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ABSTRACT 

It is proved that a real symmetric tridiagonal matrix with positive codiagonal 
elements is uniquely determined by its eigenvalues and the eigenvalues of the largest 
leading principal submatrix, and can be constructed from these data. The matrix 
depends continuously on the data, but because of rounding errors the investigated 
algorithm might in practice break down for large matrices. 

1. INTRODUCTION 

In this paper we will prove that a real symmetric tridiagonal matrix of 
order n with positive off-diagonal elements is uniquely determined by its 
eigenvalues and the eigenvalues of the leading principal submatrix of order 
n- 1 (see Sec. 2). An alternative proof for this result has recently been 
published by H. Hochstadt, who uses a constructive method; see [6]. In Sec. 
3 we present a computational method and show that the algorithm will work 
provided the two sets of eigenvalues interlace. 

In Sec. 4 we establish the well-posedness of the inverse eigenvalue 
problem. In Sec. 5 we discuss several physical interpretations of the unique- 
ness result. In particular, we show that a swinging necklace is uniquely 
determined by its eigenfrequencies and the eigenfrequencies of the same 
necklace, but with the first bead fixed. Finally, in Sec. 6 we consider the 
algorithm from a computational point of view and present a numerical 
example. 
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2. UNIQUENESS THEOREM FOR JACOBI MATRICES 

Let J be a Jacobi matrix of order n with diagonal elements a,, . . . , a,, and 
codiagonal elements b,, . . . , b,, _ 1, where we assume that all b, are strictly 
positive. The truncated matrix K is obtained by deleting the last row and 
column of J. 

THEOREM 1 (Hochstadt). The Jacobi matrix J is uniquely determined by 
the eigenvalues {Ai} and { pii> of I and K respectively. 

REMARK. Hochstadt has proved that if the codiagonal elements of J are 
fixed, then the diagonal elements are uniquely determined by the given data; 
see [5]. The full result is presented in [6]. In this paper, Hochstadt abandons 
the previous technique in favor of a constructive approach which, however, 
presupposes the existence of a solution, The validity of this assumption is 
investigated in Sec. 3. The proof below is based on our extension of 
Hochstadt’s earlier technique. 

Proof, Let uj = ui(h) be the solution of the difference equation 

bi_lui_l+(ai-h)uj+biy+l=O (2.1) 

for i= 1, 2,..., n - 1, where b, = b, = 0 and ui satisfies the initial condition 
ui = 1. Now $ is an eigenvalue of J iff the solution ui of the difference 
equation (2.1) with A = hi satisfies the boundary condition 

Similarly we find that pi is an eigenvalue of the truncated matrix K iff the 
solution y of the difference equation (2.1) with h = /+ satisfies 

Since b,_ 1 is different from zero, we see that u,, ( pii) vanishes. 
Suppose that there exist a Jacobi matrix 1 with diagonal_eleme_nts Gi and 

positive codiagonal elements 6 such that the eig_envalues of J and K coincide 
with those of J and K. We will show that J= 1. Let u (Xi) and u(+) be the 
eigenvectors corresponding to the eigenvalue hi of J and J respectively. Thus 
Ju(+)=+u(+) and fv(+)=+u(hi) If we multiply both sides of the first 
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equation by v(+) ’ and the second equation by u(+)=, we see that 

v(AJ’(J-i)u(+)=o (2.2) 

for irl, 2,..., n. Similarly we let u( p/*i) and u ( pIi) be the eigenvectors of K 
and K, respectively, and find by using the preceding arguments that 

v( #(K--K”)u( pJ=o (2.3) 
for j=l, 2 ,..., n-l. 

For any vectors ZL = (ur,. . . ,uJT and o = (or,. . . , vJT we have the follow- 
ing identity: 

uTJu= i: uiyvi+ n~lb,juivi+lfZ(i+lvi). (2.4) 
i-1 i=l 

We introduce now the function 

F(h)= i (Ui-(Zi)Ui(X)ui(h) 
i=l 

n-1 

+ izl (b~~~)[u~(X)vi+l(A)+u~+l(A)vi(X)]~ 

where ui (A) is the solution of the difference equation (2.1) and v,(X) is 
defined correspondingly for the Jacobi matrix J. From (22) and (2.4) it 
follows that F(4) is zero for all eigenvalues Ai of J and J. Since u,( pi) 
= v,, ( pi) = 0 for all eigenvalues pj of the truncated matrices, we see that for 
X = 4 the last term in each of the sums of F(A) vanishes. What remains is the 
left-hand side of (2.3). Thus F ( pj) is zero for all eigenvalues pj of K and k. 
Since the eigenvalues of J and K interlace, the function F is zero at at least 
2n - 1 distinct points. 

We proceed to show that F(X) vanishes identically. From (2.1) it follows 
that ui (A) is a polynomial in A of degree i - 1 with leading term 

q(h)=(b,_,. 1.. .bl)-‘X’-J+ *. f, 

and we obtain similarly that 

q(h)=(b”,_l.. * * .&-‘hi-‘+ *. . . 
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The first sum in the definition of F is therefore a linear combination of n 
polynomials of degree exactly 0, 2,. . . , 2n - 2. Since all bi and 6 are strictly 
positive, there can be no cancellation in the leading coefficient of y(h) 

~i+,(A)+Y+I(X)ui(X), which is therefore a polynomial of degree exactly 
2i - 1. Thus the second sum is a linear combination of n - 1 polynomials of 
degree exactly 1, 3,. . . ,2n - 3. 

