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Alkaptonuria (AKU) is an ultra-rare disease developed from the lack of homogentisic acid oxidase activity,
causing homogentisic acid (HGA) accumulation that produces a HGA-melanin ochronotic pigment, of un-
known composition. There is no therapy for AKU. Our aim was to verify if AKU implied a secondary amyloid-
osis. Congo Red, Thioflavin-T staining and TEMwere performed to assess amyloid presence in AKU specimens
(cartilage, synovia, periumbelical fat, salivary gland) and in HGA-treated human chondrocytes and cartilage.
SAA and SAP deposition was examined using immunofluorescence and their levels were evaluated in the pa-
tients' plasma by ELISA. 2D electrophoresis was undertaken in AKU cells to evaluate the levels of proteins in-
volved in amyloidogenesis. AKU osteoarticular tissues contained SAA-amyloid in 7/7 patients. Ochronotic
pigment and amyloid co-localized in AKU osteoarticular tissues. SAA and SAP composition of the deposits
assessed secondary type of amyloidosis. High levels of SAA and SAP were found in AKU patients' plasma. Sys-
temic amyloidosis was assessed by Congo Red staining of patients' abdominal fat and salivary gland. AKU is
the second pathology after Parkinson's disease where amyloid is associated with a form of melanin. Aberrant
expression of proteins involved in amyloidogenesis has been found in AKU cells. Our findings on alkaptonuria
as a novel type II AA amyloidosis open new important perspectives for its therapy, since methotrexate treat-
ment proved to significantly reduce in vitro HGA-induced A-amyloid aggregates.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Alkaptonuria (AKU; MIM no. 203500) is a rare disease (1:250,000–
1,000,000 incidence) resulting from a deficiency of the enzyme
homogentisate1,2-dioxygenase (HGO) that splits the aromatic ring of
homogentisic acid (HGA, 2,5-dihydroxyphenylacetic acid), an interme-
diary product of tyrosine and phenylalanine catabolism in the liver [1].
This leads to the accumulation of HGA that cannot be further metabo-
lized. A portion of HGA is excreted daily in the urine where it imparts a
characteristic black discoloration upon oxidation. In urine, as in tissues,
HGA oxidizes to benzoquinone acetic acid (BQA), which in turn forms
HGA-melanin-based polymers [2], deposited in the connective tissue,
most commonly the joints, cardiovascular system, kidney and skin [3],
causing a pigmentation known as “ochronosis”. Polymer deposition in
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cartilage leads to degeneration, chronic inflammation and osteoarthritis.
Musculoskeletal involvement is the most serious complication, leading
to a severe and sometimes crippling form of arthropathy, which is the
most common clinical presentation of AKU and often mimics ankylosing
spondylitis [4]. AKU patients sometimes suffer from cardiovascular dis-
ease (frequent cause of death [5]) and kidney disease [6].

Although AKU pathological features are clinically described, its mo-
lecular basis has not been explored to any significant degree, because of
the lack of suitable models to study the disease. We introduced novel
human ochronotic cell, tissue and serum models and undertook pre-
clinical testing of potential antioxidant therapies for AKU [1,7–11].
Thesemodels contributed to understanding HGA effects on cell viability
[9,12], cell protein expression [9,10,12] and joint destruction in AKU [2].
Both intra- and extra-cellular pigmented deposition indicates that
HGA cannot be the sole factor causing it and suggests the potential
role/presence of other unidentified proteins [13].

There is no effective cure for AKU at the moment. Treatment is
symptomatic, although this is recommended for early-stage of the
disease while for the end-stage, total joint replacement is required.
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Secondary amyloid-A (AA) amyloidosis is a serious complication
of chronic inflammatory conditions such as rheumatoid arthritis
(RA) and its amyloid deposition process involves a cleaved product
of the acute-phase protein serum amyloid A (SAA) [14]. AA amyloid-
osis occurs in patients with poorly controlled chronic inflammatory
disease, mainly RA, ankylosing spondylitis, and familial Mediterra-
nean fever.

In the present paper, we provided experimental evidence that
AKU osteoarticular tissue contains AA-amyloid deposits. This is the
first report, to the best of our knowledge, of secondary amyloidosis
associated with AKU. This opens new perspectives for AKU therapy
and we also showed that methotrexate was able to significantly pre-
vent in vitro HGA-induced A-amyloid aggregates.

2. Materials and methods

The whole study was conducted following the approval of the
local University Hospital Ethics Committee. All patients gave a written
informed consent prior to inclusion in the study.

All reagents were from Sigma-Aldrich (St. Louis, MO), if not differ-
ently specified.

2.1. AKU samples

Alkaptonuric specimens were obtained from seven AKU patients
(Table 1). Healthy human articular cartilage was obtained from pa-
tients without any history of rheumatic diseases, who underwent sur-
gical knee joint sampling. Tissue was removed only from healthy,
glossy and completely intact articular cartilage surface.

2.2. AKU cell and tissue models

We previously developed original cell and organotypic ex vivo AKU
models based on human chondrocytes or articular cartilage treated
with 0.33 mM HGA up to the development of ochronosis, as described
[10–12].

2.3. Congo Red (CR) staining

Amyloid fibrils appear as twisted rods composed of cross-beta sheet
structures that selectively bound the dye Congo Red and Thioflavin-T. A
version of Romhányi's original CR staining method [15] modified
according to Bély and Apáthy [16] was adopted. Sections of 3–5 μm
thickness of fresh cartilage, synovia, abdominal fat and salivary gland
specimens were fixed in cooled 96% ethanol 10 min, rinsed in distilled
water, incubated in 1% CR for 40 min, washed in water, incubated
Table 1
Alkaptonuria patients enrolled for the study and their characteristics. F: female, M: male, Sy
light chain, 6: prealbumin, 7: Pmel17, N: negative, P: positive, Asc: ascorbic acid (1 g/day),

Features Patient 1 Patient 2 Patien

Age 62 45 60
Sex F M M
Backbone impairment 4/4 2/4 4/4
Articular joints impairment 4/4 2/4 4/4
Orthopedic surgical interventions 2 1 5
Cardiovascular involvement 2/4 0/4 0/4
Serology

SAA (mg/L) 65.64 3.43 134.69
SAP (mg/L) 37.008 36.362 68.042

Histology
Congo Red staining SynP, CarP SynP, CarP SynP,
Th-T staining SynP, CarP SynP, CarP SynP,

