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ARTICLE

Whole-Genome Sequencing Uncovers
the Genetic Basis of Chronic Mountain Sickness
in Andean Highlanders

Dan Zhou,1,12 Nitin Udpa,2,12 Roy Ronen,2,12 Tsering Stobdan,1 Junbin Liang,3 Otto Appenzeller,4

Huiwen W. Zhao,1 Yi Yin,3 Yuanping Du,3 Lixia Guo,3 Rui Cao,3 Yu Wang,3 Xin Jin,3 Chen Huang,3

Wenlong Jia,3 Dandan Cao,3 Guangwu Guo,3 Jorge L. Gamboa,5 Francisco Villafuerte,6

David Callacondo,7 Jin Xue,1 Siqi Liu,3 Kelly A. Frazer,8 Yingrui Li,3 Vineet Bafna,9,13

and Gabriel G. Haddad1,10,11,13,*

The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-

altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge

disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with

CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with

selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcrip-

tional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs

of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays

an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation

to high altitudes and identifies potentially targetable mechanisms for CMS treatment.
Introduction

More than 140 million humans have permanently settled

in high-altitude regions in various locations around the

world, such as the Ethiopian plateau in East Africa, the

Tibetan plateau in Asia, and the AndesMountains in South

America. These geographically distinct populations have

each adapted to cope with high-altitude hypoxia. For

example, a higher hemoglobin concentration and oxygen

saturation were detected among Andean highlanders as

compared with Tibetans at the same altitude, but there

was no difference between Ethiopian highlanders and

sea-level residents in these two traits.1 Furthermore,

Tibetans have higher plasma concentrations of nitric oxide

metabolites than do North Americans,2 and their infants

have higher birth weight and higher arterial oxygen satura-

tion than do Han Chinese infants at the same altitude.3,4 A

statistical analysis of four quantitative traits (i.e., resting

ventilation, hypoxic ventilatory response, oxygen satura-

tion, and hemoglobin concentration) provided further

evidence that the phenotypic adaptive responses to high-

altitude hypoxia are different between the Tibetan and

Andean populations.5 Such differences in the patterns of
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hypoxia-tolerant phenotypes suggest that distinct genetic

mechanisms underlie hypoxia adaptation in different

high-altitude human populations. Several studies on these

populations have found high heritability in traits corre-

lated with hypoxia tolerance (such as hemoglobin con-

centration,1 increased lung capacity,6 and higher birth

weight7), leading to the belief that the adaptation is (at

least partly) genetic in nature. Although the genetic contri-

bution to human adaptation to high altitude has been pro-

posed for a long time, research is still at an early stage and

additional evidence is critical for our understanding adap-

tation at high altitude.8–14 In fact, some of the individuals

living at high altitudes are maladapted and present symp-

toms of chronic mountain sickness (CMS).

CMS, or Monge disease, is characterized by severe poly-

cythemia and an array of neurologic symptoms including

headache, fatigue, somnolence, and depression.15 Often,

people with CMS suffer from strokes and myocardial

infarctions in early adulthood because of increased blood

viscosity. Previous studies have shown that CMS is com-

mon in Andeans, found occasionally in Tibetans, and

absent from the Ethiopian population living on the East

African high-altitude plateau.16,17 Therefore, the Andean
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high-altitude population provides us with the opportunity

to dissect the genetic mechanisms underlying high-alti-

tude adaptation by comparing genetic variation between

individuals with CMS and adapted subjects without CMS.

To address this, we sequenced the whole genomes of 20

individuals (10 with CMS and 10 without) residing in

Cerro de Pasco, Peru. Unlike genotyping arrays or exome

sequencing, whole-genome sequencing (WGS) captures

the entire spectrum of variation in a region, thus providing

nearly complete characterization of the site frequency

spectrum (SFS) and allowing maximal information for

discovering selective sweeps.
Material and Methods

Subjects and Clinical Characterization
All subjects are adult males residing in the Andean mountain

range, in Cerro de Pasco, Peru, at an elevation of more than

4,300 m. CMS, or Monge disease, is diagnosed by CMS scores.

Individuals with CMS score >15 were selected as CMS subjects,

and those with CMS score <5 were chosen as non-CMS subjects

(Table S1 available online). Both blood samples (for DNA samples

used in WGS) and skin biopsies (for fibroblast cell cultures used in

cell-based assays) were collected. Subjects were volunteers, and

each subject gave informed, written consent. The UCSD institu-

tional review board approved the protocol.

DNA Extraction, Library Construction, and

Sequencing
Genomic DNA was isolated by blood DNA extraction kit

(QIAGEN) and randomly fragmented. Fragments of the desired

length were gel purified. Adaptor ligation and DNA cluster prepa-

ration were performed with the library preparation kit according

to the manufacturer’s instruction (Illumina). WGS was performed

on all 20 individuals with the Illumina HiSeq2000 platform to a

mean, per-sample depth of 203–403 (Table S2).

Read Alignment, Score Recalibration, and Variant

Calling
We aligned the reads to the human reference genome (UCSC

Genome Browser hg19) by BWA18 with default parameter settings.

