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The famous Prohorov theorem for Radon probability measures is generalized in terms of
usco mappings. In the case of completely metrizable spaces this is achieved by applying
a classical Michael result on the existence of usco selections for l.s.c. mappings. A similar
approach works when sieve-complete spaces are considered.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

All spaces in this paper are assumed to be completely regular and Hausdorff. For a space X , let B(X) be the Borel σ -
algebra associated to X , i.e. the smallest σ -algebra that contains all closed subsets of X . Thus, B(X) is closed with respect
to complements and countable unions, its elements are often called Borel subsets of X .

A countably additive function μ : B(X) → [0,+∞] is called a Radon measure on X if

μ(B) = sup
{
μ(K ): K ⊂ B and K is compact

}
, B ∈ B(X). (1.1)

A Radon probability measure is a Radon measure μ, with μ(X) = 1. In the sequel, we will denote by P(X) the set of all
Radon probability measures on X . Every measure μ ∈ P(X) uniquely defines a positive linear functional μ(g) = ∫

g dμ,
where g runs over the bounded continuous functions on X . As a topological space, we consider P(X) endowed with
the weakest topology with respect to which all these functionals are continuous. Thus, a net {μα} ⊂ P(X) converges to
μ ∈ P(X) if and only if {μα(g)} converges to μ(g) for every bounded continuous function g : X → R. With respect to this
topology, for every closed F ⊂ X and ε > 0,{

μ ∈ P(X): μ(F ) < ε
}

is open in P(X). (1.2)

The famous Prohorov theorem [13] states that if X is a Polish space (i.e., a completely metrizable separable space), then
for every compact T ⊂ P(X) and every ε > 0 there exists a compact K ⊂ X , with μ(X \ K ) < ε for all μ ∈ T . Spaces having
this property, called Prohorov spaces, are widely investigated in the literature.
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In this paper, we give a simple proof that all sieve-complete spaces are Prohorov (Theorem 3.1). In the special case
of completely metrizable spaces, this result follows by the Michael theorem on the existence of usco selections for l.s.c.
mappings, [10, Theorem 1.1]. The general case of arbitrary sieve-complete spaces follows by a selection-like result [5, Corol-
lary 7.2] which utilizes “usco sections” instead of “usco selections”.

The idea to use some selection theorem for the proof of Prohorov’s theorem goes back to a question of Bouziad [2].
In fact, our approach provides a natural generalization of Prohorov’s theorem in which the compact subset T ⊂ P(X) is
replaced by a paracompact one Z ⊂ P(X), and the compact K ⊂ X—by an usco mapping from Z into the compact subsets
of X . This gives a solution to another problem of Bouziad [2] whether there is a “continuous” version of Prohorov’s theorem,
see Corollary 3.2.

The paper is organized as follows. Section 2 is devoted to the main ingredient of our approach which is a construction
of l.s.c. mappings generated by Radon probability measures (Proposition 2.1). Section 3 contains the proof of Theorem 3.1
which is preceded by that one for the special case of completely metrizable spaces.

2. A construction of l.s.c. mappings

For a space X , let 2X be the family of all nonempty subsets of X , and let C (X) be the subfamily of 2X which consists of
all compact members of 2X . A part of our considerations will involve C (X) endowed with the Vietoris topology τV . Recall
that τV is generated by all collections of the form

〈V 〉 =
{

S ∈ C (X): S ⊂
⋃

V and S ∩ V 
= ∅, whenever V ∈ V

}
,

where V runs over the finite families of open subsets of X . For convenience, for an open subset V ⊂ X , we write 〈V 〉 rather
than 〈{V }〉.

Another topology on C (X) that will play an important role in this paper is the upper Vietoris topology τ+
V , i.e. the topology

generated by the family{〈V 〉: V ⊂ X is open
}
.

Clearly, τ+
V is a coarser topology than the Vietoris one τV , i.e. τ+

V ⊂ τV . In this regard, let us make the explicit agreement
that if τ is a topology on C (X), then the prefix “τ -” will be used to express properties related to the topology τ , say
τ -open sets, τ -closure, etc.

