
Journal of Computational and Applied Mathematics 155 (2003) 1–17
www.elsevier.com/locate/cam

An e"cient high-order algorithm for solving systems
of 3-D reaction–di'usion equations

Yuanxian Gua, Wenyuan Liaob, Jianping Zhuc;∗;1

aState Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology,
Dalian 116023, People’s Republic of China

bDepartment of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA
cDepartment of Theoretical and Applied Mathematics, University of Akron, Akron, OH 44325, USA

Abstract

We discuss an e"cient higher order 1nite di'erence algorithm for solving systems of 3-D reaction–di'usion
equations with nonlinear reaction terms. The algorithm is fourth-order accurate in both the temporal and spa-
tial dimensions. It requires only a regular seven-point di'erence stencil similar to that used in the standard
second-order algorithms, such as the Crank–Nicolson algorithm. Numerical examples are presented to demon-
strate the e"ciency and accuracy of the new algorithm.
c© 2003 Elsevier Science B.V. All rights reserved.

Keywords: High-order algorithms; Approximate factorization; Reaction–di'usion equations; Finite di'erence algorithm

1. Introduction

The following system of reaction–di'usion equations is widely used to model important engineer-
ing, physical, and biological processes:

wt = D1wxx + D2wyy + D3wzz + f(w; x; y; z; t);

(x; y; z)∈ (0; 1)× (0; 1)× (0; 1); t ¿ 0;

∗ Corresponding author.
E-mail address: jzhu@math.uakron.edu (J. Zhu).
1 This research was supported in part by the Visiting Scholar Foundation of University Key Laboratories in China, and

by the United States National Science Foundation under Grant DMS 0075009.

0377-0427/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0377-0427(02)00889-0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82113569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jzhu@math.uakron.edu

2 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

w(0; y; z; t) = g1(y; z; t); w(1; y; z; t) = g2(y; z; t); (y; z)∈ [0; 1]× [0; 1]; t ¿ 0;

w(x; 0; z; t) = h1(x; z; t); w(x; 1; z; t) = h2(x; z; t); (x; z)∈ [0; 1]× [0; 1]; t ¿ 0;

w(x; y; 0; t) = s1(x; y; t); w(x; y; 1; t) = s2(x; y; t); (x; y)∈ [0; 1]× [0; 1]; t ¿ 0;

w(x; y; z; 0) = q(x; y; z); (x; y; z)∈ [0; 1]× [0; 1]× [0; 1]; (1)

where D1, D2, and D3 are diagonal matrices of dimensions p× p with positive coe"cients, f(w; x;
y; z; t)∈Rp is a nonlinear vector function, and w∈Rp is a vector of p dependent variables to be
solved. For many application problems it is desirable to use high-order numerical algorithms to
compute accurate solutions. To simplify the discussion, we will 1rst present the development of an
e"cient high-order algorithm using the scalar and linear version of Eq. (1) with constant coe"cients

ut = auxx + buyy + cuzz + f(x; y; z; t);

(x; y; z)∈ (0; 1)× (0; 1)× (0; 1); t ¿ 0; a; b; c¿ 0: (2)

The result will then be generalized to systems of nonlinear equations similar to that given in (1).
It is well known [3] that standard central di'erence operators �2x ; �2y and �2z de1ned by

(uxx)ijk ≈ 1
h2x

�2xui; j; k ≡
1
h2x

(ui−1; j; k − 2ui; j; k + ui+1; j; k); (3)

(uyy)ijk ≈ 1
h2y

�2yui; j; k ≡
1
h2y

(ui; j−1; k − 2ui; j; k + ui; j+1; k);

(uzz)ijk ≈ 1
h2z

�2z ui; j; k ≡
1
h2z

(ui; j; k−1 − 2ui; j; k + ui; j; k+1)

give only second-order approximations to uxx, uyy, and uzz, respectively, where ijk represents the
x–y–z indices for spatial grid points, and hx, hy, and hz represent the grid spacing in the x, y, and
z dimensions, respectively. One way to obtain higher-order approximations [3] is to use

(uxx)ijk ≈ 1
h2x

(
I − 1

12
�2x

)
�2xui; j; k ;

(uyy)ijk ≈ 1
h2y

(
I − 1

12
�2y

)
�2yui; j; k ;

(uzz)ijk ≈ 1
h2z

(
I − 1

12
�2z

)
�2z ui; j; k ; (4)

which are fourth-order accurate. However, the approximations given in (4) require a 13-point stencil,
which is much more complex than the seven-point stencil required by the approximations in (3).
This will not only signi1cantly increase the computational complexity in solving the 1nal system of
algebraic equations, but also cause di"culty in handling boundary conditions since on each side of
the computational domain two extra points are needed, while only one boundary condition is given
in (1).