We have now shown that F is a polynomial of degree at most 2n - 2. 
However, F(A) has at least 2n - 1 roots and must therefore vanish identi- 
cally. Because the polynomials uioi and uiui + r + ui + ioi are linearly indepen- 
dent, we conclude finally that all coefficients ui - i;i and bi - 6 are zero. This 
completes the proof. W 

From the recursion formula for the principal minors of a symmetric 
tridiagonal matrix it follows that the eigenvalues depend on ui and b,?; see 

[ll, p. 3001. Th is shows that Theorem 1 is false if the signs of the 
off-diagonal elements are undetermined. Indeed, if there is one Jacobi matrix 
which satisfies the requirements, then the inverse problem has 2”-’ different 
solutions. In practice this is not a serious difficulty, because the sign of the 
off-diagonal elements is normally given by the physical model (see, e.g., Sec. 
5 below). 

3. A COMPUTATIONAL METHOD 

In this section, we will show that given two sets of real numbers {Xi} and 
{ pj} which satisfy 

we can construct a Jacobi matrix J such that + and pi are the eigenvalues of J 
and K, respectively, where K is the leading principal submatrix of order 
n-l of_l. 

Assume that the inverse problem has a solution J with non-zero off- 
diagonal elements. By denoting the leading principal minor of order i of J-X 
by p,(A), we have the recursion formula 

POW = 1, 



INVERSE PROBLEMS FOR JACOBI MATRICES 67 

for i=2, 3,..., n; see [ll, p. 3001. Since the zeros + and pt of p,,(h) and 
p”_,(h) are the eigenvalues of J and K, respectively, we see that {Xi} and 
{ pj} satisfy (3.1) and 

13,(A)= rI(X,-A), pn-l(h)= II ( Pi-‘)’ 

i i 

These two polynomials are completely determined by the given data. The 
existence of a solution to the inverse problem is a consequence of the 
following result. 

LEMMA 1. Assume that the zeros of p,(h) and pa_ r(h) satisfy (3.1). 
There exist two real constants a and c such that 

e(h)=(a-A)P,-l(A)-cP,-2(h), (3.2) 

where p, _ 2 is a polynomial of degree n - 2 with leading coefficient ( - l)n-2. 
Moreover, c is strictly positive, and the zeros of pn_ 1 and p,_, interlace. 

Proof. By introducing - x in place of X we can write 

p,=x”+a,_,x”-I+**. +a(), 

Pn-1=x n-l+ fl”_2Xn--2+. . * + po, 

Pn-2=x "-2+yn_3X"--3+. . . +y(). 

We determine a and c by identifying the coefficients of equal powers in x in 
Eq. (3.2) and obtain formally 

(3.3) 

(3.4) 

Upi+Pj-pi 
Yj = c 

for j=n-3,...,1, 

430 - ql 
yo= ’ (3.6) 

The calculation of the p,_, is meaningful 
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provided c is different from zero. From the definition of p, and pn_ r it 
follows that 

n-1 

(yn-2= 2 >\i+, i ‘k, 

i=l k=l 

n-l n-1 n-l 

Pn-!2= c Fp &I-3= 2 i+ 2 (“k. 
i=l j=l k=j+l 

By using (3.3) and (3.4), straightforward calculation shows that 

Since the data satisfy the interlacing condition (3.1), it is obvious from the 
last expression that c is strictly positive. The decomposition (3.2) is therefore 
uniquely determined, and p,,_, is a real polynomial of degree n - 2. 

We will now prove that the zeros of p,_ 1 and p,_, interlace. Since p,_ 1 
vanishes at all points pk, we obtain from (3.2) that 

ii (+-~k)=“-c&L?(~k)r 

f=l 

for k = 1, 2,. . . , n - 1. From this equation and the interlacing condition (3.1) it 

foIIows that the sign of ~,_a( pk) is (- 1) ’ + ’ ConsequentIy, the polynomiai . 
p,_,(h) will have a zero vk in each of the intervals ( pk,pk+J. This char- 
acterizes all the roots of pn _,(A) = 0, and we conclude finally that 

THEOREM 2. Let {Ai} and { y} b e g iven and satisfy (3.1). There exists a 
Jacobi matrix J of or&r n such that A, are the eigenvalues of J and y are the 
eigenvalues of the leading principal submatrix of order n - 1. 

Proof. The solution of the inverse eigenvalue problem is obtained in the 
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following way. We construct the polynomials p, and p,,_ 1 from the data {Xi} 

and { pj} and determine the constants a and c and the polynomial p,_, by 

the formulas (3.3)-(3.6). Set a, = a and b,_ 1 = + l& or - V% . We can now 
repeat the process by using p, _ 1 and p,_, to determine a,_ 1 and b,_, and 
so on. The last coefficient a, is determined from p, = a, -A. This algorithm 
cannot break down, at least in theory, because at the end of each step the 
roots of the two polynomials interlace, and we can therefore take one step 
more, according to Lemma 1. n 

We mention that Hochstadt assumes the existence of a solution to the 
inverse eigenvalue problem, and then suggests a computational method; see 
[6]. A consequence of our theorem is that if the data satisfy the interlacing 
condition (3.1), then Hochstadt’s algorithm will succeed. 