1P,2P, 1P,2P, 1P,2P,
Immunohistology 3N,4N, 3N,4N, 3N,4N

5N,6N,7N 5N,6N,7N 5N,6N
Location of amyloid Hip Knee Hip
Treatment and medication Asc Asc, Nim No
10 s in 1 mL 1% sodium hydroxide in 100 mL of 50% ethanol, incubated
30 s inMayer's hematoxylin, sequentially washed in 50%, 75%, 95% eth-
anol, mounted and observed under a polarized light microscope (Zeiss
Axio Lab.A1, Arese, Milano).
2.4. Thioflavin T (Th-T) staining

Samples incubated in 1% Th-T [17,18] were mounted and observed
under afluorescencemicroscope (excitation 450 nm, emission 482 nm).
2.5. Fluorescence microscopy

Synovia and cartilage samples in paraffin were cut in 3–5 μm slices
and used for double immunofluorescence staining with anti-SAA and
anti-serum amyloid P (SAP) antibodies (Santa Cruz Biotechnology, CA).
Additional immunofluorescence assays were performed using anti-
immunoglobulin light chain, anti-pre-albumin, anti-α-synuclein, anti-
beta-2 microglobulin and anti-Pmel17 antibodies (all by Santa Cruz Bio-
technology, CA). Intrinsic HGA-melaninfluorescence (excitation 633 nm
and emission between 650 and 742 nm) was observed under a Rhoda-
mine 123 filter.
2.6. Biochemical assays

Plasma SAA and SAP in AKU patients were measured by ELISA
(Invitrogen-Life Technologies, Carlsbad, CA).
2.7. Statistical analysis

Student's t-test was used when appropriate. Two-tailed analysis
with P value lower than 0.05 was considered significant. Correlation
analysis was performed using Pearson's correlation.
2.8. Transmission electron microscopy (TEM)

AKU cartilage was fixed in 2.5% glutaraldehyde in 0.1 M cacodylate
buffer (CB) pH 7.2 for 3 h at 4 °C. After rinsing in CB, samples were
post-fixed in 1% osmium tetroxide in CB for 2 h at 4 °C, dehydrated in
a graded series of ethanol and embedded in a mixture of Epon–Araldite
resins. Thin sections, obtained with a Reichert ultramicrotome, were
stained with uranyl acetate and lead citrate and observed with a TEM
FeiTecnai G2 spirit at 80 Kv.
n: synovia, Car: cartilage, 1: SAA, 2: SAP, 3: beta2-microglobulin, 4: a-synuclein, 5: Ig-l
Nim: nimesulide (100 mg×2/day), n.d.: not determined.

t 3 Patient 4 Patient 5 Patient 6 Patient 7

52 69 58 61
M F F M
2/4 4/4 4/4 3/4
3/4 4/4 n.d. 3/4
2 2 1 3
3/4 2/4 n.d. 1/4

99.36 117.70 87.14 97.44
46.615 47.996 25.434 39.996

CarP SynP, CarP SynP, CarP SynP, CarP SynP, CarP
CarP SynP, CarP SynP, CarP SynP, CarP SynP, CarP

1P,2P, 1P,2P, 1P,2P, 1P,2P,
, 3N,4N, 3N,4N, 3N,4N, 3N,4N,
,7N 5N,6N,7N 5N,6N,7N 5N,6N,7N 5N,6N,7N

Knee Knee Hip Knee
Asc No Asc No
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2.9. Chondrocyte proteomic analysis

Cell cultures of AKU or healthy (control) chondrocytes werewashed
twice with sterile PBS and resuspended in a buffer containing 65 mM
DTE, 65 mM CHAPS, 9 M urea, and 35 mM Tris-base. Cell disruption
was achieved by sonicating in an ice bath and protein content was
assessed. A total of 50 μg of protein samples were submitted to 2D elec-
trophoresis (2DE), as described [9]. Digitalized imageswere obtained by
ImageScanner III (GE-Healthcare, Milano) and then qualitatively and
quantitatively analyzed by the ImageMaster software (GE-Healthcare).
The increasing/decreasing index (fold change) was calculated as the
ratio of spot relative volume between the different gel maps. Protein
spot identification was obtained as described [9,19].

3. Results

3.1. Congo Red stained AKU cartilage, synovia and chondrocytes

CR staining under polarized light of AKU cartilage of elderly patients
(58 to 69 years) showed green birefringence as well as ochronotic carti-
lage fragments (shards) while control healthy cartilage did not. The size
and the prevalence of cartilagineous amyloid in AKU patients seemed to
be related to disease progress. We observed interconnected amyloid de-
posits in AKU synovial tissues and ochronotic cartilage shards embedded
in severely degraded synovium [Fig. 1A(H,L)]. Amyloid deposits appeared
along the surface and more deeply [Fig. 1A(H,L)]. CR birefringence was
superimposing the ochronotic shards (Fig. 1A, compare G with H and I
with L). CR-positive amyloid depositswere revealed inAKUchondrocytes
isolated from patients (Fig. 1B).

3.2. Congo Red stained cell and cartilage AKU models

Using our AKU models [10–12] we confirmed CR staining of
chondrocytic and cartilage pigmented areas (Fig. 1C) and at the same
time we proved that the amyloid presence was due to HGA, suggesting
its potential role in the formation of amyloid structures in vivo. Similar
staining of deposits was visible in AKU patients' cartilage [Fig. 1A(C–F)],
perfectly reproducing the ex vivo situation, since CR birefringence of
AKU cartilage model exactly overlapped the pigmented areas (Fig. 1C).

3.3. Thioflavin T stained AKU cartilage and AKU synovia and amyloid
co-localized with melanin-like deposits

To confirm the presence of amyloid aggregates in cartilage and
synovial tissue from AKU patients we performed the Th-T assay.
Th-T fluorescence was evident and perfectly superimposing the
ochronotic shards in AKU tissues (Fig. 2A). Ochronotic deposits are
defined as melanin‐like pigments and we wanted to ascertain if
such structures could potentially co-localize with amyloid deposits
in AKU cartilage and synovia. Th-T fluorescence overlapped HGA-
melanin fluorescence and double exposure of phase contrast and
fluorescence allowed the simultaneous localization of amyloid and
ochronotic shards (Fig. 2B).

3.4. AKU is a SAA- and SAP-mediated secondary amyloidosis

SAA and SAP deposition in AKU cartilage and synovial specimens
was examined using immunofluorescence techniques. Co-localization
of SAA with SAP staining was detected in all of the examined tissues
(Fig. 3A). No positivity for the presence of immunoglobulin light chains,
pre-albumin, α-synuclein, beta-2 microglobulin and Pmel17 was ob-
served (Table 1). The patterns of immunofluorescent staining did not
appear to differ between SAP and SAA, although this latter was highly
present in the cartilage from any AKU patient, suggesting a strong pro-
duction and release of SAAbyAKU chondrocytes and consequently high
SAA and SAP circulating levels. Interestingly, SAA and SAP distribution
in amyloid of AKU cartilage perfectly superimposed with HGA-melanin
localization (Fig. 3B). Indeed, high plasma levels of both SAA and SAP
were found in all AKU patients (Fig. 4A,B). AKU synovial sections showed
particularly intensive SAP positivity in correspondence of ochronotic
shards (Fig. 3A), especially in patients with high SAA and SAP plasma
levels (Table 1, Fig. 4A,B).