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 3

To maintain a small 1nite di'erence stencil for e"cient solution process, we can use compact 1nite
di'erence algorithm [1,4,5,10] to construct higher-order approximations for the spatial derivatives.
For example, the formulas in (4) can be represented by the PadOe approximation

(uxx)ijk =
�2x

h2x(1 +
1
12�

2
x)

ui; j; k ;

(uyy)ijk =
�2y

h2y(1 +
1
12�

2
y)

ui; j; k ;

(uzz)ijk =
�2z

h2z (1 +
1
12�

2
z)

ui; j; k : (5)

Note that if we expand 1=(1 + (1=12)�2x), 1=(1 + (1=12)�2y), and 1=(1 + (1=12)�2z) into power series
in terms of �2x , �

2
y, and �2z , respectively, the 1rst two terms of (uxx)ijk , (uyy)ijk , and (uzz)ijk in (5)

match the expressions in (4). If we set

(uxx)ijk = vi; j; k ; (uyy)i; j; k = wi;j; k ; (uzz)i; j; k = ri; j; k

and apply 1 + 1
12�

2
x , 1 +

1
12�

2
y, and 1 + 1

12�
2
z to both sides of the three equations in (5), respectively,

then the following expressions:

1
12

vi+1; j; k +
10
12

vi; j; k +
1
12

vi−1; j; k =
1
h2x

(ui+1; j; k − 2ui; j; k + ui−1; j; k); (6)

1
12

wi;j+1; k +
10
12

wi;j; k +
1
12

wi;j−1; k =
1
h2y

(ui; j+1; k − 2ui; j; k + ui; j−1; k); (7)

1
12

ri; j; k+1 +
10
12

ri; j; k +
1
12

ri; j; k−1 =
1
h2z

(ui; j; k+1 − 2ui; j; k + ui; j; k−1) (8)

provide fourth-order approximations to uxx, uyy, and uzz, respectively. Eqs. (6), (7), and (8) result in
systems of tri-diagonal equations along i-lines, j-lines, and k-lines for solving the second derivatives
uxx, uyy, and uzz, respectively. Combined with the standard 1nite di'erence approximation in the
temporal dimension, such as the Crank–Nicolson scheme, of the original PDE

un+1
i; j; k − uni; j; k

Pt
=

a
2
(vn+1

i; j; k + vni; j; k) +
b
2
(wn+1

i; j; k + wn
i; j; k) +

c
2
(rn+1

i; j; k + rni; j; k) +
1
2
(fn+1

i; j; k + fn
i; j; k) (9)

or

un+1
i; j; k − uni; j; k

Pt
=

a
2
(vn+1

i; j; k + vni; j; k) +
b
2
(wn+1

i; j; k + wn
i; j; k) +

c
2
(rn+1

i; j; k + wn
i; j; k) + fn+1=2

i; j; k (10)

we have the complete system of Eqs. (6)–(9) for calculating solutions with fourth-order accuracy in
space using a seven-point stencil.

This approach, while maintaining a seven-point stencil in space, requires the solution of coupled
system of Eqs. (6)–(9) at each grid point. With p equations in the original system (1), a total of 4p

4 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

coupled equations need to be solved at each grid point. If an operator-splitting type method is
used to turn Eq. (9) into three separate equations, one along each of the x, y, and z dimen-
sions, then a system of 4p coupled equations need to be solved at each grid point in each step
of the splitting method [9]. Furthermore, the calculation of solutions of Eqs. (6)–(8) requires
boundary conditions for uxx, uyy, and uzz, which are usually not known. Therefore, additional
one-sided approximations have to be used to approximate the boundary conditions for uxx, uyy,
and uzz using lower order derivatives or function values. This could a'ect the accuracy and sta-
bility of the algorithm, as well as the structure of the 1nal coe"cient matrix in the equation
system.

In [6], an e"cient higher order algorithm was developed for solving 2-D reaction–di'usion equa-
tions. Here we extend that method to 3-D systems of reaction–di'usion equations. The method is
based on approximate factorization of 1nite di'erence operators, which only requires solutions of
systems of tri-diagonal equations. Furthermore, there is no need to introduce approximations to the
boundary conditions of the second derivatives. The approach can be generalized to a system of
reaction–di'usion equations with nonlinear reaction terms. In the next section we will discuss this
new method based on approximate factorization. The extension to systems of nonlinear equations
will be discussed in Section 3. Improvement of accuracy in the temporal dimension based on the
Richardson extrapolation will be presented in Section 4, followed by numerical examples in Section
5 and conclusions in Section 6.