From the algorithm (3.3)-(3.6) follows that the Jacobi matrix J depends 
continuously on the data {hi} and { pi} as long as condition (3.1) is satisfied 
(see also Hochstadt [S]). The well-posedness of the inverse problem is studied 
in more detail in Sec. 4. 

We have shown that from two interlacing spectra we can construct the 
Jacobi matrix. This result can be used to prove that one spectrum is 
sufficient to determine a Jacobi matrix uniquely if, in addition, we require 
that the tridiagonal matrix is symmetric around the secondary diagonal. Such 
a matrix is called a persymmetric Jacobi matrix. 

THEOREM 3. Let {hi} be given and satisfy 

A,<h,<--. <AN. (3.7) 

There exists a Jacobi matrix J of order N which satisfies the symmetry 
conditions 

ai=aN+l_i and bi=bN_i (3.8) 

such that Ai are the eigenvalues of I. If all off-diagonal elements are 
positive, then J is uniquely oktermined by the given data. 

REMARK. We shall not prove this theorem, but mention that the 
uniqueness result can be shown in several ways; see, e.g., Hochstadt [6] and 
Hald [4, p. 761. The solution can be computed either by minor modifications 
of the algorithms due to Anderson [l], Gantmacher and Krein [2, p. 3221 or 
Hald [4, p. 1261, or by using Hochstadt’s method (see [S]). Finally, we remark 
that the existence statement in Theorem 3 implies that Hochstadt’s algorithm 
will succeed. 
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4. WELL-POSEDNESS OF THE INVERSE EIGENVALUE PROBLEM 

In this section we will study how the solution of the inverse eigenvalue 
problem depends on a perturbation of the data. The main result is Theorem 
4. To prove this theorem we will first show that all elements in the Jacobi 
matrix can be bounded in terms of the data. 

LEMMA 2. Let J be a real symmetric tridiagonal matrix of order n with 

diagonal elements a, and positive codiagonal elements bi. Then 

h,<a,<&, i=l,2 ,..., n, (4.1) 

< b,<X,-A,, i=1,2 ,...,n--1. (4.2) 

Here + and pi are the eigenvalues of J and the leading principal submatrix of 

order n - 1 of J, and 

REMARK. By using the Bauer-Fikes theorem (see [ll, p. 87]), it is easy to 
show that all codiagonal elements are larger than ~/2. However, because 

E < 6, the lower bound in (4.2) is always larger than s/m . The improve- 
ment is best when E < 6. 

Proof Let e, be the ith column of the identity matrix. Since a, = eiT]ei, 

we obtain the inequality (4.1) f rom the extremal property of the Rayleigh 
quotient; see Wilkinson [ll, p. 991. We cannot have equality in (4.1), 
because in that case e, would be an eigenvector of J. This is impossible, since 
an eigenvector of a symmetric tridiagonal matrix with non-zero off-diagonal 
elements cannot vanish in its first or last component; see Wilkinson [ll, p. 
3161. 

To obtain the upper bound for bj we set v = ei + ei + i and consider the 
Rayleigh quotient 

ai+ai+l+2bi v TJv =- 
2 v Tv 
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The right side is less than A”. By using (4.1) we see that the left side is strictly 
greater than X, + bi, and this establishes the bound. 

It is more complicated to prove the lower bound. Assume that one of the 
codiagonal elements, say b,, violates the lower bound, i.e., 

Let fbe equal to the matrix J except for the pth codiagonal elements, which 
we set equal to zero. In addition we let K and K” be the leading principal 
submatrices of order n - 1 of J and J” respectively. Since one of the off- 
diagonal elements in jvanishes, we conclude that J and K” have at least one 
common eigenvalue, say h. It can now be shown (see Wilkinson [ll, p. 3121) 
that there exist an eigenvalue X, of J and an eigenvalue ps of K such that 

Here all eigenvalues of J except h, lie at a disttnce greater than d, from >;. 
Similarly d, is the smallest distance between h and _the eigenvalues of K 
different from M. Since no eigenvalue of J is closer to X than h,, we find that 
d, > minizklhi -X,1/2. In the same manner we obtain d, > min+] pj - ~~l/2. 
Consequently, both d, and d, are greater than or equal to 6. We can 
therefore estimate the distance between Ar and ps by 

$76 
lM~21_b2/S2~ 

P 

By inserting the bound for bi in the right-hand side of this inequality, we 
obtain by straightforward calculation that lh, - 1-1,] < E. This is a contradic- 
tion. Our assumption must therefore be false, and all off-diagonal elements 
will satisfy the bound (4.2). This completes the proof. n 

We will now discuss some consequences of Lemma 2. Let the vector 

X=(a, ,..., u,,,b, ,..., b,_,)= consist of the diagonal and codiagonal elements 
in the Jacobi matrix J, and let y = (h,, . . . ,An,pl,. . . ,P,,_~)= consist of the 
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eigenvalues of J and the leading principal submatrix K of order n - 1. Thus x 
and y have 2n - 1 components. Since Ai and pk depend on a, and b,, we see 

that y is a function of x, say y = F(x), where F is a non-linear vector-valued 
function. The eigenvalues are differentiable functions of a, and b, provided 
all b, are different from zero. We will now investigate the Frechet derivative 
F’ of this mapping: 

(4.3) 

LEMMA 3. Consider all Jacobi matrices J of order n which satisfy 

O<ai<l for i=l,2 ,..., n, (4.4) 

q<bi<l for i=1,2 ,..., n-l, (4.5) 

where 77 is a fixed positive constant. There exists a positive constant o such 

that aGo,,_, f or all F’. Here F’ is the Frkhet derivative (4.3) corre- 

sponding to the Jacobi matrix J, and oZn _ 1 is the s-m&lest singular value of 

F’. 

