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Circadian gene Clock contributes to cell proliferation and migration
of glioma and is directly regulated by tumor-suppressive miR-124
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Although the roles of circadian Clock genes and microRNAs in tumorigenesis have been profoundly
studied, mechanisms of cross-talk between them in regulation of gliomagenesis are poorly under-
stood. Here we show that the expression level of CLOCK is significantly increased in high-grade
human glioma tissues and glioblastoma cell lines. In contrast miR-124 is attenuated in similar sam-
ples. Further studies show that Clock is a direct target of miR-124, and either restoration of miR-124
or silencing of CLOCK can reduce the activation of NF-jB. In conclusion, we suggest that as a target
of glioma suppressor miR-124, CLOCK positively regulates glioma proliferation and migration by
reinforcing NF-jB activity.

� 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction these processes and tumor development [7]. For example, the
In the living organisms, there exists circadian rhythm with a
day/night alternating pattern. The circadian rhythm serves as an
important regulatory system apart from the nervous, humoral
and immune systems, and keeps the organisms in normal biologi-
cal status. Disruption of the circadian rhythm may negatively affect
cellular function, potentially leading to increased susceptibility to
diseases, including cancers [1]. In normal circumstances, the core
circadian genes, including Bmal1, Clock, Period (Per1, Per2, Per3),
Cryptochrome (Cry1, Cry2), casein kinase Ie (CKIe), work in accu-
rate feedback loops and keep the molecular clockworks in the
hypothalamic suprachiasmatic nucleus (SCN) and controlling
peripheral clocks [2,3]. The levels of mRNAs and proteins of circa-
dian genes always oscillate throughout the 24 h period, with
exceptions of Clock and CKIe [4]. Maywood et al. have also demon-
strated the constitutive expression of mCLOCK as a nuclear antigen
in the SCN [5]. It has been shown that up to 10% of all genes in the
mammalian genome are under the regulation of circadian genes
[6]. As the molecular clockworks regulate the gene expression
related to cell cycle, apoptosis and other pathways in cells, aberra-
tion of circadian genes could conceivably result in deregulation of
expression of all three Per genes is deregulated in breast cancer
cells [8]. Targeted ablation of Per2 leads to the development of
malignant lymphomas [9]. Breast tissue from healthy controls
had significantly lower CLOCK gene expression than all breast tis-
sue from patients with breast cancer, including adjacent normal
tissue [1]. There are also evidences that circadian clock involves
in gliomagenesis. The expression levels of Per1, Per2 and Cry1,
Cry2 in glioma tissues were much lower than that in the adjacent
normal tissues [10,11]. The expression of CLOCK in high-grade
gliomas was found to be significantly higher than that of the
low-grade gliomas and non-gliomas by RT-PCR and immunohisto-
chemistry [12]. However, the roles of CLOCK in gliomagenesis
remain totally unknown.

MiRNAs are small non-coding RNAs that play essential roles in
post-transcriptional regulation of gene expression [13,14], and par-
ticipate in many biological processes including cell proliferation,
survival, and tumor angiogenesis, invasion, metastasis of cancers.
They act either as tumor suppressor genes or oncogenes [15–17].
And alterations of miRNAs have also been reported in the initiation
and progression of gliomas [18–22]. MiR-124 was frequently
reported to be downregulated in glioma and play a glioma sup-
pressive role by targeting specific genes such as Twist, Slug, Snai2,
while miR-124 restoration inhibited glioblastoma cell proliferation
and migration [23–26].
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In this study, we found that the core circadian clock gene, Clock,
is up-regulated in glioma tissues and cell lines, consistent with an
earlier study [12], and is related to the proliferation, survival, and
migration of glioma cell. We also found that miR-124 can repress
the expression of Clock by directly targeting its 30 untranslated
regions (30UTR), and then we inferred that the attenuation of
miR-124 may contribute to the high CLOCK protein level in high
grade glioma tissue and cell lines. Furthermore, the clues indicated
that restoration of miR-124 or silencing of CLOCK in glioma cell
reduced the NF-jB activity, which implies a potential miR-124-
CLOCK-NF-jB axial relationship in gliomagenesis.
Fig. 1. CLOCK is up-regulated in both tissues and cell lines of glioma. (A) Western
blotting analysis was used to detect CLOCK in normal brain tissues and glioma
tissues. N: normal brain tissue; II–IV: grade II/III/IV glioma tissues. (B) Western
blotting analysis was used to detect CLOCK in human normal glial cell lines (HASP,
HEB) as well as in glioma cell lines (U87MG, T98G, A172 and U251).
2. Materials and methods