High plasma levels of both SAA and SAP were found in all AKU pa-
tients (Fig. 4A,B). Four patients were receiving oral antioxidant therapy,
for at least 6 months before the time of study. Patient 2 had received an
anti-inflammatory treatment. Three caseswere untreated. The SAA level
of AKU patients (Fig. 4, middle panel) ranged 3.43–134.69 mg/L with a
mean of 86.48±13.04 mg/L, while those of the control group ranged
4.23–8.92 mg/L with a mean of 6.36±2.82 mg/L; the difference was
statistically significant (P=0.001). SAA levels in patients who had not
received any treatment (mean=116.61±20.44 mg/L) resulted signifi-
cantly higher than controls (P=0.043). Correlation between SAA level
and someof thedisease parameters revealed statistically significant pos-
itive correlation for the age (r=0.362, P=0.02) and disease duration
(r=0.698, P=0.0001). This significant correlation indicated that age
and disease severity in AKU may be associated with raised SAA levels,
thus reflecting also the progressive nature of type AA amyloidosis.
Mean serum SAP in AKUpatientswas 43.06±4.40 mg/L,whichwas sta-
tistically different (P=0.001) from the values in 4 healthy controls
(10±5.6 μg/L). All AKU patients showed high SAP plasma levels, appar-
ently not influencing disease severity (Fig. 4B). In the control population
serum SAP was not related to age.

3.5. Congo Red stained periumbelical fat and salivary gland AKU specimens

Confirmation of systemic amyloidosis in AKU patients was
obtained by CR staining of AKU abdominal fat aspiration and labial
salivary gland biopsies (Fig. 4C), that has been proven as highly sen-
sitive and reliable method for diagnosis of secondary amyloidosis
[20,21]. Minor (labial) salivary gland and subcutaneous abdominal
fat tissues from AKU patients showed amyloid presence in all sam-
ples examined (Fig. 4C).

3.6. Methotrexate (MTX) was able to prevent amyloid and to decrease pro-
inflammatory cytokine release in an in vitro AKU chondrocytic model

Our in vitro AKU model allowed a semi-quantitative analysis of the
production of amyloid due to HGA addition and its reduction (−97.2%)
due to a treatment with 10−9 M MTX (Fig. 5A), a concentration in
the range of that administered to RA patients to keep low SAA plasma
levels and thus control/reverse secondary amyloidosis [22]. HGA-
treated chondrocytes released high levels of pro-inflammatory cyto-
kines and MTX treatment proved to be able to decrease them or even
restore control levels (Fig. 5B).

3.7. TEM observation of amyloid deposits in AKU cartilage

The darkness of AKU cartilage is the feature that differentiates
ochronotic articular cartilage from other forms of arthritis. To better
investigate the ultrastructure of amyloid deposits in AKU tissue, we
performed an electron microscopical study of AKU cartilage samples
(Fig. 6). Amyloid fibrils were seen in little bundles mainly nearby
chondrocytes. In individual chondrocytes, an intense nuclear pig-
ment deposition was visible: nuclei showed remarkable differences
from normal chondrocytes, being pyknotic and frequently con-
densed and irregular (Fig. 6B). Amyloid fibrils in small aggregations
without definite polarity spread out in the tissue [Fig. 6B(A,E,F)] as
well as in around collagen fibrils [Fig. 6(A,E)] were evident. In several
tissue areas, disruption of collagen fibers had occurred as a precursor
of osteoarthritic changes [Fig. 6(C–D)] and the ultrastructure of AKU
cartilage showed a remarkable sparse dotted pigmentation distrib-
uted within the tissue [Fig. 6(A,B,E,F)]; an alteration of collagen



Fig. 1. A) Congo Red stained AKU cartilage and synovia. A, B: Healthy cartilage; C, D: cartilage from Patient 4; E, F: cartilage from Patient 5. G, H: Synovia from Patient 4; I, L: synovia
from Patient 5. Analogous results were obtained from specimens of other patients. M–P: Congo Red staining of HGA-treated human healthy cartilage sections. M: Control, untreated
cartilage model; O, P: HGA-treated cartilage model. In O an ochronotic shard is well visible showing a remarkable birefringence in P. Arrows indicate ochronotic shards. Magnifi-
cation 20×. Representative images from a triplicate set are shown. B) Congo Red stained AKU chondrocytes. Congo Red birefringence was observable in ex vivo AKU chondrocytes. A,
B: Control, healthy human chondrocytes; C, D: chondrocytes from AKU Patient 1; E, F: chondrocytes from AKU Patient 7; Analogous results were obtained from specimens of other
patients. Magnification 20×. Representative images from a triplicate set are shown. C) Congo Red stained cell and cartilage AKUmodels. Upper panels) Congo Red birefringence was
observable in human primary cultured chondrocytes treated with 0.33 mM HGA. Control: untreated chondrocytes. Magnification 10×; Lower panels) Congo Red staining of
0.33 mM HGA-treated human healthy cartilage sections: an ochronotic shard is well visible showing a remarkable birefringence. Control: untreated cartilage. Magnification
20×. Representative images from a triplicate set are shown.
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fibrils that appeared wavy and sometimes fragmented with loss of
periodicity is also visible when amyloid fibrils merge with the colla-
gen fibrils that were always mixed with the dispersed pigment
[Fig. 6(A,D)].
3.8. Proteomic analysis of AKU chondrocytes

Proteomic analysis of chondrocytes from AKU patients revealed
the abnormal expression of proteins involved in amyloidogenic



Fig. 2. Thioflavin T stained AKU cartilage and AKU synovia and amyloid co-localized
with melanin-like deposits. A) Th-T fluorescence of AKU synovial and cartilage speci-
mens shown by confocal microscopy. Melanin fluorescence was revealed under a Rho-
damine 123 filter. Cartilage was from AKU Patient 7, synovia was from AKU Patient 3.
Analogous results were obtained from specimens of other patients. Bar: 30 μm; B)
co-localization of melanin and amyloid was revealed by merge of Th-T and melanin
fluorescence. DIC: differential interference contrast. Bar: 22 μm. Representative images
from a triplicate set are shown.

