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Abstract

We study the simplest examples of minimal string theory whose worldsheet description is the unitary(p, q) minimal model
coupled to two-dimensional gravity (Liouville field theory). In the Liouville sector, we show that four-point correlation functio
of ‘tachyons’ exhibit logarithmic singularities, and that thetheory turns out to be logarithmic. The relation with Zamolod
chikov’s logarithmic degenerate fields is also discussed. Our result holds for generic values of(p, q).
 2004 Elsevier B.V.  
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1. Introduction

Minimal string theories are interesting string laboratories whose target space is two dimensions (see[1,2] and
references therein). The total centralcharge is 26 for bosonic cases, and their worldsheet description can be realis
by two-dimensional gravity (Liouville field theory) coupled to(p, q) minimal conformal field theories[3,4].

In the simplest examples of such theories, the Liouville sector and the(p, q)-matter sector almost decoup
from each other, except that the on-shell condition provides a bridge between the two sectors. ‘Tachyon’ is s
a field that satisfies the condition and is a tensor product of a Liouville primary and a(p, q) primary. In [5],
one of the authors has shown that such a theory with(p, q) = (4,3) has a peculiar Liouville four-point functio
which exhibits logarithmic singularity. In this Letter, wefind that quite many four-point functions of tachyons ha
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logarithmic singularities for generic(p, q), and that minimal string theory is logarithmic. This fact implies that
the(p, q) minimal string theories are logarithmic theory with logarithmic fields.

Logarithmic conformal field theory (LCFT) is a class of conformal field theories (CFTs) which was first fou
a c = −2 theory in[6] from four-point functions with logarithms[7]. The main feature of this theory is a reducib
but indecomposable representation, or Jordan cell structure, and its corresponding logarithmic fields[8–14]. Soon
after [6], another example of LCFT was shown to be a gravitationally dressed CFT, where fermionic four-po
functions had logarithmic terms in the vicinity ofξ = 1 [11]. Here,ξ is an harmonic ratio. It was also sugges
that a puncture-type operator appearing in Liouville field theory may play a role in LCFT as a prelogarithmic fiel
[12]. Liouville field theory has been involved in this game.

Zamolodchikov has recently shown an operator-valued relation of logarithmic degenerate fields with a particu
type of primaries[15]. Such primaries naturally emerge in two-dimensional gravity coupled to minimal matter.
has been suggested in[16] that Liouville correlation functions serve four-point functions ofSL(2,R) WZNW mod-
els. On the other hand, one of the authors has calculated chiral four-point functions and conditions for log
in the Coulomb gas picture with a boundary in[14].

In the rest of this Letter, we calculate Liouville four-point correlation functions of the gravitational sec
tachyons in two-dimensional gravity coupled to(p, q) minimal conformal field theories without applying th
differentiation method[5,17]. We also aim to show the solutions in a generic form to enable study of the non-
Liouville dynamics and a more explicit relation between two-dimensional gravity and LCFT. It should be noted
that, unlike in[11], the conformal gauge is used here and our results contain logarithms at bothξ = 0 andξ = 1.

2. Action, tachyons, and Liouville correlation functions

We start with two-dimensional gravity coupled to the(p, q) minimal model. In the conformal gauge, the gra
tational sector is described by Liouville field theory on a sphere with the action[4]:

(2.1)SL[ĝ, φ] = 1

8π

∫
d2z

√
ĝ
(
ĝαβ∂αφ∂βφ − QR̂φ + 4µeαφ

)
,

whereR̂ is the two-dimensional scalar curvature with the fixed reference metriĉgαβ andµ is the renormalised
cosmological constant. The parameterQ is defined byQ = −α − 2/α with α = −√

2q/p. In this case, Liouville
field theory becomes CFTwith the central chargecL = 1+ 3Q2 [18].

The ‘tachyon’ operator is defined by[4,19]:

(2.2)Or,t =
∫

d2z
√

ĝOr,t (z, z̄),

with the on-shell condition that the total conformal weight ofOr,t (z, z̄) is one. Here,Or,t (z, z̄) is called the gravi-
tationally dressed operator:

(2.3)Or,t (z, z̄) = eβr,tφ(z,z̄)Φr,t (z, z̄)

andΦr,t (z, z̄) is a Kac primary field of the(p, q) matter[3]. Therefore,(r, t) is restricted in a rectangular regio
and the value ofβr,t is fixed by the on-shell condition[20]:

(2.4)βr,t = (1− r)
1

α
+ (1+ t)

α

2
,

since the conformal weight of the Liouville primary operator,eβφ(z,z̄), is hβ = −1
2β2 − 1

2βQ. Note that, in[15],
Liouville primaries with the following condition appear in our notation in anoperator-valued relation of logarithm
degenerate fields:

(2.5)βm,n = (1− m)
1 + (1+ n)

α
.