2. Fourth-order algorithm based on approximate factorization

We start from the Crank–Nicolson algorithm for Eq. (2) on a rectangular grid (xi; yj; zk); i =
0; : : : ; M; j = 0; : : : ; N; k = 0; : : : ; L:

un+1
i; j; k − uni; j; k

Pt

=
a
2
((uxx)n+1

i; j; k + (uxx)ni; j; k) +
b
2
((uyy)n+1

i; j; k + (uyy)ni; j; k)

+
c
2
((uzz)n+1

i; j; k + (uzz)ni; j; k) +
1
2
(fn+1

i; j; k + fn
i; j; k);

i = 0; : : : ; M; j = 0; : : : ; N; k = 0; : : : ; L: (11)

The standard discretization is

un+1
i; j; k − uni; j; k

Pt

=
a
2h2x

�2x(u
n+1
i; j; k + uni; j; k) +

b
2h2y

�2y(u
n+1
i; j; k + uni; j; k) +

c
2h2z

�2z (u
n+1
i; j; k + uni; j; k) +

1
2
(fn+1

i; j; k + fn
i; j; k);

(12)

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 5

which is known to be second-order accurate in both time and space. If the fourth-order PadOe
approximation (5) is used to replace uxx, uyy, and uzz, then the following algorithm:

un+1
i; j; k − uni; j; k

=
rx
2

�2x
1 + (�2x=12)

(un+1
i; j; k + uni; j; k) +

ry
2

�2y
1 + (�2y=12)

(un+1
i; j; k + uni; j; k)

+
rz
2

�2z
1 + (�2z =12)

(un+1
i; j; k + uni; j; k) +

Pt
2

(fn+1
i; j; k + fn

i; j; k); (13)

where rx = aPt=h2x , ry = bPt=h2y, and rz = cPt=h2z , is second-order accurate in time and fourth-order
accurate in space. This algorithm can be written as(

I − rx
2

�2x
1 + (�2x=12)

− ry
2

�2y
1 + (�2y=12)

− rz
2

�2z
1 + (�2z =12)

)
un+1
i; j; k

=

(
I +

rx
2

�2x
1 + (�2x=12)

+
ry
2

�2y
1 + (�2y=12)

+
rz
2

�2z
1 + (�2z =12)

)
uni; j +

Pt
2

(fn+1
i; j; k + fn

i; j; k); (14)

which can be approximately factorized as [2,3,7,8](
I − rx

2
�2x

1 + (�2x=12)

)(
I − ry

2

�2y
1 + (�2y=12)

)(
I − rz

2
�2z

1 + (�2z =12)

)
un+1
i; j; k

=
(
I +

rx
2

�2x
1 + (�2x=12)

)(
I +

ry
2

�2y
1 + (�2y=12)

)(
I +

rz
2

�2z
1 + (�2z =12)

)
uni; j; k

+
Pt
2

(fn+1
i; j; k + fn

i; j; k): (15)

The di'erence between (14) and (15) is(
rxry
4

�2x
(1 + (�2x=12))

�2y
(1 + (�2y=12))

+
rxrz
4

�2x
(1 + (�2x=12))

�2z
(1 + (�2z =12))

+
ryrz
4

�2y
(1 + (�2y=12))

�2z
(1 + (�2z =12))

)
(un+1

i; j; k − uni; j; k)

−rxryrz
8

�2x
(1 + (�2x=12))

�2y
(1 + (�2y=12))

�2z
(1 + (�2z =12))

(un+1
i; j; k + uni; j; k)

≈
(
rxry
4

�2x
(1 + (�2x=12))

�2y
(1 + (�2y=12))

+
rxrz
4

�2x
(1 + (�2x=12))

�2z
(1 + (�2z =12))

+
ryrz
4

�2y
(1 + (�2y=12))

�2z
(1 + (�2z =12))

)
((ut)

n+1=2
i; j; k +O(Pt2))Pt

6 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

− 2
rxryrz
8

�2x
(1 + (�2x=12))

�2y
(1 + (�2y=12))

�2z
(1 + (�2z =12))

(un+1=2
i; j; k +O(Pt2))

=

(
ab
4

�2x
h2x(1 + (�2x=12))

�2y
h2y(1 + (�2y=12))

+
ac
4

�2x
h2x(1 + (�2x=12))

�2z
h2z (1 + (�2z =12))

+
bc
4

�2y
h2y(1 + (�2y=12))

�2z
h2z (1 + (�2z =12))

)
((ut)

n+1=2
i; j; k +O(Pt2))Pt3

− 2abcPt3

8
�2x

h2x(1 + (�2x=12))