Fig. 3. SAA and SAP were present in amyloid deposits of AKU cartilage and synovia and
both co-localized with melanin. A) SAA and SAP deposition in AKU cartilage and syno-
vial specimens was detected by dual immunofluorescence technique. AKU cartilage
and synovia showed high levels of SAA deposit superimposing SAP deposits. Positive
staining for SAA and SAP was particularly intense in correspondence of ochronotic
shards. Bar: 75 μm; B) AKU cartilage sections were dual-stained using antibodies spe-
cific for SAA SAP and compared to melanin fluorescence, resulting in a perfect
co-localization of amyloid deposits and pigmented areas. Cartilage specimen was
from Patient 6 and synovia specimen was from Patient 1. DIC: differential interference
contrast. Bar: 150 μm. Representative images from a triplicate set are shown.
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processes (Table 2). One of the most remarkable cases was cathepsin
D, that was markedly under-expressed (−3.8 fold change) in AKU
chondrocytes in respect to control (Fig. 7). The global analysis of the
protein repertoires of chondrocytes from AKU patients [7] provided
further support to our data on alkaptonuric amyloidosis, since several
amyloidogenic proteins were found abnormally expressed in dis-
eased cells. Cathepsin D, under-expressed in AKU cells, is necessary
for a correct cleavage of SAA and has protective activity against devel-
opment of type AA amyloid fibrils [23]. AlphaB-crystallin (HSP20),
GRP75, HSP74 and ENPL (HSP90), all found under-expressed in AKU
cells, are chaperones known to block amyloid aggregation in vitro
and in cell and animal models [24,25], like also Protein DJ-I, known
to prevent α-synuclein aggregation [26]. AlphaB-crystallin is also a
novel mediator of chondrocyte matrix gene expression that may con-
tribute to altered chondrocyte metabolism during OA development
[27], but possibly also in AKU. AlphaB-crystallin had been previously
found underexpressed in HGA-treated chondrocytes [9]. More gener-
ally, in our previous paper we found that HGA induced alteration of
protein folding in human chondrocytes and caused production of
high molecular weight protein aggregates [9]. Transgelin expression
is induced following processing of the amyloid precursor protein in
Alzheimer's disease and its overexpression significantly alters actin dy-
namics and mitochondrial function in neurons [28]. Gelsolin plays an
important role in amyloidogenesis and inhibits amyloid-β fibrillization.
A relationship between proteolytic cleavage of gelsolin and increased
Aβ in the brain has been recently reported [29] and its decrease corre-
lates with rate of decline in Alzheimer's disease [30]. Gelsolin amyloid
disease (familial amyloidosis Finnish-type) derives from variants of
gelsolin aberrantly processed by furin [31]. The proprotein convertase
furin is responsible aswell for the correct intra-melanosome processing
of Pmel17, a key protein to properly assemble physiological amyloid in
DOPA-melanin synthesis [32]. Within melanosomes, Pmel17 forms
an amyloid matrix sequestering toxic intermediates produced dur-
ing DOPA-melanin synthesis and templating melanin production
[33,34].

4. Discussion

We present here original results showing that alkaptonuria is a
novel secondary amyloidosis. All the conventionally adopted and uni-
versally accepted methods (CR and Th-T staining, TEM) succeeded in
unequivocally assessing the presence of amyloid in our tissue and cel-
lular samples, as well as the SAA and SAP composition of the deposits
has been ascertained to assess secondary type of amyloidosis. CR pos-
itivity of periumbelical fat and salivary gland AKU specimens un-
equivocally confirmed systemic amyloidosis. Alkaptonuria is not a
local disease, it is actually a complicating inflammatory multisystemic
disease, involving many different organs [3,35]. Any body district

image of Fig.�2
image of Fig.�3


Fig. 4. A, B) High SAA and SAP plasma levels in AKU patients. SAA (A) and SAP (B) plasma levels related with age and disease severity, thus reflecting also the progressive nature of
AA amyloidosis. Experiments were performed in triplicate; data are presented as average values±standard deviation. C) Congo Red staining of AKU subcutaneous periumbelical fat
and AKU salivary gland tissues. Examples of CR fat smears and labial salivary gland biopsy of AKU Patients 3 and 5, under normal and in polarized light. CR staining confirmed the
presence of amyloid deposition. Magnification 20×, a,b 10×. Representative images from a triplicate set are shown.
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expressing HGO may be affected in this disease: joints [36], heart [5],
kidney [37], liver [38], eyes [4], marrow [39], bladder [40], and lung
[41].

It is necessary to correctly define three forms ofmelanin (two of them
are natural): i) DOPA-melanin or eumelanin synthesized inmelanosomes
of the melanocytes of the skin and in melanosomes of retinal-pigment
epithelium, and ii) neuromelanin (NM) or DOPAmine-melanin synthe-
sized in DOPAminergic neurons during all life long (NM accumulates lin-
early in nervous system during normal aging). A third type is the
abnormal melanin, HGA-melanin found only in AKU.

image of Fig.�4


Fig. 5. A) MTX treatment was able to prevent HGA-induced amyloid formation. CR bire-
fringence was observable in human primary cultured chondrocytes treated with
0.33 mMHGA. Pre-treatment with 10−9 Mmethotrexate was able to significantly inhibit
the HGA-induced production of amyloid. Magnification 20×. Representative images from
a triplicate set are shown; B) MTX reduced HGA-induced pro-inflammatory cytokines.
Evaluation of the profile of pro-inflammatory cytokines induced by HGA treatment of
human chondrocytes and the positive effect of MTX in significantly reducing or restoring
control levels of pro-inflammatory cytokines. Cytokine concentrations were calculated
using a standard curve established from serial dilutions of each cytokine standard and
expressed as pg/mL. Experiments were performed in triplicate; data are presented as av-
erage values±standard deviation.

