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Abstract--An algorithm is given for producing numerical values associated to a picture (assumed to be 
in a neutral background) which are independent of rigid transformation of the picture. The computations 
are developed in a very general way based on unitary representation of groups of geometric trans- 
formations. 

1. I N T R O D U C T I O N  

This paper proposes a technique for machine recognition of a single image. This technique will 
work independently of the position and orientation of the image. The image is considered to be 
a function on the plane R 2. From this function we compute some numerical invariants, i.e. 
constants which are unaffected by rigid transformations of the image. These values will (most of 
the time) be different for different images. The application of this method would be where the 
recognition algorithm would encounter members of a finite set of images. For each image in the 
set, the invafiant values would be computed ahead of time. The recognition process would consist 
of first computing the invafiants for the current image and then matching those values with one 
of the sets of pre-computed values. 

The theory behind the technique, as outlined in the next sections, is that of group representations. 
The group in question is naturally that of all rigid transformations of the plane. Such theory is 
closely related to concepts of Fourier series and Fourier transforms. These, in fact deal with 
representation theory of the complex unit circle multiplicative group and the additive group of the 
real line, respectively. What makes things more complicated here is that, unlike these two groups, 
the operation in the group of rigid transformations is not commutative. (Consider the process of 
first rotating by n/4 centered at the origin, then translating one unit in the positive x-axis direction. 
Compare the results of this to the results of the operations in reverse order.) 

We now give a formula for computing the numerical invariants. Let f be a positive real-valued 
function of two real variables which represents the image. Then for each r /> 0 we obtain the 
invariant value 

;{ff, }' F(r) = f ( x , y ) e x p [ i R ( x  cos0 + y  sin0)]dx dy dO. 
2 

What follows is a development of the theory behind this formula. 

SECTION 2 

Here we develop the theoretical foundation from which the recognition technique is derived. Our 
discussion is quite general and applies to image recognition problems in any dimension so long 
as the specific calculations are feasible. 

To start with, let X be a measure space and let G be a topological group with fight Haar measure 
(fight translation invafiant) dg. We let G act on X; the action of g ~ G sends an element x ~ X to 
xg. We let x0 be some fixed reference point of X and require the following: 

(1) For any x ~ X, there is some g ~ G such that x -- xog (G acts transitively). 
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(2) If  it is a complex square integrable function [ f e  L2(x)], there is a unique] ' in  
L2(G) such that f (g)  =f(x0g) .  

Of course, the example we are interested in is where X is the plane R: and G is some group of rigid 
transformations of the plane. 

For completeness we now include some elementary definitions and results. 

Definition 2.1. A unitary matrix representation U of degree n of the group G is, for 
each g in G, a choice of an n x n unitary matrix U(g) such that for any pair of 
elements gl and g2 in G we have U(gO U(g2) = U(g~ g2). 
Definition 2.2. Two unitary representations U~ and U2 of the same degree are said 
to be equivalent if there is some unitary matrix P such that for all g in G, 
p-IU~(g)P = Us(g ). 
Definition 2.3. A unitary matrix representation U of degree n is said to be irreducible 
if there is no non-trivial subspace V ___ C" such that for any g E G, U(g)V ~_ V. 

We let 6~ denote a complete set of irreducible inequivalent unitary matrix representations of G. 
For the present, we will only consider groups where all unitary representations have finite degree. 
For each U in (~, let Uu(g ) be the /./'-entry of the matrix U(g). For J~in L2(G)FILI(G) we set 

L~(f') = f .~(g) Uo(g) dg. 

Representation theory tells us that such a function f is entirely determined by the numbers L~.. 
A simple example to keep in mind is when G is the multiplicative group of the complex unit circle. 
Here (~ = {T,: n E 7/}; each T,(e i°) = e in°. All T,s are degree one; the number L r , ( j  7) is just the nth 
Fourier coefficient o f f  

We return now to the picture problem. A picture will be considered to be a positive real-valued 
function f on X. For h ~ G, set f ' ( x ) = f ( x h ) .  Thus the picture represented by f f  is the same 
as that of f only moved according to the action of the element h in G. The key idea is to 
follow the effect of h through to the computation of each L~[(ff)]. Since f(g)=f(Xog),  
(J~)(g) =f~(x0g) =f(xogh) =)~(gh). If  the degree of U is n we have 

Lv[(P)]  = fG (j?h)(g) U,j(g) dg 

= f f(gh) Uo(g)dg 

= faf(g ) U~(gh -') 

= k=, f f ( g )  Uik(g) Ukj(h-l)dg 

= 

k = l  

Now let .oq°v(f) be the n x n matrix whose entries are the L~(J~)s. The computation above shows 
that .~v(f~) = ..~v(f) U(h-~). For v and w in C", let (v, w) denote the standard Hermitian form. 
Assume that v and we are any two rows of .~v(f). Let v h and w h be rows of ~ v ( f , ) .  Then since 
U(h -~) is unitary, we have (v, w) = (v h, Wh). These are position invariant values for the i m a g e f  

SECTION 3 

We now develop the specific case of images in the plane. Let X = ~2  and let G be the group of 
rigid transformations consisting of all translations and all rotations centered at the origin through 
angles which are multiples of 2~/N for some fixed N. Let ~ = {r0 . . . . .  rN_ ~} be these rotations 
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where rk is a rotation through the angle 2nK/N. 5 will denote the subgroup of  all translations; 
its elements will be given as vectors in R 2. I f g  is an element of  G, it may be uniquely written g = r~w 
where w is a member of  Y-. The point (0, 0) will serve as x0. 

From elementary group representation theory we know that there are two kinds of  elements in 
G. They are: 

(1) Representations of  degree one. These will be trivial on Y.  
(2) Representations of  degree N. These are of  the form U w where w e R ~. U w and 

U v are equivalent when w and v are conjugate by ~ .  

It turns out that if U is of  the first sort, then all Aev( f ) s  are zero for imagef.  Therefore we consider 
only the second sort. For w in R 2, let Wk be the vector w moved through the rotation 2nk/N. For 
g = rkV in G we set 

(o o UW(g) 
0 " tiN_,}" 

Here Is denotes the s × s identity matrix and dm= exp(iWm'V) 
NOW let f be an image function whose corresponding function on G is 7. Then: 

= f(rkv) U~j(rkV) dr 
k ~ O ~112 

N - I  I v  N 
= ~', f ( v )  ~ UiW(r) Umj(V) dr (since XOrk = XO) 

kffi0 eR  2 mffil 

= N f ( v )  U (v) dv. 
.Iv R 2 

This last formula is just a multiple of  the usual 2-D Fourier transform ( 7 )  ^ ofjTat  wj. Thus for 
each w ~ R z we compute an invariant of  the form 

F(w) = (}')'(wj) 5. 

The formula in Section 1 is obtained by letting N --, ~ and using only ws of  the form (R, O) to 
parametrize the representation of  (~. 
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