2.1. Samples and cell lines

All normal human brain tissue and glioma samples were ob-
tained from the Department of Neurosurgery, Beijing Tiantan Hos-
pital. All human materials were used in accordance with the
policies of the institutional review board of Beijing Tiantan Hospi-
tal. Glioma cell lines U87MG, T98G, A172, U251 and normal astro-
cyte cell lines HASP, HEB were cultured in DMEM supplemented
with 10% fetal bovine serum (FBS) (HyClone, Logan City, Utah).

2.2. Plasmids

The CLOCK-pcDNA3.1 plasmid is used in our lab earlier [24]. For
the luciferase reporter assay, the 30UTR of Clock (from nt 1 to nt
2019, with NotI/XhoI sites), and for the miR-124 target mutation
experiment, the wild type of 30UTR of Clock (from nt 930 to nt
1601, with XhoI/XbaI sites) were amplified from the cDNA of
T98G cells. For mutagenesis, the miR-124 binding site was replaced
with a random sequence by bridge PCR. Then the PCR products
were cloned into the firefly luciferase reporter vector pcDNA3.1-
Luc. The primers for plasmids construction are listed in Table S1.
For NF-jB activity assay, sequences of four NF-jB target core site
GGGAATTTCC (GGGRNNYYCC, R: purine, Y: pyrimidine, N: any
nucleotide) in series were synthesized from Invitrogen (Beijing,
China) and inserted into the BglII/HindIII sites of pGL3-basic
plasmid.

2.3. siRNA and miRNA

The double-stranded siRNAs targeting human Clock and siRNA
control, MiR-124 mimics and inhibitors, negative control or inde-
pendent control mimics and inhibitors were commercially synthe-
sized by GenePharma (Shanghai, China). The siRNAs and miRNA
mimics/inhibiors are listed in Table S2. All the transfections were
performed using the Lipofectamine 2000 reagent (Invitrogen,
Shanghai, China) according to the manufacturer’s instruction.

2.4. Growth, survival, colony formation

Cell growth was determined using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) standard method.
For survival assay, 24 h after transfection, the cells were main-
tained in serum-free medium, and the surviving cell number was
determined using the MTT method. For colony formation assays,
transfected cells were plated in 12-well plates at 200 cells per well.
10 days later, the cell colonies were stained and counted.

2.5. Transwell migration assays and wound healing migration

For transwell migration assays and wound-healing assay, T98G
and U87MG cells were transfected with CLOCK siRNA or negative
control (NC) and transwell migration assays were performed as de-
scribed previously with small modification [24].

2.6. Luciferase assay

Dual-Luciferase reporter assays were performed according to
the manufacturer’s instructions (Promega, Madison, WI) as previ-
ously described [24].

2.7. RNA extraction and real-time quantitative PCR

Total RNA extraction, reverse transcription, and real-time PCR
were performed as described previously [24]. The GAPDH mRNA
was used as an internal control for normalization. Primers are
listed in Supplementary Table S3.

2.8. Western blotting

Western blotting was performed as described previously [24].
The antibodies used include anti-CLOCK (Calbiochem, GER), anti-
human b-actin antibodies (Sigma, USA), anti-CyclinD1 (Abcam,
UK), anti-Vimentin, anti-E2F3a, anti-c-Myc (Santa Cruz Biotechnol-
ogy, USA), anti-Bmi1, anti-p-p65 (Cell Signaling Technology, MA,
USA).

2.9. Statistics

Data are expressed as mean ± S.D. Student’s t test was used for
analysis and P values <0.05 were considered significant.

2.10. Computational prediction

Two target prediction databases (TargetScan and PicTar) were
used to predict the interaction between the miRNAs and the Clock
30UTR.