Fig. 6. TEM observation of amyloid deposits in AKU cartilage. Dispersed amyloid fibrils
and bundles of parallel fibrils were present in articular cartilage from Patient 3. The col-
lagen meshwork was in disarray and disruption of individual collagen fibrils fragmented
where loss of periodicity is evident (A, C, D). The fibrils appeared interspersed with
cross-striated collagen fibrils (C, D) and nearby ochronotic deposits in the chondrocytes
were observable (B). Amyloidfibrils are blended and superimposed at timeswith sparsely
dotted pigment (E, F). Arrows indicate amyloid and areas surroundedwith white squares
show the fibrillar nature of the deposits. Scale bars: A: 200 nm; B: 5 μm; C: 500 nm;
D: 200 nm; E: 200 nm; F: 500 nm. Representative images from a triplicate set are shown.
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Remarkably, we found that alkaptonuric amyloid co-localized with
HGA-melanin ochronotic pigment. Our unprecedented findings are
the first case, to our knowledge, inwhich ochronotic pigment is directly
associatedwith amyloid. This evidence suggests that HGA polymermay
be involved in amyloid deposition. The association of AKU and amyloid-
osis is in keeping with evidence that synoviocytes and chondrocytes
may be important producers of amyloid in RA [14].
Reactive systemic AA amyloidosis is one of themost severe complica-
tions of several chronic rheumatic disorders [42]. Problems associated
with these pathologiesmay present joint symptoms similar to AKU (stiff-
ness, swelling, and movement limitation) due to the deposition of amy-
loid in the synovial membranes of the joint or of the tendon sheaths. In
AKU AA-amyloidosis, the clinical features could be secondary to the de-
position of ochronotic pigment in connective tissues. Amyloidoses are
progressive diseases, with a lag period before the appearance of AA
amyloidogenesis [42], congruently with the progressive nature of AKU
whose symptoms are analogous to other joint diseases with ascertained
secondary amyloidosis (RA, ankylosing spondylitis, familial Mediterra-
nean fever). A case of acute anterior uveitis as the initial presentation of
AKU mimicking ankylosing spondylitis has been recently reported [4].
Both uveitis and ankylosing spondylitis are SAA secondary amyloidoses.

Alkaptonuric arthritis resembles osteoarthritis (OA), but clinically is
more like RA and in most patients with AKU there are frequent periods
of acute inflammation as in RA. RA chondrocytes serve as a source of
intra-articular SAA, suggesting an active role in RA pathogenesis [14].
Compared to RA, secondary amyloidosis is a new complication of AKU.
We detected AA-amyloid in longstanding AKUpatients, confirming am-
yloidosis to be a progressive disease.

Since SAA plasma levels do not correlate with age while SAA serum
concentration provides prognostic information [43], the different SAA
levels found in our AKU patients could help to grade AKU severity
whose scoring system [44,45] is so far not established at the molecular
level. The striking co-localization of HGA-melanin and amyloid suggests
the participation of fluorescent oxidized HGA pigment in the formation
of amyloid aggregates and a link between HGA oxidation and amyloid
deposition. Melanin acts by trapping free radicals and its synthesis
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Table 2
Comparative proteomics of human AKU chondrocytes. Proteins whose synthesis was altered in AKU chondrocytes versus controls.

Spot ANa Gene Protein Biological processesb AKU
chondrocytes/
ctrc

GRP75 P38646 HSPA9 Stress-70 protein, heat shock 70 kDa protein
9 or 75 kDa glucose-regulated protein

Implicated in the control of cell proliferation and cellular aging. May also act as a
chaperone. Anti-apoptotic functions

−2.1

PARK7 Q99497 PARK7 Protein DJ-1 May function as a redox-sensitive chaperone and as a sensor for oxidative stress.
Prevents aggregation of SNCA.

−5.5

PDIA1 P07237 P4HB Protein disulfide-isomerase Catalyzes the formation, breakage and rearrangement of disulfide bonds. At high
concentrations, functions as a chaperone that inhibits aggregation of misfolded
proteins. At low concentrations, facilitates aggregation (anti-chaperone activity).

−2.3

GELS P06396 GSN Gelsolin Binds to actin and to fibronectin. Calcium-regulated, actin-modulating protein
that binds to the plus (or barbed) ends of actin monomers or filaments,
preventing monomer exchange (end-blocking or capping). It can promote the
assembly of monomers into filaments (nucleation) as well as sever filaments al-
ready formed. Defects in GSN are the cause of amyloidosis type 5 (AMYL5) [MIM:
105120], also known as familial amyloidosis Finnish type.

−2.0

TAGL Q01995 TAGLN Transgelin Actin cross-linking/gelling protein. Involved in calcium interactions and con-
tractile properties of the cell that may contribute to replicative senescence.

+17.0

ENPL P14625 HSP90B1 Endoplasmin, 94 kDa glucose-regulated pro-
tein, GRP-94, Heat shock protein 90 kDa beta
member 1

Molecular chaperone that functions in the processing and transport of secreted
proteins. Functions in endoplasmic reticulum associated degradation (ERAD). Has
ATPase activity. Plays a role in protein folding and transport, has anti-apoptotic
functions.

−4.8

HSP74 P34932 HSPA4 Heat shock 70 kDa protein 4 Stress response, plays a role in the unfolded protein response. −5.4
CATD P07339 CTSD Cathepsin D Acid protease active in intracellular protein breakdown. Involved in the

pathogenesis of several diseases, AA amyloidosis included.
−3.8

a AN: accession number.
b Protein biological processes retrieved by UniProt knowledgebase (http://www.uniprot.org/).
c Fold-change in protein % relative abundance (as average values in case of multiple spots); (+) over-expressed proteins, (−) under-expressed protein according to the ratio

calculated between AKU and control (ctr) cells.
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appears to represent a protective/compensatory process that removes
excess reactive oxygen species (ROS).

RA and OA may present yellowish/brownish gray cartilage in some
stages of these diseases, suggesting the presence of HGA-melanin. It has
been proven that HGA produces melanin [2] and that HGA-melanin en-
hances inflammation. Consequently, in AKU the chronic accumulation
of HGA and its auto-oxidized derivatives may initiate a variety of reac-
tions that promote inflammatory responses and mediate tissue damage.
Alkaptonuric arthritis develops after decades of life but its onset may be
the consequence of repeated oxidative insults to selected target tissues
initiated by HGA auto-oxidation. This may in turn induce the production
of HGA-melanin as a reaction of cells to counteract oxidative stress. The
chronic presence of HGA-melanin may cause a further inflammatory
stimulus resulting in overproduction of SAA and SAP finally causing the
formation of amyloid.

HGA, once injected into joints produces disabling damage, ochronosis,
necrosis and inflammatory reactions [2]. Indeed, an inflammatory condi-
tion, suggesting a chronic inflammatory status, can be observed in AKU
synovia [1,3]. In ochronotic arthropathy, macrophages surround the
pigmented areas [13] and HGA-treated chondrocytes and synoviocytes
show phagocytic features [27]. Interestingly, both gelsolin and cathepsin
D are present in macrophages and gelsolin is down-regulated by cathep-
sin D [46], but we did not evaluate the presence of gelsolin in AKU de-
posits. This may be relevant not only for the initiation of fibril formation
in AKU, but also for the dynamic balance proteinaceous amyloid deposits
undergo. AA amyloid fibril may form starting from pre-existing fibrils
seeds, and similarly pigment formation and distribution have been re-
cently found to follow a nucleation process in AKU [13].

Proteomic analysis of human cells fromAKUpatients revealed the ab-
errant expression of several proteins involved in the control of folding/
unfolding and amyloidogenic processes [7]. The under-expression of ca-
thepsin D in cells from AKU patients is very interesting since it has been
demonstrated that this protein plays a major key physiological role in
completing SAA catabolism, preventing SAA from accumulating and
serving as a precursor of AA amyloid fibrils [23,47].