α 2
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This condition coincides with the on-shell condition, i.e., Eq.(2.4).
As the matter sector is well studied and known, we will neglect it and consider only the Liouville part of

point correlation functions of operators(2.2) [19,21]. After integrating out the Liouville zero modeφ0 (φ = φ0+ φ̃),
the Liouville correlation function on the complex plane becomes:

(2.6)

〈
4∏

i=1

eβiφ(zi ,z̄i )

〉
=

(
µ

2π

)s
�(−s)

−α
G̃

(s)
L ,

where the functioñG(s)
L is the non-zero mode expectation value:

(2.7)G̃
(s)
L =

〈
4∏

i=1

eβiφ̃(zi ,z̄i )

(∫
d2ueαφ̃(u,ū)

)s
〉

with the free field action of̃φ, and the parameters is given by:

(2.8)s = − 1

α

(
Q +

4∑
i=1

βi

)
.

βi denotesβri,ti . The calculation of the function(2.6)is analogous to that of the Coulomb gas picture[22]. In case

s be non-negative integer, one has to interpret a singular factor in Eq.(2.6) as(
µ
2π

)s�(−s) be (
µ
2π

)s (−1)s+1

�(s+1)
lnµ

[19].
Whens is a non-negative integer, we can evaluate Eq.(2.7)as shown in[5,22]:

G̃
(s)
L =

∏
1�i<j�4

|zi − zj |−2(hi+hj )+ 2
3h|ξ |2(h1+h2)− 2

3h−2β1β2

(2.9)× |1− ξ |2(h2+h3)− 2
3h−2β2β3I (s)

(−αβ1,−αβ3,−αβ2;−1
2α2; ξ, ξ̄

)
,

whereh = ∑4
i=1 hi , hi = hβi , ξ = (z1−z2)(z3−z4)

(z1−z3)(z2−z4)
and

(2.10)I (s)(a, b, c;ρ; ξ, ξ̄) =
∫ s∏

i=1

d2ui

s∏
i=1

[|ui |2a|1− ui |2b|ui − ξ |2c
] ∏

1�i<j�s

|ui − uj |4ρ.

When s = 0, the integral(2.10)vanishes and̃G(0)
L turns out to be a simple product of powers. In the follow

sections, we will consider the next-to-trivial case, that is,s = 1, where the integral(2.10)becomes:

(2.11)I (1)(−αβ1,−αβ3,−αβ2;0; ξ, ξ̄) =
∫

d2u |u|−2αβ1|1− u|−2αβ3|u − ξ |−2αβ2.

As has been pointed out in[5], Eq.(2.11)may have logarithmic terms.

3. Four fields for s = 1

Whenp andq are coprime,s is generally a fractional number. However, for appropriatep andq , there exist
such a combination of four fields that givess = 1. Namely, we state that, given thatp,q, r, t ∈ Z, p andq are
coprime, and

(3.1)p � 4, q � 3,
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then there exist such combinations of fields that gives = 1:

(3.2)〈Or,tOq−(r−1),p−(t+2)Or,tOq−(r−1),p−(t+2)〉, for 2 � r � q − 1, 1 � t � p − 3.

Kac primaries of the matter part reside only in the conformal gridGp,q :

(3.3)Gp,q = {
(r, t) ∈ Z2 | 1 � r � q − 1, 1� t � p − 1

}
,

so do the operators{Or,t }. The existence of the combinations in(3.2)means this requirement which is realised
2 � r � q − 1, 1� t � p − 3 under the condition(3.1). Thus, one can easily see that the statement is true.
thatp � 2, q � 2 for Gp,q �= ∅, and that the number of such combinations is(p − 3)(q − 2).

One can also show that, if we assume thatp, q are coprime ands = 1 for the 〈ABAB〉 type of correlation
functions, the only possible combinations are those shown in(3.2)provided thatp, q satisfy the inequalities(3.1).