Proof, Let the elements a, and b, of the Jacobi matrix J satisfy the 
inequalities (4.4) and (4.5). Since all eigenvalues of J and K are distinct, we 
conclude that Ai and pk are holomorphic functions of a, and b, (see Kato [7, 
p. 1241). Let ui and v, be the eigenvectors of J and Zi, respectively, 
corresponding to + and pk, and normalized so that their first component is 
equal to one, Then (J - Ai)ui = 0, and by differentiating with respect to a, and 
b, we get (see Gantmacher and Krein [2, p. 1261) 

ax, (UJ” axi 2usjus+Li -- aa, - UjTUi 
and ab, = T , 

ui ui 

where ui is the rtb component of the eigenvector ui. Similarly, by using 
(K - pk) vk = 0, we find that 

apk (%k)’ apk 2vskvs+l.k 
-=- 

aa, VkTVk and ah, = vkTvk 
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where v,., is the rth component of the eigenvector 9. Since all eigenvalues of 
K are independent of a,, and b,_l, we see that apk/aa, and i3pk/abn_ 1 
vanish for all k. Consequently we have 

where the last columns of the two lower submatrices vanish. The diagonal 
matrix is invertible because uii = cOlk = 1. 

We will now prove that the second matrix is non-singular. Assume that 

F’z=O, where z=((~i ,..., ~y,,fli ,..., &Jr is an arbitrary vector. From the 

first n components of F’x it follows that 

for i = 1, 2,. . . , n, and from the last n - 1 components we see that 

for k = 1, 2,. . . , n - 1. Since the eigenvectors ui and vsk can be computed by 
using the difference equation (2.1), we conclude that 

vanishes for X equal to A,, . . . ,A,, and pi,. . . , P”_~. As in the proof for 
Theorem 1, we use the fact that u~( pk) vanishes for all eigenvalues pk of K. 
We can now apply the same arguments as in Sec. 2 to show that u:(h) and 
u,(X)u,+,(A) are polynomials in h of degree exactly 2r-2 and 28-l respec- 
tively. Since the degree of the polynomial g(h) is at most 2n-2 and g(h) has at 
least 2n-1 roots, we conclude that g(X) vanishes identically. Consequently all 
(TV and & are zero, because the polynomials u:(X) and u,(h)u,+ i(X) are 
linearly independent. This shows that the matrix F’ is nonsingular, and hence 
its lowest singular value uan _ i(F) is strictly positive. 

It can be shown that the normalized eigenvectors ui and vsk are 
holomorphic functions of J (see Kato [7, p. 1211). The matrix F’ is therefore a 
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continuous function of a, and b,. Moreover, the singular value uZn_ ,(F’) 
depends continuously on F’. Since the elements a, and b, of J are restricted 
to a compact set, we finally conclude that there exists a positive constant u 
which is less than uZn_r(F’) for all Jacobi matrices _I which satisfy (4.4) and 
(4.5). We mention that a depends only on the lower bound 9 for the 
off-diagonal elements. This completes the proof. 

The following result shows that for fixed rr the 
problem is well posed. 

THEOREM 4. Let J and J” be solutions of the inverse 
with data 

h,<p.,<Xz<... <pn-l<An, 

There exists a constant K such that 

n 

inverse eigenvalue 

eigenvalue problem 

(4.6) 

(4.7) 

(4.8) 

where 11. IIE denotes the Frobenius norm. The constant K can be bounded in 
terms of n and q,, where 

d- EO 
77o=so - 28,+Eo ’ 

d=max(&,L)-min(Ar,);,). 

REMARK. The basic idea in the proof of this result is that the smallest 
distance between the eigenvalues gives, via Lemma 2, a lower bound for the 
off-diagonal elements. This guarantees, via Lemma 3, that the Frechet 
derivative F’ is a non-singular matrix, and consequently we can apply the 
implicit-function theorem. 
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Pmof, Let c = min(h,,);r) and d = max(A,,,&,) - c. From Theorem 1 it 
follows that if J is the solution of the inverse eigenvalue problem with data 
{Ai} and { +}, then d - ‘(J - cZ) is the solution corresponding to the data 

{(X,-c)ldI and U~~--)ld).Th e inequality (4.8) and the constants ea and 
6, are independent of the linear transformation X+(h - c)/d of the eigenval- 
ues. We may therefore assume that Ai, z.+, Ai and & lie in the interval [O,l], 
and after the transformation c is zero and d is one. 