It is intriguing that amyloid plays also a fundamental role in the regu-
lation ofmelanin synthesis [48,49]. Ourfindings onAKUare, to the best of
our knowledge, the first case of amyloid associated withmelanin outside
themelanosome compartment under pathological conditions. AKU is the
second pathology after Parkinson's disease (PD)where amyloid is associ-
ated with a melanin-based pigmentation and also a parallel has been
drawn between A-beta and DOPA-melanin with respect to the relation
of these molecules and Alzheimer's disease (AD) and PD [48,50]. AD
and PD are neurodegenerative diseases traditionally associated with am-
yloid fibrils, produced by β-amyloid and α-synuclein aggregation-prone
proteins, respectively. The destruction of connective tissue by HGA is
reminiscent of the neurotoxicity of 6-hydroxyDOPAmine [2]. Indeed, an
association of PD and AKU has been reported [50]. Amyloid and melanin
have different structures but share several common featureswith respect
to synthesis, accumulation in aging, affinity for metals and roles in cell
protection or toxicity, this latter mediated by inflammation by both
types ofmolecules, and they can enter into a physiological or pathological
process depending on the cell context [32,35]. In PD the colocalization of
α-synuclein, the proteinwhose aggregation induces the formation of am-
yloid, and DOPA-melanin may facilitate the precipitation of α-synuclein
and the consequent neuronal damage [49,50]. Analogously to PD, it is
not clear if HGA-melanin is part of the toxic events that underlie AKU
or a protective response that may slow the disease.

We suggest that, analogously to RA, AA is a secondary complication of
AKU, due in this case, to a chronic inflammatory status derived from
HGA-benzoquinone acetic acid (BQA)-melanin-induced oxidative stress.

5. Conclusions

Our findings on AKU as a novel AA amyloidosis open new
perspectives for its treatment. In fact, AA tissue amyloid resolves
following the cessation of inflammatory stimuli, the impetus that
maintains high SAA plasma levels. This principle is supported by
the excellent outcome of liver transplantation in patients affected
by some forms of amyloidosis. For AKU amyloidosis, our present
findings are supported by the completely successful reversal of
ochronotic arthropathy following liver transplantation [41]. The
control of the underlying inflammatory disorder can result in regres-
sion of the disease, as proven for some secondary amyloidogenic

uniprotkb:P38646
uniprotkb:Q99497
uniprotkb:P07237
uniprotkb:P06396
uniprotkb:Q01995
uniprotkb:P14625
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Fig. 7. Expression of cathepsin D in AKU chondrocytes. Whole cell protein extracts
harvested from healthy human chondrocytes (control, A) and AKU chondrocytes (de-
rived from ochronotic cartilage, B) were resolved through 2D-PAGE. Protein spots cor-
responding to cathepsin D are indicated with circles and numbers; pI and Mr values are
reported in brackets. % relative abundance of each spot, calculated by ImageMaster
during image analysis of a triplicate set of gels, is indicated with vertical bars±stan-
dard deviation (C). CTR: control. P valueb0.05. Experiments were performed in tripli-
cate; data are presented as average values±standard deviation. Representative images
from a triplicate set are shown.
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musculoskeletal disorders sharing clinical features with AKU.
Suppression of SAA below 10 mg/L halts the progression of the dis-
ease and is associated with prolonged survival, with reversal of am-
yloid deposition and with recovery of organ function [26]. Low
doses of MTX are safe and effective for the routine treatment of in-
flammatory arthritis and it has been successfully adopted to keep
low SAA levels in RA in order to prevent and regress secondary amy-
loidosis [18]. MTX proved to have an excellent efficacy to inhibit the
production of amyloid in our AKU model chondrocytes, suggesting
the introduction of its use in AKU therapy. This treatment would be
useful especially for those symptomatic AKU patients for whom the
therapy with nitisinone (the only orphan drug so far recognized for
alkaptonuria) failed in a clinical trial [51].
Acknowledgements

This work has been supported by Telethon Italy grant GGP10058.
The authors also thank Toscana Life Sciences Orphan_1 project,
Fondazione Monte dei Paschi di Siena 2008-2010, FP7 Research &
Innovation Grant 304985-2 – DevelopAKUre, and aimAKU –

Associazione Italiana Malati di Alcaptonuria (ORPHA263402).
References

[1] E. Selvi, S. Manganelli, A. Mannoni, M. Benucci, C. Minacci, R. Marcolongo, Chronic
ochronotic arthritis: clinical, arthroscopic, and pathologic findings, J. Rheumatol.
27 (2000) 2272–2274.

[2] J.P.Martin Jr., B. Batkoff, Homogentisic acid autoxidation andoxygen radical generation:
implications for the etiology of alkaptonuric arthritis, Free Radic. Biol. Med. 3 (1987)
241–250.
[3] T.R. Helliwell, J.A. Gallagher, L. Ranganath, Alkaptonuria—a review of surgical and
autopsy pathology, Histopathology 53 (2008) 503–512.

[4] J. Mathews, P. Padhan, S. John, S. David, Acute anterior uveitis as the initial pre-
sentation of alkaptonuria, J. Postgrad. Med. 55 (1) (2009) 35–37.

[5] S.J. Pettit, M. Fisher, J.A. Gallagher, L.R. Ranganath, Cardiovascular manifestations
of alkaptonuria, J. Inherit. Metab. Dis. 34 (2011) 1177–1181.

[6] J.W. Butany, A. Naseemuddin, Y. Moshkowitz, V. Nair, Ochronosis and aortic valve
stenosis, J. Card. Surg. 21 (2006) 182–184.

[7] D. Braconi, G. Bernardini, C. Bianchini, M. Laschi, L. Millucci, L. Amato, L. Tinti, T.
Serchi, F. Chellini, A. Spreafico, A. Santucci, Biochemical and proteomic characteriza-
tion of alkaptonuric chondrocytes, J. Cell. Physiol. (2011) 227(9) (2012) 3333–3343.

[8] D. Braconi, M. Laschi, L. Amato, G. Bernardini, L. Millucci, R. Marcolongo, G.
Cavallo, A. Spreafico, A. Santucci, Evaluation of anti-oxidant treatments in an in
vitro model of alkaptonuric ochronosis, Rheumatology (Oxford) 49 (2010)
1975–1983.

[9] D. Braconi,M. Laschi, A.M. Taylor, G. Bernardini, A. Spreafico, L. Tinti, J.A. Gallagher, A.
Santucci, Proteomic and redox-proteomic evaluation of homogentisic acid and
ascorbic acid effects on human articular chondrocytes, J. Cell. Biochem. 111 (2010)
922–932.