�2y
h2y(1 + (�2y=12))

�2z
h2z (1 + (�2z =12))

(un+1=2
i; j; k +O(Pt2))

=
abPt3

4
(un+1=2

txxyy +O(h2xh
2
y) + O(Pt2)) +

acPt3

4
(un+1=2

txxzz +O(h2xh
2
z) + O(Pt2))

+
bcPt3

4
(un+1=2

tyyzz +O(h2yh
2
z) + O(Pt2))− 2abcPt3

8
(un+1=2

xxyyzz +O(h2xh
2
yh

2
z) + O(Pt2))

=O(Pt3) + O(Pt5)

provided that all relevant partial derivatives in the error estimate are bounded. This additional error
is of the same order as the truncation error in the original algorithm (14). Since the operators in
(15) commute, we can simplify the algorithm by applying (1 + (�2x=12))(1 + (�2y=12))(1 + (�2z =12))
to both sides of (15), which leads to(

1 +
�2x
12

− rx
2
�2x

)(
1 +

�2y
12

− ry
2
�2y

)(
1 +

�2z
12

− rz
2
�2z

)
un+1
i; j; k

=
(
1 +

�2x
12

+
rx
2
�2x

)(
1 +

�2y
12

+
ry
2
�2y

)(
1 +

�2z
12

+
rz
2
�2z

)
uni; j; k

+
Pt
2

(
1 +

�2x
12

)(
1 +

�2y
12

)(
1 +

�2z
12

)
(fn+1

i; j; k + fn
i; j; k): (16)

Eq. (16) can be solved in three steps as(
1 +

�2x
12

− rx
2
�2x

)
u∗∗i; j; k =

(
1 +

�2x
12

+
rx
2
�2x

)(
1 +

�2y
12

+
ry
2
�2y

)(
1 +

�2z
12

+
rz
2
�2z

)
uni; j; k

+
Pt
2

(
1 +

�2x
12

)(
1 +

�2y
12

)(
1 +

�2z
12

)
(fn+1

i; j; k + fn
i; j; k); (17)

(
1 +

�2y
12

− ry
2
�2y

)
u∗i; j; k = u∗∗i; j; k ; (18)

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 7

(
1 +

�2z
12

− rz
2
�2z

)
un+1
i; j; k = u∗i; j; k : (19)

The solutions to Eqs. (17)–(19) can be computed by solving tri-diagonal equations since the left-hand
sides of (17)–(19) involve only three-point central di'erence operators �2x or �2y or �2z as de1ned
in (3). Although the right-hand side of (17) involves the product of operators �2x , �

2
y, and �2y, it

does not complicate the solution process since it is applied to the known solution values from the
previous time step.

While solving Eq. (18), we need boundary conditions for u∗i;0; k and u∗i;N+1; k ; i=1; : : : ; M , k=1; : : : ; L.
These conditions can be obtained from Eq. (19) and the Dirichlet boundary condition in (1) by setting
j = 0 and j = N + 1, respectively:

u∗i;0; k =
(
1 +

�2z
12

− rz
2
�2z

)
un+1
i;0; k ;

u∗i;N+1; k =
(
1 +

�2z
12

− rz
2
�2z

)
un+1
i;N+1; k : (20)

Similarly, while solving Eq. (17), we need boundary conditions for u∗∗0; j; k and u∗∗M+1; j; k , j =
1; : : : ; N; k = 1; : : : ; L. These conditions can be obtained from Eqs. (18) and (19) by setting i = 0
and i =M + 1, respectively:

u∗∗0; j; k =

(
1 +

�2y
12

− ry
2
�2y

)(
1 +

�2z
12

− rz
2
�2z

)
un+1
0; j; k ;

u∗∗M+1; j; k =

(
1 +

�2y
12

− ry
2
�2y

)(
1 +

�2z
12

− rz
2
�2z

)
un+1
M+1; j; k : (21)

Since the spatial discretization used in obtaining (17) is fourth-order accurate in space, the boundary
conditions given by (20) and (21) have the same spatial accuracy as (17). This approach avoids
using one-sided di'erence approximations to the second spatial derivatives at the boundary, as is
required by the standard compact di'erence algorithms [1,4,5,10].