We will now consider intermediate inverse problems with data Ai( t) 
= tAj + (1 - t)+ for j = 1, 2,. . . , n and ~~((t)=t~?Z~+(l-t)~~ for Z=l, 2,...,n- 

1, where 0 Q t < 1. For each t in this interval we have 

h,(t)<Pl(q-+(t)< *.. (4.9) 

From Theorem 2 we conclude that there exist a Jacobi matrix J(t) which is 
the solution of the inverse eigenvalue problem with data (4.9). Since A,(t) 
and A,,(t) are convex combinations of numbers in the interval [0, 13, we see 
that 0 < h,(t) and A,,(t) < 1 for all t in [0, 11. Let 

Since d is one for the modified eigenvalues, we see that I > q, and 
6 (t) > 6, for all t in [0, 11. Because the lower bound in (4.2) is a monotone 
increasing function of E and 6, we conclude from Lemma 2 that 

O<u,(t)<l, i=1,2 ,..‘a n, (4.10) 

?Za< b,(t) < 1, i=1,2 ,...,n-1, (4.11) 

where 77a= 6,~s,/(2S,+ E,,) , and ui( t) and bi (t) are the diagonal and 

codiagonal elements of the Jacobi matrix J(t). 
We associate with the data (4.9) the vector 

and let y= y(O) and iIj= y(l). Thus y and y” correspond to (4.6) and (4.7), 
respectively, and y(t) = t$ + (1 - t) y. Let 

X(t)=(al(t) I..., a,(t),b,(t) ,... ,b”-l(q)=. 
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Since the components of y(t) are eigenvalues of Jacobi matrices with 
elements u,(t) and b,(t), we see that F(x(t)) = y(t). By differentiating with 
respect to t we obtain the linear system of equations F’( x ( t)) dx/ dt = Q - y, 

where F’ is the square matrix (4.3). The elements in x(t) satisfy (4.10) and 
(4.11) for all t in [0, 11. The matrix F’ is therefore non-singular according to 
Lemma 3, and the ordinary differential equation has the solution 

Let TJ = no. From (4.10), (4.11) and Lemma 3 it follows that for all r in 
[0, l] the 2-norm of the inverse of F’( X(T)) is less than u-l, and we conclude 

finally that 

lI+-x(O)ll,< 0 y”- Yllz* 

The vectors x(O) and-x(l) consist of the diagonal and codiagonal elements of 
J(0) = J and J(l) = J, corresponding to the data (4.6) and (4.7). We can 
therefore estimate the difference between J and J” by 

where we use the fact that llJll% <2(2;u~+E~-‘b~). This completes the 
proof. n 

Since the distance between the spectra (4.6) and (4.7) may be arbitrarily 
large, the statement in Theorem 4 is global. However, the constant K 
depends on both spectra. The effect of small perturbations of the data is 
given in the following 

COROLLARY 1. Let J be the Jacobi matrix corresponding to the data (4.6). 
Let E and S be defined as in Lemma 2. There exists a constant K, which 
depends only on the d$a, such that for all real numbers {Ai} and { j.$}_ 
which satisfy max(l$ -Ail, 1 pi - biI) < ~/4, the corresponding Jacobi matrix J 
satisfies 

[ 

l/2 

III- ill .<K i: (Aj-iJ2+n&pi-jq2 . 
j=l i=l I 
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Proof, It is sufficient to show that the constant no in Theorem 4 can be 
bounded from below, independent of the perturbation. We will estimate n,,, 
E,,, 8, and d from the data (4.6). Clearly d < h, -A, + e/2 = d,. To estimate E,, 
we note that lij - j&l> [Ai - pk[- .5/2 for all i and k._Thus E,, 2 d;‘&/2= F~. 
Similarly we find for i different from k that I+ -A,,_1 > I$ - Ak,,I - &/2 and 

I~j-fikle$--_kl-~/2. c onsequently 6, > d,‘(6 - e/4) = a,, where S is 
defined in Lemma 2. By substituting ei and S, instead of .sa and 8, in the 
definition of n,,, we conclude by simple calculations that for all small 
perturbations of the data (4.6) the corresponding 7, satisfies 

By using the fact that E < S and E < (X, - A,)/2, we get the slightly simpler 

bound Q > 0.3&8 /(X, -A,) = vi. These lower bounds for no depend only 
on the data. For each perturbation {hi} and { &} of the data, the associated 
constant K, which can be bounded in terms of n and no, will be less than 
K, = ai-‘. The existence of ui is proven in Lemma 3, and ui can be bounded 
in terms of n and ni. This completes the proof. n 

These results can be extended to the case where only one spectrum is 
given and the Jacobi matrix is required to be persymmetric. In particular, we 
mention without proof 

THEOREM 5. Let J be a Jacobi matrix corresponding to the data (3.7) 
and satisfy the symmetry conditions (3.8). Set E = mini(Ai+ 1 - Ai). There exists 
a constant K such that for all real data {ii} which satisfy muxi(Ai -+I < ~/4, 
the corresponding Jacobi matrix J satisfies 

In this section we have considered the stability of the inverse eigenvalue 
problem from a mathematical point of view, not a computational one. It is 
not clear whether the algorithm given in Sec. 3 is stable, and indeed, 
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numerical experiments indicate the opposite (see Sec. 6). The advantage of 
the method is that it gives the solution in a finite number of steps. In a later 
paper we will present a linearly convergent method which is slow in 
practice, but extremely stable. The convergence proof for this iterative 
method will be based on the stability results presented here. 