[10] L. Tinti, A. Spreafico, D. Braconi, L. Millucci, G. Bernardini, F. Chellini, G. Cavallo, E.
Selvi, M. Galeazzi, R. Marcolongo, J.A. Gallagher, A. Santucci, Evaluation of antiox-
idant drugs for the treatment of ochronotic alkaptonuria in an in vitro human cell
model, J. Cell. Physiol. 225 (2010) 84–91.

[11] L. Tinti, A.M. Taylor, A. Santucci, B. Wlodarski, P.J. Wilson, J.C. Jarvis, W.D. Fraser,
J.S. Davidson, L.R. Ranganath, J.A. Gallagher, Development of an in vitro model
to investigate joint ochronosis in alkaptonuria, Rheumatology (Oxford) 50
(2011) 271–277.

[12] L. Tinti, A. Spreafico, F. Chellini, M. Galeazzi, A. Santucci, A novel ex vivo organotypic
culturemodel of alkaptonuria-ochronosis, Clin. Exp. Rheumatol. 29 (2011) 693–696.

[13] A.M. Taylor, B. Wlodarski, I.A. Prior, P.J. Wilson, J.C. Jarvis, L.R. Ranganath, J.A.
Gallagher, Ultrastructural examination of tissue in a patient with alkaptonuric ar-
thropathy reveals a distinct pattern of binding of ochronotic pigment, Rheuma-
tology (Oxford) 49 (2010) 1412–1414.

[14] S. Momohara, H. Okamoto, H. Yamanaka, Chondrocyte of rheumatoid arthritis
serve as a source of intra-articular acute-phase serum amyloid A protein, Clin.
Chim. Acta 398 (2008) 155–156.

[15] G. Romhányi, Selective differentiation between amyloid and connective tissue
structures based on the collagen specific topo-optical staining reaction with
Congo Red, Virchows Arch. 354 (1971) 209–222.

[16] M. Bély, A. Apáthy, Histochemical and immunohistochemical differential diagno-
sis of amyloidosis—a brief illustrated essay and personal experience with
Romhányi's method, Amyloid: Int. J. Exp. Clin. Invest. 7 (2000) 212–217.

[17] S.M. Saeed, G. Fine, Thioflavin T for amyloid detection, Am. J. Clin. Pathol. 47
(1967) 588–593.

[18] M.M. Picken, G.A. Herrera, Th-T stain: an easier and more sensitive method for
amyloid detection, in: M.M. Picken, A. Dogan, G.A. Herrera, Amyloid and Related
Disorders: Surgical Pathology and Clinical Correlations, Current Clinical Patholo-
gy, Series Editor: A. Giordano, Springer – Humana Press, 2012, pp. 187–190.

[19] G. Bernardini, D. Braconi, A. Spreafico, A. Santucci, Post-genomics of bone meta-
bolic dysfunctions and neoplasias, Proteomics 12 (2012) 708–721.

[20] E. Hachulla, A. Janin, R.M. Flipo, R. Saile, T. Facon, D. Bataille, P. Vanhille, P.Y.
Hatron, B. Devulder, B. Duquesnoy, Labial salivary gland biopsy is a reliable test
for the diagnosis of primary and secondary amyloidosis. A prospective clinical
and immunohistologic study in 59 patients, Arthritis Rheum. 36 (1993) 691–697.

[21] I.I. van Gameren, B.P. Hazenberg, J. Bijzet, E.B. Haagsma, E. Vellenga,M.D. Posthumus,
P.L. Jager, M.H. van Rijswijk, Amyloid load in fat tissue reflects disease severity and
predicts survival in amyloidosis, Arthritis Care Res. (Hoboken) 62 (2010) 296–301.

[22] T. Nakamura, Clinical strategies for amyloid A amyloidosis secondary to rheuma-
toid arthritis, Mod. Rheumatol. 18 (2008) 109–118.

[23] J.C. van der Hilst, B. Kluve-Beckerman, J.W. van der Meer, A. Simon, Cathepsin D
activity protects against development of type AA amyloid fibrils, Eur. J. Clin. In-
vest. 39 (2009) 412–416.

[24] C.G. Evans, S. Wisen, J.E. Gestwicki, Heat shock proteins 70 and 90 inhibit early
stages of amyloid beta-(1–42) aggregation in vitro, J. Biol. Chem. 281 (2006)
33182–33191.

[25] S. Meehan, T.P. Knowles, A.J. Baldwin, J.F. Smith, A.M. Squires, P. Clements, T.M.
Treweek, H. Ecroyd, G.G. Tartaglia, M. Vendruscolo, C.E. Macphee, C.M. Dobson,
J.A. Carver, Characterisation of amyloid fibril formation by small heat-shock chap-
erone proteins human alphaA-, alphaB- and R120G alphaB-crystallins, J. Mol. Biol.
372 (2007) 470–484.

[26] H.J. Lachmann, H.J. Goodman, J.A. Gilbertson, J.R. Gallimore, C.A. Sabin, J.D.
Gillmore, P.N. Hawkins, Natural history and outcome in systemic AA amyloidosis,
N. Engl. J. Med. 356 (2007) 2361–2371.

[27] E.C.G. Castillo, J.B. Kourí, A new role for chondrocytes as non-professional phago-
cytes. An in vitro study, Microsc. Res. Tech. 64 (2004) 269–278.

[28] M.W. Ward, C.G. Concannon, J. Whyte, C.M. Walsh, B. Corley, J.H. Prehn, The am-
yloid precursor protein intracellular domain(AICD) disrupts actin dynamics and
mitochondrial bioenergetics, J. Neurochem. 113 (2010) 275–284.

[29] L. Ji, V. Chauhan, P. Mehta, J. Wegiel, S. Mehta, A. Chauhan, Relationship between
proteolytically cleaved gelsolin and levels of amyloid-β protein in the brains of
Down syndrome subjects, J. Alzheimers Dis. 22 (2010) 609–617.

[30] A. Güntert, J. Campbell, M. Saleem, D.P. O'Brien, A.J. Thompson, H.L. Byers, M.A.
Ward, S. Lovestone, Plasma gelsolin is decreased and correlates with rate of de-
cline in Alzheimer's disease, J. Alzheimers Dis. 21 (2010) 585–596.

[31] S. Nag, Q. Ma, H. Wang, S. Chumnarnsilpa, W.L. Lee, M. Larsson, B. Kannan, M.
Hernandez-Valladares, L.D. Burtnick, R.C. Robinson, Ca2+ binding by domain 2

image of Fig.�7


1691L. Millucci et al. / Biochimica et Biophysica Acta 1822 (2012) 1682–1691
plays a critical role in the activation and stabilization of gelsolin, Proc. Natl. Acad.
Sci. U. S. A. 106 (2009) 13713–13718.