3. Systems of equations with nonlinear reaction terms

For a system of equations with linear di'usion and nonlinear reaction as given in (1), algorithms
(17)–(19) will result in the following system of equations:(

I +
�2x
12

− rx
2
�2x

)
w∗∗
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

)(
I +

�2y
12

)(
I +

�2z
12

)
(fn+1

i; j; k + fni; j; k); (22)

8 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

(
I +

�2y
12

− ry
2
�2y

)
w∗
i; j; k = w∗∗

i; j; k ; (23)

(
I +

�2z
12

− rz
2
�2z

)
wn+1
i; j; k = w∗

i; j; k ; (24)

where I is the identify matrix and rx, ry, and rz are de1ned by

rx =
Pt
h2x

D1; ry =
Pt
h2y

D2; ry =
Pt
h2z

D3:

Note that Eq. (22) contains solutions wn
i; j; k , w

∗∗
i; j; k , and wn+1

i; j; k (implicitly in fn+1
i; j; k). Since both w∗∗

i; j; k

and wn+1
i; j; k are unknown, Eq. (22) cannot be linearized by simply using Newton’s method or its

variations to expand fn+1
i; j; k at wn

i; j; k . In [9], a predictor–corrector type algorithm was used to overcome
this di"culty. The algorithm begins by using the expansion

fn+1
i; j; k = fni; j; k + Jn

i; j; k(w
n+1
i; j; k − wn

i; j; k) + Pt(ft)ni; j; k ; (25)

where Jn
i; j; k=(9f=9w)ni; j; k is the local Jacobian matrix at grid point (i; j; k). The algorithm in (22)–(24)

can then be written as(
I +

�2x
12

− rx
2
�2x

)
w∗∗
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

)(
I +

�2y
12

)(
I +

�2z
12

)
(2fni; j; k +Pt(ft)ni; j; k) + en+1

i; j; k ; (26)

(
I +

�2y
12

− ry
2
�2y

)
w∗
i; j; k = w∗∗

i; j; k ; (27)

(
I +

�2z
12

− rz
2
�2z

)
wn+1
i; j; k = w∗

i; j; k ; (28)

where en+1
i; j; k = Jn

i; j; k(w
n+1
i; j; k − wn

i; j; k). An intermediate solution w(n+1)P

ijk is calculated by 1rst using the
predictor(

I +
�2x
12

− rx
2
�2x

)
w∗∗P
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

)(
I +

�2y
12

)(
I +

�2z
12

)
(2fni; j; k +Pt(ft)ni; j; k); (29)

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 9

(
I +

�2y
12

− ry
2
�2y

)
w∗P
i; j; k = w∗∗P

i; j; k ; (30)

(
I +

�2z
12

− rz
2
�2z

)
w(n+1)P

i; j; k = w∗P
i; j; k : (31)

The solution wn+1
i; j; k is then calculated as the converged results of the following iterative correction

step: (
I +

�2x
12

− rx
2
�2x

)
w∗∗k
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

)(
I +

�2y
12

)(
I +

�2z
12

)
(2fni; j; k +Pt(ft)ni; j; k) + e(n+1)(k−1)

i; j; k ; (32)

(
I +

�2y
12

− ry
2
�2y

)
w∗k
i; j; k = w∗∗k

i; j; k ; (33)

(
I +

�2z
12

− rz
2
�2z

)
w(n+1)k

i; j; k = w∗k
i; j; k ; k = 1; 2; : : : ; (34)

where k represents the number of iterations in the correction step. For k = 1, the solution values
from the predictor step are used in the computation. This method requires iterations over all three
Eqs. (32)–(34) to consider the nonlinear e'ect of the reaction term.
Here, we introduce a more e"cient way to deal with the nonlinear reaction term. Note that if we

rewrite algorithms (22)–(24) as(
I +

�2x
12

− rx
2
�2x

)
w∗∗
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

)
fni; j; k ; (35)

(
I +

�2y
12

− ry
2
�2y

)
w∗
i; j; k = w∗∗

i; j; k ; (36)

(
I +

�2z
12

− rz
2
�2z

)
wn+1
i; j; k = w∗

i; j; k +
Pt
2

(
1 +

�2z
12

)
fn+1
i; j; k ; (37)

10 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

where fn+1
i; j; k can be expanded using (25), the di'erence between the algorithm in (22)–(24) and that

in (35)–(37) is

Pt
2

rx
2
�2x
ry
2
�2y

(
I +

�2z
12

)
(fni; j; k + fn+1

i; j; k)

+
Pt
2

(((
I +

�2x
12

)
ry
2
�2y +

rx
2
�2x

(
I +

�2y
12

))(
I +

�2z
12

))
(fni; j; k − fn+1

i; j; k)

for which we have the estimate O(Pt3) + O(Pt5). This is of the same order as that of the original
truncation error in algorithm (14). With this new formulation, Eqs. (35) and (36) are linear and
can be solved in a straightforward manner. Eq. (37) can be linearized by Newton’s method, or its
variations, such as that given in (25). The new algorithm can then be written as(