5. PHYSICAL EXAMPLES 

In this section we will study several physical interpretations of Hoch- 
stadt’s uniqueness result, i.e., Theorem 1. We begin by considering a com- 
posite pendulum-that is, a pendulum which is suspended from a fixed point 
and consists of n beads of masses mi > 0 connected by weightless infinite 
flexible strings of length Ii. Here m, is the mass of the lowest bead. We will 
only study small vibrations of the pendulum and assume that the strings do 
not stretch under tension. The derivation of the linearized equation of 
motion for this system can be found in Gantmacher and Krein [2, pp. 130, 
1461 and Hadeler [3]. 

Our starting point is the following eigenvalue problem, which is obtained 
after a separation of variables: 

- zui_l+( z + t)ui- ~uitl=hmiui F-1) 

for i = 1, 2,. , . , n, where c+,= 0 and we have the end conditions ua= u”+r =O. 
The deviation of the ith bead from its position at rest is called amplitude and 
denoted by u,. The tension of the ith string is a, = gZ:, r mi where g is the 
gravity. Our goal is to find the masses of the beads and the length of the 
connecting strings from eigenvalue data. An inspection of (5.1) shows that 
the eigenvalues are unchanged if all masses are multiplied by a constant. 
Thus we can at most determine the ratios between the masses m, and the 
lengths Zi, and we choose the normalization ml = 1. 

Let now the uppermost bead, with mass m,,, be fixed. What remains is a 
smaller composite pendulum which consists of n - 1 beads and n - 1 strings. 
It will be called the truncated pendulum. We can now give the physical 
interpretation of Hochstadt’s uniqueness result. 

THEOREM 6. The lengths of the strings (I,, . . . , 1,) and the ratio of the 

musses (ml:m2: * * * : m,) are uniquely determined by the eigenfrequencies of 
the composite pendulum and the eigenfrequencies of the truncated pendu- 

lum. 
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Proof, If p is an eigenfrequency of the pendulum, then X= p2 is an 
eigenvalue of (5.1). Let oyi = ui/Zj for i = 1, 2,. . . ,n. The eigenvalue problem 
(5.1) can be written in the form Au = Mu, where 

a1 - a1 

- a1 a,+a, -a2 

A= 

- (x,-a (Y,_a+ oy,_r -a,-1 

-a,-1 a,-1+ a” 

M = diag(m,, . . . , m,,) and u = ( ul,. . . , uJT. Let A,, . . . ,A,, be the eigenvalues. 
Similarly Bu = GNU, where o = (ur, . . . , u,, _ JT is the eigenvalue problem for 
the truncated pendulum. The matrices B and N of order n - 1 are obtained 
by removing the last column and row from A and M, respectively. 

These generalized eigenvalue problems are equivalent to the normal 
eigenvalue problem for the matrices J = M -'I2 AM - 'I2 and K = N - ‘I2 
B N - 'i2. Here K is the leading p rincipal submatrix of order n - 1 of J. Since 
all off-diagonal elements of J are different from zero, 

Assume now that there exists a different_ composite pendulum with 
masses ki, where fiJ = 1, and strings of length li, such that Xi and r_li are also 
the eigenvalues of Au = h~6u and Bu = ,d?u. Here A”, i6, I? and 6 are defined 
in the same manner as above. Thus the eigenvalues of J”= 6 - ‘/2iG - ‘I2 
and k = fi - ‘12k? - Ii2 coincide with those of ] and K. From Theorem 1 

follows that the elements in the Jacobi matrix J are uniquely determined by 
the eigenvalues + and pi. Consequently 

a1 a1 
_=- 

- > 
9 ml 

ai_l+q Gi_l+Gi 
= i=2,3 ,...,fl, 

mi rEi ’ 

&=v&/ i=1,2 ,...,n-1. 

Since the mass of the lowest bead is one in both cases, the first equation 
shows that cyr = &r. For i = 1 the last equation gives m2 = fi, and the middle 
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equation implies for i = 2 that as = &, and so on. The masses mi of the beads 
and the coefficients ai are therefore uniquely determined by the spectra {Xi} 
and { pi}. Moreover, since ai = ui/Zi and the oi only depend on the masses of 
the beads, we conclude that the lengths of the strings Zi are also uniquely 
determined by the eigenfrequencies. This completes the proof. n 

We mention that Eq. (5.1) has a different interpretation. If a,=0 but all 
other uj are equal to a positive constant 7, then Eq. (5.1) determines the 
normal frequencies for a vibrating horizontal string with beads. The string 
has tension r, and the masses of the beads are (from left to right) m,, . . . , rn”. 
The string is free at its left end and fixed at its right end. The distance from 
the last bead to the right end is I,,, and li is the distance between the beads 
with masses mi and m, + 1. Our goal is to determine the string from eigenvalue 
data. However, we cannot hope to find the distance 1, between the left end 
of the string and the first bead, because Eq. (5.1) is independent of this 
quantity. If we fix the last bead at the right, the remaining string is called the 
truncated string. We can now formulate 

THEOREM 7. Let the tension r and the distance from the lust bead to 
the end of the string be given. The musses mi of the beads and the distances 
li between the beads are uniquely determined by the fundamental tones and 
the overtones of the string and the truncated string. 