3. Results

3.1. CLOCK is up-regulated in glioma tissues and cell lines

We first measured the protein level of CLOCK in 16 glioma tis-
sues and two normal brain tissues and found that CLOCK expressed
in glioma tissues of grade III and grade IV is higher comparing with
normal brain tissues and grade II glioma tissues (Fig. 1A). An in-
crease of CLOCK protein was also found in glioma cell lines
U87MG, T98G, A172, and U251 compared to the human normal
glial cell lines, HASP and HEB (Fig. 1B). The up-regulation of CLOCK
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in glioma suggests that CLOCK may have an important role in
gliomagenesis.

3.2. Knocking-down CLOCK suppresses glioma cell growth, survival,
and migration

It has been reported that the circadian clock can regulate the
cell cycle, DNA damage responses, ageing and metabolism and
alterations in clock function could lead to aberrant cellular prolif-
eration [27]. To study the function of CLOCK in glioma cell growth
and survival, we performed a loss-of-function analysis using
CLOCK-targeting siRNA oligos (siCLOCK) in U87MG and T98G cells.
CLOCK knockdown was first verified by Western blotting. Since
siCLOCK2 is more efficient than siCLOCK1 (Fig. S1), siCLOCK2 was
used for functional assays in Fig. 2. The 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetra-zolium bromide (MTT) assays showed that
the reduction of CLOCK slowed the growth of glioma cells signifi-
cantly and made them more sensitive to serum starvation than
controls. The data showed that the growth of U87MG and T98G
with 10% FBS medium were down-regulated by about 17% and
9.4%, respectively (siCLOCK vs. siNC), while with 0% FBS medium
were down-regulated by about 29% and 30% respectively (siCLOCK
vs. siNC) (Fig. 2A and B). In addition, the reduction of CLOCK de-
creased the colony formation ability of T98G cells (Fig. 2C). Thus,
up-regulated CLOCK may have important roles in facilitating gli-
oma cell growth, survival and colony formation. To determine
the effect of CLOCK on glioma cell migration, we conducted Scratch
Fig. 2. Knocking down CLOCK suppresses glioma cell growth and migration. (A and B)
growth and survival of glioma cells U87MG (A) and T98G (B) cells. Data are represented a
protein levels of the U87MG and T98G cells transfected with siNC or siCLOCK (siCLOCK2).
on the colony formation ability of T98G. Data are represented as mean ± S.D., n = 4. (D) C
T98G and U87MG cells. Photos were taken under inverse microscope (Nikon, Eclipse,
SiCLOCK2 was used here for knockdown; NC: negative control.
Wound Healing Migration and Transwell Migration assays. The re-
sults indicated that depletion of CLOCK suppressed the migration
of T98G and U87MG cells, in other words, CLOCK promoted migra-
tion of glioma cells. (Figs. 2D and S2).

3.3. Attenuation of miR-124 might contribute to high CLOCK
expression in glioma cells

Using two algorithmic methods (TargetScan and PicTar) in com-
mon use, miR-124 and miR-181b were predicted to putatively bind
to the 30UTR of Clock (Fig. 3A and B). Previous study in our lab indi-
cated that miR-124 is significantly lower in glioma cells (U87MG,
T98G, A172, U251) than normal astrocyte HEB [28]. To validate
the potential interaction between Clock 30UTR and miR-124 or
miR-181b, we adopted luciferase reporter assays and found that
miR-124 but not miR-181b or miR-128 could significantly repress
the luciferase activity of Clock 30UTR in glioma cell T98G (Fig. 3C),
and this effect were absent in normal glial cell HEB (Fig. 3D). We
also confirmed the CLOCK protein repression by miR-124 in two
glioma cell lines (U87MG and T98G). Moreover, the inhibition of
miR-124 increased the CLOCK expression (Fig. 3E). The above re-
sults suggested that CLOCK was a downstream target of miR-124.

To identify whether the suppressive effect of miR-124 on Clock
expression is direct, we fused wild type (WT) and mutated (MT)
30UTR of miR-124 target site of Clock to luciferase reporter vector
pcDNA3.1-LUC. The luciferase reporter assays revealed that the
luciferase activities were significantly reduced at the presence of
MTT assays were performed to investigate the effect of CLOCK knockdown on the
s mean ± S.D., n = 4. On the top are the Western blotting results showing the CLOCK
(C) Colony formation assays were utilized to test the effect of knocking-down CLOCK
ell migration was determined after transfection with siNC or siCLOCK (siCLOCK2) in

TE2000-U), 10�. Data are represented as mean ± S.D., n = 3. ⁄P < 0.05; ⁄⁄P < 0.01.