I +
�2x
12

− rx
2
�2x

)
w∗∗
i; j; k

=
(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

+
rz
2
�2z

)
wn
i; j; k

+
Pt
2

(
I +

�2x
12

+
rx
2
�2x

)(
I +

�2y
12

+
ry
2
�2y

)(
I +

�2z
12

)
fni; j; k ; (38)

(
I +

�2y
12

− ry
2
�2y

)
w∗
i; j; k = w∗∗

i; j; k ; (39)

(
I +

�2z
12

− rz
2
�2z −

Pt
2

(
I +

�2z
12

)
Jn
i; j; k

)
wn+1
i; j; k

=w∗
i; j; k +

Pt
2

(
I +

�2z
12

)
(fni; j; k − Jn

i; j; kw
n
i; j; k +Pt(ft)ni; j; k): (40)

To achieve high accuracy for strongly nonlinear problems, Newton’s iterations can be used to solve
(40), which leads to(

I +
�2z
12

− rz
2
�2z −

Pt
2

(
I +

�2z
12

)
J(n+1)m−1

i; j; k

)
w(n+1)m

i; j; k

=w∗
i; j; k +

Pt
2

(
I +

�2z
12

)
(f (n+1)m−1

i; j; k − J(n+1)m−1

i; j; k w(n+1)m−1

i; j; k +Pt(ft)ni; j; k); m= 1; 2; : : : ;

where w(n+1)0

i; j; k = wn
i; j; k .

4. Higher-order accuracy in the temporal dimension

The algorithm given in (38)–(40) is fourth-order accurate in space, but only second-order accurate
in time. Because of the special formulation that led to the fourth-order accuracy in space on a

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 11

seven-point stencil, it is di"cult to combine this algorithm with available high-order ODE solution
algorithms to achieve better accuracy in the temporal dimension. Following the derivation from
(12) to (19), we can see that the temporal discretization is involved in the very beginning of this
algorithm development. As a result, it is di"cult to use some of the well established methods, such
as method of lines (MOL), to 1rst discretize the space derivatives, and then use high-order ODE
time integration methods to achieve high temporal accuracy.

We used Richardson extrapolation on the computed solution to eliminate the lower order term in
the truncation error. Since the Crank–Nicolson algorithm has a temporal truncation error in the form
of O(Pt2) + O(Pt4), we use

w=
4wh=2 − wh

3
(41)

to eliminate the term O(Pt2), where wh=2 and wh are the solutions at the 1nal time level calculated
using Pt = h and Pt = h=2, respectively. This makes the 1nal solution fourth-order accurate in
both the temporal and spatial dimensions. Although the extrapolation requires three times as much
computation as the original algorithm, the resulting high-order accuracy allows the use of much
larger time steps in the computation.

5. Numerical experiment

We discuss three numerical examples here: two with analytic solutions against which we can
compare the numerical solution to demonstrate the e"ciency and order of accuracy of the new
algorithm in both the spatial and temporal dimensions; and the other with unknown exact solution
for which we plot the numerical results to demonstrate the time evolution of the solutions.

Example 1. The equations to be solved are

ut = uxx + uyy + uzz + u(v− 1) + f(x; y; z; t);

vt = vxx + vyy + vzz + v(u− 1) + g(x; y; z; t);

0¡x; y; z¡ 1; t ¿ 0;

where f(x; y; z; t), g(x; y; z; t), and the boundary and initial conditions have been selected to accom-
modate the exact solutions of u=e−t=3 sin(x3) sin(

y
3) sin(

z
3) and v=e−3t sin(x) sin(y) sin(z). The data

in Table 1 shows the maximum error between the calculated solution and the exact solution at T=1.
The discretization grid is Px=Py=Pz=Pt = h, and the algorithm given by (38)–(40) was used
with a full analytic Jacobian matrix and Newton’s iterations. The notation e1 represents the error
from the algorithm that is second-order accurate in time and fourth-order accurate in space, and e2
represents the error from the algorithm that is fourth-order accurate in both time and space.