Proof. The eigenvalue problem (5.1) for the string can be written in the 
form Au = AMu, where M= diag(mi, . . . ,m,) and u = (ur,. . . ,u,)‘. The non- 
zero elements of A=(a,J are all=T/Z1, aii=r(l/Zi_i+l/Zi) for i=2, 
3 ,,.,, n and aii+,=ai+,i=-7/Zi for i=1,2 ,.,., n-l. Let J=M-‘/2 
A M -lj2. The eigenvalues of J are the square of the fundamental tone and 
the overtones of the string (see Gantmacher and Krein [2, p. 1361). As in 
Theorem 6, we see that the eigenvalues corresponding to the truncated 
string are the eigenvalues of the leading principal submatrix K of order n - 1 
of J. The diagonal and codiagonal elements of .I-i.e., 

7 
a,= - 

4m, ’ 

ai=(&+t)-$, i=2 ,..., n, 

bi=- ’ 
I,= ’ 

i=l ,...,n-I 
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-are therefore uniquely determined by the eigenfrequencies of the string 
and the truncated string. By setting m, = 1, the remaining coefficients li and 
mi can be found successively from a, and bi. Determine c such that cl, equals 
the given distance between the last bead and the right end of the string. The 
string with beads of masses m,/c and distance cli between the beads is the 
unique solution of the inverse problem. q 

The examples in this section have been discussed from different points of 
view by Hadeler and Hochstadt. Given the masses of the beads and the 
frequencies of the composite pendulum, Hadeler was able, under certain 
conditions, to determine the distances between the beads (see [3]). If the 
pendulum has n beads, the inverse problem has in general n! solutions. 

The case of a vibrating string with beads was considered by Hochstadt 
(see [5]). Assume that the string is fixed at both ends. Hochstadt proves that 
provided the positions of the beads are known, the masses of the beads are 
uniquely determined by the frequencies of the string and the frequencies of 
the same string with the last bead fixed at its position of rest. Note that in 
this case we determine n unknowns from 3n data, and consequently we 
cannot hope, in general, to obtain a solution to this inverse problem. 
Additional interpretations, with special emphasis on strings with the beads 
distributed symmetrically, can be found in Gantmacher and Krein [2, pp. 
3223381 and Hald [4, pp. 119-1381. 

6. A NUMERICAL EXAMPLE 

In this section we will present some numerical experiments. The compu- 
tations were carried out on the IBM 370/155 at Uppsala University. The 
programs were written in ALGOL and run in double precision, 

As data for the inverse problem we choose the zeros of the Laguerre 
polynomials L, and L,_ 1. The Laguerre polynomials can be represented 
explicitly by 

(6.1) 

(see Szego [S, p. 971) and satisfy the three-step recurrence relation 

(i-1)Li_,+(~-2i+I)Li_,+iLi=o (6.2) 

for i = 1, 2,. . . with L, = 1. 
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Let 5 be a root of L,, (5) = 0. F rom (6.2) follows that [ is actually a solution 
to the eigenvalue problem Ju =&A, where J is the Jacobi matrix of order n 
with diagonal elements ui = 2i - 1 for i = 1, 2 , . . . , n and codiagonal elements 
bi= -i for i=l, 2 , . . . , n - 1. Moreover, the ith component of the eigenvec- 
tor u is simply ui = const X Li _ ,([) for i = 1, 2,. . . , n. Similarly we find that 6 
is a root of L,_ 1([) = 0 if and only if Kv = 5 v, where K is the leading principal 
submatrix of order n - 1 of J. 

From a physical point of view, the eigenvalues of J and K can be 
interpreted as the squares of the eigenfrequencies for the composite and the 
truncated pendulum if we assume that all beads have the same mass and are 
placed equidistantly. 

To test the method presented in Sec. 3 we computed the eigenvalues Ai 
and pj of J and K by using the algorithm tql 1 (see Wilkinson and Reinsch [9, 
pp. 227-2401). Since J and K are diagonal dominant matrices, all eigenvalues 
are positive. We computed the characteristic polynomials as functions of - x 
in place of A, i.e., 

pn= rI(x++), 
i P,-1= rb+Pj) 

i 

and found the solution of the inverse eigenvalue problem by using (3.3)-(3.6) 
recursively. We tested n =5, 10,. . . . The absolute and the relative errors 
were smallest in the very first and the very last elements of J. The maxima of 
the relative errors in the elements of J are given in column 1 of Table 1. The 
algorithm breaks down for n =35, because the square of one of the off- 
diagonal elements becomes negative. 

TABLE 1 
MAXIMAL RELATIVE ERROR IN EACH OF THE 

ELEMENTS OF J (DOUBLE PRECISION) 

Eigenvalues Laguerre Laguerre 
n Computed pol. exact pol. appr. 