It follows from 〈ABAB〉 that β1 = β3 andβ2 = β4. With s = 1 andβi = (1 − ri )
1
α

+ (1 + ti )
α
2 , the relation

(2.8) reduces to
∑2

i=1 ri − 1 = q
p
(
∑2

i=1 ti + 2). Sincep, q are coprime, the sum in the parentheses on the r.h.

should be a multiple ofp. Therefore,1

2∑
i=1

ri = nq + 1,

2∑
i=1

ti = np − 2, for n ∈ Z.

Since(ri , ti ) ∈ Gp,q , 2�
∑

ri � 2q − 2 and 2�
∑

ti � 2p − 2. Therefore,n = 1 is the only choice. Hence,

r2 = q − (r1 − 1), t2 = p − (t1 + 2).

Since(ri , ti ) ∈ Gp,q , this leads to the combinations in(3.2)and the inequalities(3.1).

4. Integral expressions and explicit calculations

Let us consider the Liouville part of the following correlation functions:

(4.1)
〈
Or,t (z1, z̄1)Oq−(r−1),p−(t+2)(z2, z̄2)Or,t (z3, z̄3)Oq−(r−1),p−(t+2)(z4, z̄4)

〉
,

for 2 � r � q − 1, 1� t � p − 3 with the inequalities(3.1). Note that(3.1) is not odd, since it is only a unitarit
bound for the minimal models.

Firstly, we should calculate the following integral fors = 1:

(4.2)I (1)(a, b, c;0; ξ, ξ̄) =
∫

d2u |u|2a|1− u|2b|u − ξ |2c.

In ordinary CFT, this can be reduced to the following form by Dotsenko’s formula[23]:

(4.3)I (1)(a, b, c;0; ξ, ξ̄) = G1
∣∣F1(ξ)

∣∣2 + G2
∣∣F2(ξ)

∣∣2,
whereGis areξ -independent functions ofa, b and c, andFi(ξ)s consist of two independent hypergeome
functions. However, in some cases, or LCFT cases in particular, this form may be indefinite, having va
denominators inGis. This is to be treated carefully, because if onewants to pursue this form, it is necessary
bring some non-trivial techniques like the differentiation method in[5,17].

There is another way of expressing the integral in termsof hypergeometric functions. This avoids such indefin
forms and make the formula directly applicable to general cases, including LCFT cases. The procedur

1 For non-coprimep, q cases,(p,q) are replaced by the greatest coprime divisors ofp andq.
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involves performing the same analytic continuation as that in[23], then expressing two out of four integrals
another domain|ξ − 1| < 1 as follows:

(4.4)I (1)(a, b, c;0; ξ, ξ̄) = −sin(πa)I2(ξ)I3(ξ̄ ) − sin(πb)I4(ξ)I1(ξ̄ ),

where

I1(ξ) ≡
∞∫

1

duua(u − 1)b(u − ξ)c

= �(−1− a − b − c)�(1+ b)

�(−a − c)
2F1(−c,−1− a − b − c;−a − c; ξ),

I2(ξ) ≡
ξ∫

0

duua(1− u)b(ξ − u)c = �(1+ a)�(1+ c)

�(2+ a + c)
ξ1+a+c

2F1(−b,1+ a;2+ a + c; ξ),

I3(ξ) ≡
0∫

−∞
du (−u)a(1− u)b(ξ − u)c =

∞∫
1

du (u)a(u − 1)b
(
u − (1− ξ)

)c

= �(−1− a − b − c)�(1+ a)

�(−b − c)
2F1(−c,−1− a − b − c;−b − c;1− ξ),

I4(ξ) ≡
1∫

ξ

duua(1− u)b(u − ξ)c =
1−ξ∫
0

du (u)b(1− u)a(1− ξ − u)c

(4.5)= �(1+ b)�(1+ c)

�(2+ b + c)
(1− ξ)1+b+c

2F1(−a,1+ b;2+ b + c;1− ξ).