Fig. 3. MiR-124 inhibits the expression of CLOCK. (A) The 30UTR of Clock gene is conserved in multiple species and harbors predicted miR-124 and miR-181b binding within
the first 2 kb region. (B) The first 2010 bp of Clock 30UTR containing miR-124 and miR-181b binding sites were cloned downstream of luciferase reporter gene cassette (gray
box). (C) Luciferase reporters were cotransfected with synthetic miRNA mimics (miR-124, miR-128 and miR-181b or control miRNA) into T98G cells. Forty-eight hours later,
the normalized luciferase activity was determined (mean ± S.D., n = 4). ⁄⁄P < 0.01. (D) Luciferase reporters were cotransfected with synthetic miRNA mimics (miR-124, miR-
128 and miR-181b or control miRNA) into HEB cells. Forty-eight hours later, the normalized luciferase activity was determined (mean ± S.D., n = 4). (E) U87MG or T98G cells
were transfected with synthetic mimics of control, miR-124, miR-128 or inhibitors of control, miR-124. Forty-eight hours later the whole cellular proteins were extracted and
the protein level of CLOCK was detected by Western blotting.

Fig. 4. MiR-124 directly targets Clock 30UTR. (A) The miR-124 targeting sequence in
30UTR of Clock is conserved. (B) Either a wild-type (WT) or a mutated (MT) Clock
30UTR was cloned downstream of the luciferase reporter gene, the mutated
nucleotides were shown in italic. (C) The interactions between miR-124 and the
30UTRs of Clock were tested by luciferase reporter assays. The normalized luciferase
activity is expressed as the mean ± S.D., n = 4. ⁄P < 0.05.
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the wild type 30UTRs and the repression effect could be abolished
by mutations in seed complementary site. Based on the mutation
experiments, we came to the conclusion that miR-124 could
directly target Clock 30UTR. Taken together, our results indicated
that down-regulation of miR-124 contributed to high CLOCK
expression in glioma cells (Fig. 4).

3.4. MiR-124 modulates NF-jB activity by regulating CLOCK

We have shown that CLOCK promotes the cell growth, survival
and migration of glioma cells. Spengler et al. found that CLOCK can
bind to p65 as a complex for up-regulating NF-jB-mediated
transcription in the absence of BMAL1, and indicated that its mod-
ulation of NF-jB activity may occur through increasing specific
phosphorylated and acetylated active forms of p65, but not its role
of traditional circadian control [29]. And it has been shown that
NF-jB pathway plays a role in cellular transformation and tumor-
igenesis by up-regulating the expression of some antiapoptosis
genes [30–32]. However, little is known regarding its role in the
pathophysiology of glial cells. In order to explore whether miR-
124 cooperating with CLOCK affects NF-jB activity in glioma, we
inserted NF-jB target core site sequences into luciferase reporter
vector pGL3-basic. In the luciferase reporter assays, we found that
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CLOCK knockdown and miR-124 over-expression in T98G could
down-regulate the NF-jB activity. Additionally, ectopically
expressing CLOCK could reverse the repression effect of miR-124
on NF-kB activity (Fig. 5A). Furthermore, transfecting miR-124
mimics or CLOCK siRNA into T98G both could lead to down-regu-
lated mRNA expression of NF-jB target genes (Fig. 5B). And the
protein level of five NF-jB target genes: Bmi1, C-Myc, Vimentin,
CyclinD1, and E2f3a, which play key roles in cell cycle, apoptosis,
cellular transformation, were also verified at protein level after
knocking down CLOCK in T98G, the results indicated that the five
genes were down-regulated while CLOCK and activated p65
(p-p65) were decreased (Fig. 5C). All these data suggested that
the aberrant expression of CLOCK may be associated with NF-jB
pathway in glioma.

4. Discussion

Gliomas are the most common and lethal malignant tumors in
the central nervous system [33]. Despite intensive therapeutic
strategies on glioma [2,3], the prognosis remains extremely poor
[33–35]. Further studies on the molecular mechanism for glioma-
genesis and glioma progression are crucial for developing specific
treatment strategies.