Finally, let us recall that a set-valued mapping Φ : Z → 2Y is lower semi-continuous, or l.s.c., if the set

Φ−1(U ) = {
z ∈ Z : Φ(z) ∩ U 
= ∅

}
is open in Z for every open U ⊂ Y .

Proposition 2.1. Let X be a space, and let ε ∈ (0,1). Define a set-valued mapping Ψε : P(X) → 2C (X) by

Ψε(μ) = {
K ∈ C (X): μ(X \ K ) < ε

}
, μ ∈ P(X).

Then, Ψε is a nonempty-valued τV -l.s.c. mapping.

Proof. Take μ ∈ P(X). Since μ(X) = 1 > 1 − ε, by (1.1), there is K ∈ C (X) such that μ(K ) > 1 − ε, so Ψε(μ) 
= ∅. Let
K ∈ Ψε(μ) and let V be a finite family of open subsets of X , with K ∈ 〈V 〉. Then, X \ ⋃

V ⊂ X \ K , it is closed in X and
μ(X \ ⋃

V ) < ε. Hence, by (1.2), there exists a neighbourhood U of μ such that ν(X \ ⋃
V ) < ε for every ν ∈ U . If ν ∈ U ,

then ν(
⋃

V ) > 1 − ε and, by (1.1), there is a compact subset H ⊂ ⋃
V , with ν(H) > 1 − ε. We now have that H ∪ K ∈ 〈V 〉,

while H ∪ K ∈ Ψε(ν) because ν(X \ (H ∪ K )) � ν(X \ H) < ε. �
Proposition 2.2. Let X be a space, ε ∈ (0,1), Ψε : P(X) → 2C (X) be defined as in Proposition 2.1, and let Φε(μ) be the τ+

V -closure
of Ψε(μ), for each μ ∈ P(X). Then, μ(X \ K ) � ε for every K ∈ Φε(μ) and μ ∈ P(X).

Proof. Take μ ∈ P(X) and K ∈ C (X) such that μ(X \ K ) > ε. By (1.1), there exists a compact subset H ⊂ X \ K , with
μ(H) > ε. Let V = X \ H . We now have that K ∈ 〈V 〉, while ε < μ(H) = μ(X \ V ) � μ(X \ S) for every S ∈ 〈V 〉. Consequently,
K /∈ Φε(μ) because Ψε(μ) ⊂ C (X) \ 〈V 〉. �

We conclude this section with a well-known property of compact sets in the upper Vietoris topology.

Proposition 2.3. Let K ⊂ C (X) be a τ+
V -compact set. Then,

⋃
K is compact in X.

Proof. Take an open in X cover U of
⋃

K . Then, Ω = {〈⋃E 〉: E ⊂ U is finite} is a τ+
V -open cover of K . Hence, Ω

contains a finite subcover of K , so there exists a finite V ⊂ U , with K ⊂ ⋃{〈⋃E 〉: E ⊂ V is finite}. This V is a finite
cover of

⋃
K . �
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3. Usco mappings and Prohorov’s theorem

Recall that a set-valued mapping ψ : Z → 2X is upper semi-continuous, or u.s.c., if the set

ψ#(U ) = {
z ∈ Z : ψ(z) ⊂ U

}
is open in Z for every open U ⊂ X . We say that ψ : Z → 2X is usco if it is u.s.c. and compact-valued. Let us explicitly
mention that if ψ : Z → C (X) is usco, then ψ(T ) = ⋃{ψ(z): z ∈ T } is compact for every compact T ⊂ Z .

A space X is sieve-complete [3] if it has an open complete sieve. Every Čech-complete space is sieve-complete, and it was
shown in [3] (see, also, [11]) that the two concepts are equivalent in the presence of paracompactness.

Theorem 3.1. Let X be a sieve-complete space, and let Z ⊂ P(X) be paracompact. Then, for every ε > 0 there is an usco mapping
ϕ : Z → C (X) such that μ(X \ ϕ(μ)) < ε for every μ ∈ Z .