Substituting the above into Eq.(4.4), we obtain:

I (1)(a, b, c;0; ξ, ξ̄)

= −�(−1− a − b − c)�(1+ c)

× [
sin(πa)U23ξ

1+a+c
2F1(−b,1+ a;2+ a + c; ξ) 2F1(−c,−1− a − b − c;−b − c;1− ξ̄ )

(4.6)

+ sin(πb)U41(1− ξ)1+b+c
2F1(−a,1+ b;2+ b + c;1− ξ) 2F1(−c,−1− a − b − c;−a − c; ξ̄ )

]
,

whereU23 = [�(1+a)]2
�(2+a+c)�(−b−c)

andU41 = [�(1+b)]2
�(2+b+c)�(−a−c)

.
For the integrals in(4.5) to be of the hypergeometric functions, the integrands should not have poles au =

0,1, ξ,∞, i.e., a, b, c /∈ Z−. Therefore, the above formula(4.6) is valid for such values ofa, b and c. When
(1 + a + c) /∈ Z and(1 + b + c) /∈ Z, one can easily see that this is equivalent to Dotsenko’s formula of the
(4.3). It should also be mentioned here that, precisely speaking, the analytic continuation is well-defined a
when(a + b + c) < −1 andξ is real. However, the integral(4.2)and r.h.s. of the formula(4.6)do not appear to
be ill-defined nor singular when the value ofξ deviates a little from the real axis. So we can simply assume
ξ can be analytically continued to the whole complex plane, or at least, Eq.(4.6)can be regarded as a regularis
expression of the integral(4.2).

By using the foregoing formula, one can explicitly calculate the Liouville part of the functions(4.1). Since the
formula(4.6)and

(4.7)−αβ1 ≡ A = −1+ r − (1+ t)
q

p
, −αβ2 = −r + (1+ t)

q

p
= −1− A,



Y. Ishimoto, S. Yamaguchi / Physics Letters B 607 (2005) 172–179 177

s

ory
, such

CFT as
the two-dimensional integral(2.11), or I (1)(−αβ1,−αβ3,−αβ2;0; ξ, ξ̄), amounts to:

I (1)(A,A,−1− A;0; ξ, ξ̄)

(4.8)= (−1)1+rπ2

sin(π(1+ t)
q
p
)

{
2F1(−A,1+ A;1; ξ) 2F1(−A,1+ A;1;1− ξ̄ ) + (c.c.)

}
.

Therefore, we obtaiñG(1)
L of Eq.(2.6)as

(4.9)G̃
(1)
L = |z1 − z3|−4h1|z2 − z4|−4h2

∣∣ξ(1− ξ)
∣∣−2β1β2I (1)(A,A,−1− A;0; ξ, ξ̄).

Here we use the gamma function identity,�(−x)�(1 + x) = −π/sin(πx). The integral isξ ↔ ξ̄ symmetric
and therefore real, as it should be. Inother words, it is single-valued and monodromy invariant. The condition
(a, b, c /∈ Z−) for the formula(4.6)are guaranteed by non-integer values ofA, since(1+ t)

q
p

/∈ Z with t � p − 3
and coprime(p, q). Note that we do not strictly apply the condition(a + b + c) < −1 of (4.6), although, when
q < p < 2q , the condition allows all the possible pairings ofOr,tOq−(r−1),p−(t+2). In particular,(r, t) = (2,1) is
allowed whenp < 2q , andq < p < 2q with Eq. (3.1) includes all the non-trivial unitary minimal(q + 1, q � 3)

models.
Hence, we find that the Liouville parts of the correlation functions(4.1)have logarithmic terms in(4.8), since

2F1(−A,1+ A;1; ξ)

= sin(πA)

π

[
ln(1− ξ) 2F1(−A,1+ A;1;1− ξ)

(4.10)−
∞∑

n=0

(−A)n(1+ A)n

(n!)2
(1− ξ)n

{
2ψ(n + 1) − ψ(−A + n) − ψ(1+ A + n)

}]
,

where(a)n is the Pochhammer symbol andψ(x) = ∂
∂x

ln(�(x)). This fact further demonstrates that the the
should contain logarithmic operators whose two-point functions yield logarithmic terms. In a chiral theory
operators can be seen in the operator algebra as follows[6]:

(4.11)O1(z)O2(0) ∼ z−h1−h2+hC
(
C(0) ln(z) + D(0)

)
with the following two-point functions:

(4.12)
〈
C(z)C(0)

〉 = 0,
〈
C(z)D(0)

〉 ∼ 1,
〈
D(z)D(0)

〉 ∼ −2 ln(z).

