^+ -usco section $\theta : Z \to 2^{\mathscr{C}(X)}$. That is, θ is a τ_V^+ -usco mapping such that $\theta(\mu) \cap \Phi_{\varepsilon}(\mu) \neq \emptyset$ for every $\mu \in Z$. Finally, define the required $\varphi : Z \to \mathscr{C}(X)$ by $\varphi(\mu) = \bigcup \theta(\mu)$, $\mu \in Z$. By Proposition 2.3, each $\varphi(\mu)$, $\mu \in Z$, is a compact subset of *X*. Just like before φ is u.s.c. because if *V* is a neighbourhood of $\varphi(\mu)$ for some $\mu \in Z$, then $\langle V \rangle$ is a neighbourhood of $\theta(\mu)$. Finally, if $\mu \in Z$ and $K \in \theta(\mu) \cap \Phi_{\varepsilon}(\mu)$, then, by Proposition 2.2, $\mu(X \setminus \varphi(\mu)) \leq \mu(X \setminus K) \leq \varepsilon$ because $K \subset \varphi(\mu)$. The proof is completed. \Box

It is well known that $\mathscr{P}(X)$ is paracompact (and Čech-complete) whenever X is so [1,14,15], see also [4]. This gives the following immediate consequence.

Corollary 3.2. Let X be a paracompact Čech-complete space, and $\varepsilon > 0$. Then, there is an usco mapping $\varphi : \mathscr{P}(X) \to \mathscr{C}(X)$ such that $\mu(X \setminus \varphi(\mu)) < \varepsilon$ for every $\mu \in \mathscr{P}(X)$. In particular, $\Phi(T) = \bigcup \{\varphi(\mu): \mu \in T\}, T \in \mathscr{C}(\mathscr{P}(X))$, defines a continuous map $\Phi : (\mathscr{C}(\mathscr{P}(X)), \tau_V^+) \to (\mathscr{C}(X), \tau_V^+)$ such that $\mu(X \setminus \Phi(T)) < \varepsilon$ for every $T \in \mathscr{C}(\mathscr{P}(X))$ and $\mu \in T$.

References

- [1] T. Banakh, Topology of probability measure spaces I, Math. Student 5 (1995) 65-87 (in Russian).
- [2] A. Bouziad, Private communication, November 2001.
- [3] J. Chaber, M. Choban, K. Nagami, On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974) 107-119.
- [4] M. Choban, Mappings and Prohorov spaces, Topology Appl. 153 (2006) 2320-2350.
- [5] V. Gutev, Completeness, sections and selections, Set-Valued Anal. 15 (2007) 275-295.
- [6] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.
- [7] K. Kuratowski, Sur une méthode de métrisation complète de certains espaces d'ensembles compacts, Fund. Math. 42 (1935) 114-138.
- [8] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951) 152-182.
- [9] E. Michael, Continuous selections I, Ann. of Math. 63 (1956) 361-382.
- [10] E. Michael, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959) 647-656.
- [11] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977) 716-733.
- [12] S. Nedev, J. Pelant, V. Valov, A non-separable Christensen's theorem and set tri-quotient maps, Topology Appl. 156 (2009) 1234–1240.
- [13] Yu. V, Prohorov Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (2) (1956) 157-214.
- [14] F. Topsøe, Measure spaces connected by correspondences, Math. Scand. 30 (1972) 5-45.
- [15] F. Topsøe, Compactness and tightness in a space of measures with the topology of weak convergence, Math. Scand. 34 (1974) 187-210.