[32] S.H. Kim, J.W. Creemers, S. Chu, G. Thinakaran, S.S. Sisodia, Proteolytic processing
of familial British dementia-associated BRI variants: evidence for enhanced intra-
cellular accumulation of amyloidogenic peptides, J. Biol. Chem. 277 (2002)
1872–1877.

[33] B.Watt, G. van Niel, D.M. Fowler, I. Hurbain, K.L. Kelvin, S.E. Stayrook, M.A. Lemmon,
G. Raposo, J. Shorter, J.W. Kelly, M.S. Marks, N-terminal domains elicit formation of
functional Pmel17 amyloid fibrils, J. Biol. Chem. 284 (2009) 35543–35555.

[34] J.W. Kelly,W.E. Balch, Amyloid as a natural product, J. Cell Biol. 161 (2003) 461–462.
[35] J.J. Gaines Jr., The pathology of alkaptonuric ochronosis, Hum. Pathol. 20 (1989)

40–46.
[36] M. Laschi, L. Tinti, D. Braconi, L. Millucci, L. Ghezzi, L. Amato, E. Selvi, A. Spreafico,

G. Bernardini, A. Santucci, Homogentisate 1,2 dioxygenase is expressed in human
osteoarticular cells: implications in alkaptonuria, J. Cell. Physiol. 227 (2012)
3254–3257.

[37] A.E. Heng, M. Courbebaisse, J.L. Kemeny, R. Matesan, C. Bonniol, P. Deteix, B.
Souweine, Hemolysis in a patient with alkaptonuria and chronic kidney failure,
Am. J. Kidney Dis. 56 (2010) e1–e4.

[38] C. Bulow, J. Rosenberg, Intrahepatic gallstones in patient with alkaptonuria,
Ugeskr. Laeger 171 (2009) 2198–2199.

[39] S. Raina, D.M. Mahesh, S.S. Kaushal, D. Gupta, D.S. Dhiman, A. Negi, S. Sharma,
Alkaptonuria and intramedullary calcification, J. Assoc. Physicians India 56 (2008)
552–555.

[40] J. Kolar, V. Krizek, Radiographic symptoms of alkaptomuric ochronosis, Fortschr.
Geb. Rontgenstr. Nuklearmed. 109 (1968) 203–208.

[41] J.G. Parambil, C.E. Daniels, K.J. Zehr, J.P. Utz, Alkaptonuria diagnosed by flexible
bronchoscopy, Chest 128 (2005) 3678–3680.
[42] L. Obici, S. Raimondi, F. Lavatelli, V. Bellotti, G.Merlini, Susceptibility toAAamyloidosis
in rheumatic diseases: a critical overview, Arthritis Rheum. 61 (2009) 1435–1440.

[43] J.D. Gillmore, L.B. Lovat, M.R. Persey, M.B. Pepys, P.N. Hawkins, Amyloid load and
clinical outcome in AA amyloidosis in relation to circulating concentration of
serum amyloid A protein, Lancet 358 (2001) 24–29.

[44] T.F. Cox, L. Ranganath, A quantitative assessment of alkaptonuria: testing the re-
liability of two disease severity scoring systems, J. Inherit. Metab. Dis. 34 (2011)
1153–1162.

[45] L.R. Ranganath, T.F. Cox, Natural history of alkaptonuria revisited: analyses based
on scoring systems, J. Inherit. Metab. Dis. 34 (2011) 1141–1151.

[46] M.A. Bewely, T.K. Pham, H.M. Marriott, J. Noirel, H.-P. Chu, S.Y. Ow, A.G. Ryazanov,
R.C. Read, M.K.B. Whyte, B. Chain, P.C. Wright, D.H. Dockrell, Proteomic evaluation
and validation of cathepsin D regulated proteins in macrophages exposed to
Streptococcus pneumoniae, Mol. Cell. Proteomics 10.1074 (2011) 1–14.

[47] J.C. van der Hilst, Recent insights into the pathogenesis of type AA amyloidosis,
ScientificWorldJournal 11 (2011) 641–650.

[48] D.M. Fowler, A.V. Koulov, C. Alory-Jost, M.S. Marks, W.E. Balch, J.W. Kelly, Func-
tional amyloid formation within mammalian tissue, PLoS Biol. 4 (2006) e6.

[49] K.S. Rao, M.L. Hegde, S. Anitha, M. Musicco, F.A. Zucca, N.J. Turro, L. Zecca, Amyloid
beta and neuromelanin—toxic or protective molecules? The cellular context
makes the difference, Prog. Neurobiol. 78 (2006) 364–373.

[50] R. Aquaron, G. Fayet, C. Barthet, S. Desire, F. Viallet, Parkinson disease and
alkaptonuria: fortuitous association or striatonigral ochronosis? Rev. Neurol.
(Paris) 151 (1995) 63–66.

[51] W.J. Introne, M.B. Perry, J. Troendle, E. Tsilou, M.A. Kayser, P. Suwannarat, K.E.
O'Brien, J. Bryant, V. Sachdev, J.C. Reynolds, E. Moylan, I. Bernardini, W.A. Gahl,
A 3-year randomized therapeutic trial of nitisinone in alkaptonuria, Mol. Genet.
Metab. 103 (2011) 307–314.


	Alkaptonuria is a novel human secondary amyloidogenic disease
	1. Introduction
	2. Materials and methods
	2.1. AKU samples
	2.2. AKU cell and tissue models
	2.3. Congo Red (CR) staining
	2.4. Thioflavin T (Th-T) staining
	2.5. Fluorescence microscopy
	2.6. Biochemical assays
	2.7. Statistical analysis
	2.8. Transmission electron microscopy (TEM)
	2.9. Chondrocyte proteomic analysis

	3. Results
	3.1. Congo Red stained AKU cartilage, synovia and chondrocytes
	3.2. Congo Red stained cell and cartilage AKU models
	3.3. Thioflavin T stained AKU cartilage and AKU synovia and amyloid co-localized with melanin-like deposits
	3.4. AKU is a SAA- and SAP-mediated secondary amyloidosis
	3.5. Congo Red stained periumbelical fat and salivary gland AKU specimens
	3.6. Methotrexate (MTX) was able to prevent amyloid and to decrease pro-inflammatory cytokine release in an in vitro AKU ch...
	3.7. TEM observation of amyloid deposits in AKU cartilage
	3.8. Proteomic analysis of AKU chondrocytes

	4. Discussion
	5. Conclusions
	Acknowledgements
	References