Ois are the primaries whose four-point functions may contain logarithmic terms, andC(z), D(z) are called loga-
rithmic operators of dimensionhC . In our case,O1 andO2 areOr,t andOq−(r−1),q−(t+2) in (4.1), but the r.h.s. of
equation should take a non-chiral form. In any case, the underlying theory on the worldsheet is logarithmic
such, and hence minimal string theories turn out to be logarithmic.

Substituting(r, t) = (2,1) into Eq.(4.8), one can obtain:

I (1)
(p−2q

p
,

p−2q
p

,
2q−2p

p
;0; ξ, ξ̄

)
(4.13)= − π2

sin(2π
q
p
)

{
2F1

(−p−2q
p

,
2p−2q

p
;1; ξ

)
2F1

(−p−2q
p

,
2p−2q

p
;1;1− ξ̄

) + (c.c.)
}
.

In the case of(p, q) = (4,3), one can easily confirm that Eq.(4.13)reproduces the result in[5]. Thus, we obtained
from the formula(4.6) logarithmic four-point correlation functions in Liouville fieldtheory without applying the
differential regularisation procedure[5]. For more details of the procedure, see also[17].
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5. Conclusions and remarks

As the simplest examples of minimal string theory, we have studied the(p, q) minimal models coupled to
Liouville field theory. Extracting only the Liouville sector, the four-pointfunctions of tachyons were reduced
two-dimensional integrals of the Coulomb gas type. By using the transformed version of Dotsenko’s formu(4.6),
it was shown that forp � 4 andq � 3, certain pairs of tachyons possess logarithmic singularities in their four-poin
functions, and that minimal string theories are therefore logarithmic. At the end of the previous section,
confirmed that the previous results[5,17] can be justified without the regularisation procedure.

It is remarkable that the result in(4.8) does not require any specific conditions for logarithms, and tha
logarithms in(4.10)emerge so naturally. In ordinary free field realisations of CFT, there should be conditions f
logarithms which are not necessarily necessary and sufficient. For example, as shown in[14], in the Coulomb gas
picture of the minimal models, there are a necessary condition and a necessary and sufficient condition on(r, t) and
(p, q) for logarithms in a certain correlation function. The free boson realisation ofSU(2)k WZNW models also
possesses restrictive conditions for logarithms. Unlike such cases, the result in(4.8)does not require any restrictiv
bounds for logarithms, as one can see in the logarithmic expansion(4.10)of the hypergeometric functions. This
a remarkable feature of Liouville field theory and(p � 4, q � 3) minimal string theories.

As already implied, our discussion is not restricted to the unitary minimal matters of(p = q +1, q � 3), but also
holds for generic integer values of(p, q), except for few cases. The only restriction on(p, q) comes from no-pole
conditionA /∈ Z, which is intrinsically the same as(1 + s)

q
p

/∈ Z in [14]. Nonetheless, this is not so restrictive
our case, because the bound, 1� t � p − 3, with coprime(p, q) automatically satisfies the condition. In additio
if any correlation functions of the type in(4.1) exist, the expansion(4.10)tells us that it has logarithms and th
theory is said to be logarithmic. Hence,p, q can take quite general integer values, including even non-cop
integers. This generality of our derivation may help withunderstanding the conjecture by Seiberg and Shih that a
values of(p, q) correspond to some minimal string theory or deformations thereof[2].

An operator-valued relation for the logarithmic degenerate fields is shown in[15]. The fields appearing in
his relation are nothing but puncture-type operatorφVα , or equivalently1

2
∂
∂α

Vα . It is therefore straightforward
as demonstrated by Kogan and Lewis[12] that the correlation functions involving such fields yield logarithm
singularities. Our primaries in the Liouville sector are equivalent to the primaries appearing on the r.h.s. of
relation and therefore can be regarded as singular vectors of the logarithmic degenerate fields,φVα .2 It should be
stressed here that our calculation shows that the correlation functions of such primaries can be explicitly ca
and that they also yield logarithmic singularity in the correlation functions. Furthermore, it may help to ca
the correlation function involving the logarithmic degenerate fields by using an inverse relation of Zamolodc
operator relation. This would be an interesting application.

In this Letter, we have not discussed the effects of boundary, that is, boundary conditions, boundary state
etc. As has already been mentioned briefly, Seiberg and Shih recently discussed the relationship of minimal str
theory with matrix models and their branes[2]. This has not been dealt with here. These are all interesting direc
for further study.
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