In our present study, we demonstrate that CLOCK is increased in
grade III and IV glioma tissues and glioma cell lines by Western
blotting, reinforced the earlier study detected the expression of
Clock though RT-PCR and immunohistochemistry techniques by
Chen et al. [12], suggesting that disturbed CLOCK expression may
be associated with glioma progression. However, the roles of
CLOCK in glioma generation and progression are poorly
understood.
Fig. 5. MiR-124 modulates NF-jB activity by regulating CLOCK. (A) NF-jB activity was d
after knocking down CLOCK. The bottom data shows the relative NF-jB activity after tra
miR-NC) and pcDNA3.1-CLOCK (or pcDNA3.1). (B) The relative mRNA level of NF-jB targe
(siCLOCK2) or overexpressing miR-124 in T98G. Statistical data are represented as mean
five NF-jB target genes were detected in CLOCK suppressed T98G or control cells by W
control.
It has been shown that Per2 function as tumor suppressor by
regulating DNA damage-responsive pathways [9]. But how CLOCK
influence the tumor progression, especially glioma here, is unclear.
Aiming to investigate this question, in this study we first examined
the impact of CLOCK in proliferation though MTT assay and colony
formation, and its role in glioma cell migration by transwell assay.
The results revealed that repressed CLOCK by siRNA led to the
retardation of cell growth and migration of glioma cells, thus we
infer CLOCK may acts as a tumor enhancer in gliomas. All the func-
tional experiments were performed in cell lines, so using nude
mouse transplantation tumor experiment in vivo will fine down
the growth-promoting function of CLOCK in the future.

MiRNAs can usually regulate their target genes at post-tran-
scriptional level. To find out the mechanism of CLOCK up-regula-
tion in gliomas, we hypothesized that attenuation of miRNAs in
glioma may lead to aberrant expression of CLOCK. After predicting
the miRNAs target to Clock with softwares, we found two potential
miRNAs (miR-124 and miR181b), then we identified that miR-124
can directly target to Clock 30UTR. MiR-124 is one of the most
widely studied tumor suppressive miRNAs in glioma and has been
shown to target several important transcription factors such as
SNAI2 [23]. MiR-124 is frequently silenced in glioma [23], possibl-
ely due to the hypermethylation of the miR-124-1 promoter [36].
We deduced that depressed miR-124 may be responsible for high
expression of CLOCK in glioma cells. Thus, miR-124-1 promoter
hypermethylation might be one of the factors determining the
expression level of miR-124 and its target CLOCK in glioma.

To understand the mechanism of the roles of CLOCK in glioma
proliferation and migration, we analyzed the NF-jB activity and
alteration of NF-jB target genes after knocking-down CLOCK. Our
results indicated that NF-jB activity was reduced and NF-jB target
etected by luciferase reporter assays. The upper data shows relative NF-jB activity
nsfecting the T98G cells with NF-jB reporters together with synthetic miR-124 (or
t genes were quantified by realtime-PCR after knocking-down CLOCK with siCLOCK
± S.D., n = 3. ⁄P < 0.05, ⁄⁄P < 0.01, ⁄⁄⁄P < 0.001. (C) The CLOCK, p-p65 and proteins of

estern blotting. (D) A potential miR-124-CLOCK-NF-jB axis in glioma. NC: negative
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genes were repressed after CLOCK knockdown. For abundant evi-
dences demonstrate that constitutive activation of NF-jB in glioma
plays an important role in the regulation of genes involved in cel-
lular adhesion, migration, and invasion [3737], we hypothesized
that aberrant expression of CLOCK may disrupt the NF-jB pathway
in glioma. Consistently, we found miR-124 restoration also signif-
icantly reduced the NF-jB activity and the expression of the bona
fide NF-jB target genes.

Taken together, we presented evidences for a glioma enhancive
role of CLOCK in glioma cells for the first time and showed that the
attenuation of glioma suppressor miR-124 contributes to the high
CLOCK expression. Moreover, we confirmed that miR-124 and
CLOCK modulate the NF-jB activity in glioma cells, suggesting a
potential miR-124-CLOCK-NF-jB relationship (Fig. 5D). These find-
ings further our understanding on the mechanism of gliomagenesis
and may provide a new perspective for the clinical therapy.
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