5 

10 

15 

20 

25 

30 

35 
40 

4.4 x 10-15 

3.8 x lo- l3 

9.2 x lo- I1 

2.4x10-’ 

2.4 x lo-’ 

3.1 x 10-4 

Breakdown 

0.0 

0.0 

Overflow 

0.0 

0.0 

0.0 

8.8X lo-” 

1.9x 10-e 

5.2 x 1O-4 

1.8x 10-l 

Breakdown 
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The effect of the errors in the computed eigenvalues and the perturba- 
tion of the characteristic polynomials can be studied by using the connection 
between the matrices J and K and the exact representation of the Laguerre 
polynomials [see (S.l)]. Since the leading coefficient of Lj is (- l)‘/i!, we see 
that n! IA, and (r~ - l)! L,_ 1 are the characteristic polynomials of J and K. To 
compute the coefficients 

in L,, we use the fact that (Y, = 1 and (Y, = (Y,+ r( Y + l)‘/(n - V) for v = R - 
0. Similarly the coefficients in (n - l)! L,_ 1 are computed by /? _ 1 = 1 

ind’b = /3 (V + l)“/(n - 1 - V) for v = rz - 2,. . . ,O. The coefficients “OI 
& we;e reb%ented as integers. By using n! L,, and (n - l)! L,_ 1 

and 
instegd of 

p,, and p,, _ 1, we found the matrix J exactly (see column 2 of Table l), but for 
n = 15 some coefficients in the Laguerre polynomial exceeded the upper 
limit for integers and overflow resulted. 

To extend the calculations to larger n, we represented the coefficients as 
real numbers. For n. large, some of the coefficients will be rounded before 
storing. Thus for n =20 we have I_Q =163X~m, where m=2sx19x17x5x 
19!! X 9!! X 5!! = 1.198 X 1017. This number cannot be represented exactly in 
double-precision floating point. The effect of the perturbation of the 
coefficients in the characteristic polynomials can be studied in the last 
column of Table 1. Here we give the maxima of the relative errors in each of 
the elements in the computed solutions J of the inverse eigenvalue problems. 
The method breaks down at n equal to 40, because in the computation of the 
off-diagonal elements we try to take the square root of a negative number. 

To investigate the influence of the rounding errors we tested the algo- 
rithm in single-precision arithmetic, i.e., 7-8 significant decimal digits. The 
results are given in Table 2. The breakdown occurred for small n, and in 
both cases because the square of one of the off-diagonal elements becomes 
negative. 

TABLE 2 

MAXIMAL RELATIVE ERROR IN EACH OF THE 

ELEMENTS OF J (SINGLE PRECISION) 

Eigenvalues Laguerre Laguerre 
n computed pol. exact pol. appr. 

5 
10 

15 

20 

2.6 x lo-’ 0.0 

3.3 x 10-3 0.0 

Breakdown Overflow 

0.0 

0.0 

1*1x10-’ 

Breakdown 
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It is well known (see Wilkinson [lo, pp. 41431) that there exist poly- 
nomials with real and simple roots for which a small perturbation of the 
coefficients gives a large change in some of the roots. Thus, if the Jacobi 
matrix is computed without rounding errors from such polynomials con- 
taminated by small perturbations, the eigenvalues of the matrices J and K 
may differ drastically from the given data. As an example we consider the 
data Xi = i for i = 1, 2,. . . , n and ~i=j+Oo.5 for j=l, 2 ,..,, n-l, where n=5, 
10,. *. . The eigenvalues are well separated, and from Lemma 1 it follows that 
the lower bound for the off-diagonal elements is 0.288.. . . The maximal 
deviation in the eigenvalues of the computed solutions J and K from the 
given data can be found in columns 1 and 2 of Table 3. 

TABLE 3 

MAXIMAL ERRORS IN THE EIGENVALUES FOR THE COMPUTED 

MATRICES 1 AND K 

n 

5 1 10 

15 

20 

0.0 0.0 6.1~10-~~ 1.8x lo-l3 

0.0 0.0 8.4 x lo- lo 1.7 x 10-g 

1.1 x10-8 5.5 x 10-g 1.7x 10-5 3.6 x 1O-6 

2.3 x 1O-3 3.1 x 10-3 3.2x10-l 7.7 x 10-z 

In this example many of the coefficients in the characteristic polynomials 
were computed exactly, because the data were too regular. To introduce 

rounding errors in all coefficients we shifted the eigenvalues by fi, i.e. 

+=i+V2 for j=l, 2,..., n and y=i+O.S+fi for i=l, 2 ,..., n-l. The 
lower bound for the offdiagonal terms is still 0.288.. . . The errors in the 
eigenvalues of the computed matrices are given in columns 3 and 4 of Table 
3. Generally the largest eigenvalues were most affected by the rounding 
errors. This is in agreement with the investigation of Wilkinson (see [lo, pp. 
41431). For n less than or equal to 20 all off-diagonal elements satisfy the 
bounds given above. However, the algorithm breaks down for n equal to 25 
in both cases, because we try to take the square root of a negative number. 
Thus, even though the algorithm developed in Sec. 3 produces the solution 
of the inverse eigenvalue problem in a finite number of steps, the numerical 
results given here indicate that the method is potentially unstable. In a 
forthcoming paper we will present an iterative method, which is based on 
the theorems in Sec. 4 and is stable. 

The results in Sets. 2, 3 and 5 were obtained in connection with the 
research leading to the author’s Ph.D. thesis, written under the guidance of 
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Professor Olof B. Widlund, New York University. In addition, the author 

wants to thank Professor Harry Hochstadt and Professor Eugene Zsaacson for 

helpful discussions. The results presented here are not included in the thesis. 
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