It is clear from Table 1 that the error represented by e1 shows a second-order decrease, while
that represented by e2 shows a fourth-order decrease. This is demonstrated by the fact that the ratios
of e1=h2 and e2=h4 remain roughly a constant as the computational grid is being re1ned. Each time
when the computation grid is re1ned by halving Pt, Px, Py, and Pz, e1 is reduced by a factor of 4,

12 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

Table 1
Maximum error between the calculated solution and the exact solution at T = 1:0. e1 is the maximum
error from the algorithm that is second-order accurate in time and fourth-order accurate in space.
e2 is the maximum error from the algorithm that is fourth-order accurate in both time and space.
Pt =Px =Py =Pz = h

h 0.25 0.20 0.125 0.10 0.0625 0.05

e1 1:322e− 6 8:088e− 07 2:841e− 07 1:736e− 07 6:265e− 08 3:893e− 08
e1=h2 2:115e− 05 2:022e− 05 1:818e− 05 1:736e− 05 1:604e− 05 1:557e− 05
e2 6:171e− 08 2:387e− 08 3:422e− 9 1:389e− 9 2:098e− 10 8:626e− 11
e2=h4 1:579e− 05 1:492e− 05 1:402e− 05 1:389e− 05 1:375e− 05 1:380e− 05

Table 2
Maximum error between the calculated solution and the exact solu-
tion at T = 1:0. e3 is the maximum error from the algorithm that is
second-order accurate in time and fourth-order accurate in space. The
initial grid is Pt =Px =Py =Pz = 0:2. In each re1nement step, Pt
is reduced by a factor of 4 and Px = Py = Pz = h is reduced by a
factor of 2

h 0.2 0.1 0.05 0.025

Pt 0.2 0.05 0.0125 0.003125
e3 8:088e− 07 4:443e− 08 2:450e− 09 1:516e− 10
e3=h4 5:055e− 04 4:443e− 04 3:919e− 04 3:882e− 04

Table 3
CPU times in seconds for achieving the same accuracy using the standard ADI
method and the new fourth-order method at t=1:0. t2: Time using standard ADI
method. t4: Time using the new fourth-order method

Error 8:0e− 4 2:0e− 4 5:0e− 5 8:0e− 6 2:0e− 6 5:0e− 7

t2 0.022 0.162 1.334 21.335 198.792 2189.390
t4 0.002 0.013 0.016 0.062 0.520 1.037

while e2 is reduced by a factor of 16. Table 2 shows similar results as those represented by e1 in
Table 1, except Pt is re1ned by a factor of 4 each time, while Px, Py, and Pz is re1ned by a
factor of 2 each time. It is clear that the error e3 is now being reduced by a factor of 16 with each
grid re1nement, and the ratio e3=h4 remains roughly a constant as the computational grid is re1ned,
indicating fourth-order convergence. However, the accuracy is still not as good as those represented
by e2 in Table 1.

Example 2. This is a simple example of a two-dimensional equation. The equation to be solved is

ut = uxx + uyy + f(x; y; t); (x; y)∈ (0; 1)× (0; 1); t ¿ 0; (42)

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 13

0

10

20

30

40

0

10

20

30

40
0

0.8

0.6

0.4

0.2

1

0

10

20

30

40

0

10

20

30

40
0

0.2

0.4

0.6

0.8

1

(a)

(b)

Fig. 1. Initial conditions for Eq. (43): (a) u at t = 0 and x = 0:5; (b) v at t = 0 and x = 0:5.

f(x; y; t) = 7:5e−0:5t sin(2x) sin(2y);

u(0; y; t) = 0; u(1; y; t) = e−0:5t sin(2:0) sin(2y);

u(x; 0; t) = 0; u(x; 1; t) = e−0:5t sin(2x) sin(2:0);

u(x; y; 0) = sin(2x) sin(2y)

with an exact solution u(x; y; t) = e−0:5t sin(2x) sin(2y).

14 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

0

10

20

30

40

0

10

20

30

40
0.9

0.92

0.94

0.96

0.98

1

0

10

20

30

40

0

10

20

30

40
0

0.01

0.02

0.03

0.04

0.05

(a)

(b)

Fig. 2. Solutions to Eq. (43): (a) u at t = 4 and x = 0:5; (b) v at t = 4 and x = 0:5.

The data in Table 3 shows that the fourth-order algorithm is much more e"cient than the standard
second-order ADI algorithm. In the case of reducing the error to 5:0×10−7, the fourth-order algorithm
is more than two thousand times faster than the second-order algorithm.

Example 3. The equations to be solved are

ut = uxx + uyy + uzz − u4v;

vt = vxx + vyy ++vzz + u4v− 0:5v;

0¡x; y; z¡ 1; t ¿ 0 (43)

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 15

0

10

20

30

40

0

10

20

30

40
0

0.01

0.02

0.03

0.04

0.05

(b)

0

10

20

30

40

0

10

20

30

40
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(a)

Fig. 3. Solutions to Eq. (43): (a) u at t = 8 and x = 0:5; (b) v at t = 8 and x = 0:5.

with the following boundary conditions:

u(0; y; z; t) = u(1; y; z; t) = u(x; 0; z; t) = u(x; 1; z; t) = u(x; y; 0; t) = u(x; y; 1; t) = 1:0;

v(0; y; z; t) = v(1; y; z; t) = v(x; 0; z; t) = v(x; 1; z; t) = v(x; y; 0; t) = v(x; y; 1; t) = 0:0:

The initial conditions for u and v are

u(x; y; z; 0) = 1:0; v(x; y; z; 0) = e−1600((x−0:5)2+(y−0:5)2+(z−0:5)2):

16 Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17

0

10

20

30

40

0

10

20

30

40
0.8

0.85

0.9

0.95

1

0

10

20

30

40

0

10

20

30

40
0

0.01

0.02

0.03

0.04

0.05

(a)

(b)

Fig. 4. Solutions to Eq. (43): (a) u at t = 12 and x = 0:5; (b) v at t = 12 and x = 0:5.

Figs. 1(a) and (b) show the initial conditions u and v, respectively, at x = 0:5 as functions of y
and z.
Figs. 2–4 show the numerical solutions u and v to Eq. (43) at time T =4; 8; 12, respectively. They

are plotted at x=0:5 as functions of y and x. The computations were carried out using the algorithm
given in (38)–(41) on an 81 × 81 grid with a time step size of Pt = 0:001. The time evolution
of the solution is clearly demonstrated in these 1gures. Due to the di'usion and chemical reaction
(negative source term), u gradually decreases. The rate of decrease is much higher in the middle of
the domain due to the large initial value of v there (hence large value of u4v), thus forming a deep

Y. Gu et al. / Journal of Computational and Applied Mathematics 155 (2003) 1–17 17

valley that expands radially. Similarly, the peak of v in the middle of the domain also decreases
in amplitude and spreads radially due to di'usion and reaction. Note, however, Fig. 4(b) shows a
crater-like peak for solution v at T =12. This can be explained by the fact that the rapid decrease of
u at the center of the domain makes the reaction term u4v− 0:5v in the second equation much more
negative there than in other part of the domain, hence causing v to decrease much more rapidly at
the center of the domain.

6. Conclusion

An e"cient implicit high-order method for solving systems of 3-D reaction–di'usion equations
with linear di'usion and nonlinear reaction is discussed in this paper. It is fourth-order accurate
in time and space, and uses a compact seven-point 1nite di'erence stencil for three-dimensional
problems. Numerical results have demonstrated the high-order accuracy in both temporal and spatial
dimensions. The algorithm can be used to solve various application problems involving reaction and
di'usion. Since many models in science and engineering require Neumann boundary conditions, the
authors are current working on extending this algorithm to problems involving Neumann bounday
conditions.

Acknowledgements

The authors are grateful to the two anonymous referees for their helpful comments on the revision
of the manuscript.

References

[1] Y. Adam, Highly accurate compact implicit methods and boundary conditions, J. Comput. Phys. 24 (1977) 10–22.
[2] J. Douglas Jr., On the numerical integration of 92u=9x2 + 92u=9y2 = 9u=9t by implicit methods, J. Soc. Ind. Appl.

Math. 3 (1955) 42–65.
[3] B. Gustafson, H. Kreiss, J. Oliger, Time Dependent Problems and Di'erence Methods, Wiley, New York, 1995.
[4] R.S. Hirsch, Higher order accurate di'erence solutions of Ruid mechanics problems by a compact di'erencing

technique, J. Comput. Phys. 19 (1975) 90–109.
[5] S.K. Lele, Compact 1nite di'erence schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42.
[6] W. Liao, J. Zhu, A.Q.M. Khaliq, An e"cient high order algorithm for solving systems of reaction–di'usion equations,

J. Numer. Methods Partial Di'erential Equations 18 (2002) 340–354.
[7] A.R. Mitchell, D.F. Gri'ths, The Finite Di'erence Method in Partial Di'erential Equations, Wiley, New York, 1980.
[8] D.W. Peaceman, H.H. Rachford Jr., The numerical solution of parabolic and elliptic di'erential equations, J. Soc.

Ind. Appl. Math. 3 (1955) 28–41.
[9] J.I. Ramos, Implicit, compact, linearized $-methods with factorization for multidimensional reaction–di'usion

equations, Appl. Math. Comput. 94 (1998) 17–43.
[10] R.V. Wilson, A.O. Demuren, M. Carpenter, Higher-order compact schemes for numerical simulation of incompressible

Rows, ICASE Report, No. 98-13, 1998.

	An efficient high-order algorithm for solving systemsof 3-D reaction--diffusion equations
	Introduction
	Fourth-order algorithm based on approximate factorization
	Systems of equations with nonlinear reaction terms
	Higher-order accuracy in the temporal dimension
	Numerical experiment
	Conclusion
	Acknowledgements
	References