Turning to the proof of Theorem 3.1, let us first demonstrate the special case of a completely metrizable X . In this case,
let Ψε : P(X) → 2C (X) be defined as in Proposition 2.1, and let Φ(μ) be the τV -closure of Ψε(μ), for each μ ∈ P(X). By
Proposition 2.1 and [9, Proposition 2.3], Φ : P(X) → 2C (X) is τV -l.s.c. Also, (C (X), τV ) is completely metrizable because
so is X , [6–8]. Hence, by [10, Theorem 1.1], Φ � Z has a τV -usco selection θ : Z → 2C (X) . That is, θ is a τV -usco mapping
such that θ(μ) ⊂ Φ(μ) for every μ ∈ Z . Then, define ϕ : Z → C (X) by letting ϕ(μ) = ⋃

θ(μ), μ ∈ Z . This ϕ is as required.
Indeed, each θ(μ), μ ∈ Z , is τV -compact, hence τ+

V -compact as well, and, by Proposition 2.3, each ϕ(μ), μ ∈ Z , is a compact
subset of X . If V is a neighbourhood of ϕ(μ) for some μ ∈ Z , then 〈V 〉 is a neighbourhood of θ(μ). This implies that ϕ is
u.s.c. Finally, take μ ∈ Z and K ∈ θ(μ) ⊂ Φ(μ). Since τ+

V ⊂ τV , we have that Φ(μ) is a subset of the τ+
V -closure of Ψε(μ).

Therefore, by Proposition 2.2, μ(X \ ϕ(μ)) � μ(X \ K ) � ε because K ⊂ ϕ(μ).
The proof of Theorem 3.1 for the general case of arbitrary sieve-complete spaces follows exactly the same idea but is

now based on the upper Vietoris topology and another selection-like result for usco mappings.

Proof of Theorem 3.1. Let X and Z ⊂ P(X) be as in that theorem, and let ε ∈ (0,1). Also, for each μ ∈ P(X), let Φε(μ)

be the τ+
V -closure of Ψε(μ), where Ψε : P(X) → 2C (X) is defined as in Proposition 2.1. By Proposition 2.1 and [9, Propo-

sition 2.3], Φε : P(X) → 2C (X) is τ+
V -l.s.c. because τ+

V ⊂ τV . By [12, Lemma 3.1], (C (X), τ+
V ) is sieve-complete because

so is X . Hence, by [5, Corollary 7.2], Φε � Z has a τ+
V -usco section θ : Z → 2C (X) . That is, θ is a τ+

V -usco mapping such
that θ(μ) ∩ Φε(μ) 
= ∅ for every μ ∈ Z . Finally, define the required ϕ : Z → C (X) by ϕ(μ) = ⋃

θ(μ), μ ∈ Z . By Proposi-
tion 2.3, each ϕ(μ), μ ∈ Z , is a compact subset of X . Just like before ϕ is u.s.c. because if V is a neighbourhood of ϕ(μ)

for some μ ∈ Z , then 〈V 〉 is a neighbourhood of θ(μ). Finally, if μ ∈ Z and K ∈ θ(μ) ∩ Φε(μ), then, by Proposition 2.2,
μ(X \ ϕ(μ)) � μ(X \ K ) � ε because K ⊂ ϕ(μ). The proof is completed. �

It is well known that P(X) is paracompact (and Čech-complete) whenever X is so [1,14,15], see also [4]. This gives the
following immediate consequence.

Corollary 3.2. Let X be a paracompact Čech-complete space, and ε > 0. Then, there is an usco mapping ϕ : P(X) → C (X) such
that μ(X \ ϕ(μ)) < ε for every μ ∈ P(X). In particular, Φ(T ) = ⋃{ϕ(μ): μ ∈ T }, T ∈ C (P(X)), defines a continuous map
Φ : (C (P(X)), τ+

V ) → (C (X), τ+
V ) such that μ(X \ Φ(T )) < ε for every T ∈ C (P(X)) and μ ∈ T .
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