We adjusted the alignments via GATK indel realignment, Picard

read duplicate marking, and GATK quality score recalibration

modules19,20 under default parameter settings, as defined by the

GATK manual v.2. We finally called and filtered SNVs via the

GATK UnifiedGenotyper under default parameter settings. As

can be seen in Table S2, the sequencing was free of mapping bias

in coverage, mapping percentage, or variant counts for all

subjects. See Figure S1 for an overview of the computational work-

flow. The variant data are available upon request.

Tests of Selection
We applied four cross-population tests of neutrality. The first two

tests are based on common estimators of the scaled mutation

rate q ¼ 4Nm: the summed nonfixed frequencies estimator,

denoted qf, and the average pairwise heterozygosity estimator,

denoted qp.
21,22 For a given region, observing a high log ratio of

qp (qf) in the control relative to the case population indicates

selection.23 We label these log ratio statistics as Sp for the average
The American
heterozygosity estimator and Sf for the summed frequency esti-

mator, where

Sf ¼ log

�
qf ;control

qf ;case

�

Sp ¼ log

�
qp;control

qp;case

�
:

The two remaining cross-population tests we applied are both

based on the fixation index (FST) between two populations,24

where differential variant frequencies are aggregated across two

populations. For instance, Hudson25 defines FST as

FST ¼ 1� pw

pb

;

where pw is the within-population average heterozygosity and pb

is the between-population average heterozygosity. As two popula-

tions diverge, the variability between the populations increases

much more than the variability within each the population, and

the statistic approaches one. One possible cause of rapid diver-

gence observed in a specific region is positive selection. The fixa-

tion index roughly correlates to the evolutionary branch length

T between two populations26 as

T ¼ �logð1� FSTÞ:
This approach is not directional, however. As a result, a signifi-

cant statistic value may indicate a selective sweep in either the

case or the control population. To address this, Shriver et al.27

and Yi et al.11 developed the concept of the population branch sta-

tistic (PBS). This combines the pairwise branch lengths of three

populations as follows:

PBS ¼ TCN þ TCO � TNO

2
;

where C represents a case population, N represents an evolution-

arily close control population, and O represents a distant out-

group. For the four tests, we used 50 kbp sliding windows

overlapping at 2 kbp intervals, with a 0.1% genome-wide FDR to

determine the windows of interest.
Human Fibroblast Cell Culture, Hypoxia Treatment,

and Real-Time qPCR Assay
To determine the transcriptomic impact of significant variants

identified by the tests of selection, we derived primary fibroblast

cells from CMS or non-CMS skin biopsies and expended them in

DMEM medium supplement with 10% fetal calf serum, 2.5%

penicillin/streptomycin, and 1% fungizone antibiotic (Life Tech-

nologies). When reaching 75%–80% confluence, the cells were

treated with 1.5% O2 for 24 hr. Untreated cultures were used as

controls. After treatment, the cells were first washed with PBS

(Cellgro) and then treated with TrypLE Express (Life Technologies)

for 5–10 min at 37�C to detach the cells. The detached/trypsinized

cells were washed with fresh culture media and centrifuged at

200 3 g for 3 min. The pelleted cells were frozen at �80�C until

RNA extraction.

Total RNA was extracted with the NucleoSpin RNA II Kit

(Clontech) and eluted with 40 ml of RNase-free water. RNA concen-

trations were measured with a NanoDrop 1000 (Thermo Scienti-

fic). cDNA was synthesized with 1 mg of total RNA with the
Journal of Human Genetics 93, 452–462, September 5, 2013 453



SuperScript III First-Strand Synthesis System according to the

manufacturer’s instructions (Life Technologies). Real-time qPCR

was performed in duplicates in 20 ml reaction volume on a

MicroAmp Fast Optical 96-Well Reaction Plate (Life Technologies).

Each reaction contained 1 ml of cDNA, 2 ml of 3 mM forward and

reverse primer mix, 10 ml of Power SYBR Green PCR Master Mix

(Life Technologies), and 7 ml of water. The real-time PCRs were

run on a 7900HT Fast Real-Time PCR System (Life Technologies)

under the following conditions: 95�C for 10 min followed by 40

cycles of 95�C for 15 s and 60�C for 1 min. GAPDH was used as

internal control for normalization.

Fly Lines and Culture
We assessed the impact of observed transcriptomic changes on

function under hypoxia in a model system (fruit flies). The candi-

date genes were obtained from the human study and their fly

orthologs were identified with FlyBase. Publicly available RNAi

stock lines for each candidate gene (if available, duplicate or tripli-

cate lines per gene)were obtained fromViennaDrosophilaResearch

Stock Center (Table S3). The w1118 was used as background con-

trol. To ubiquitously knock down the candidate gene in the F1

progeny, the da-GAL4 driver was obtained from Bloomington

Drosophila Stock Center at Indiana University. All stock lines were

raised at room temperature andmaintained on standard cornmeal.

In Vivo Hypoxia Tolerance Test
The virgin females (n ¼ 9) da-GAL4 were crossed to different UAS-

RNAi lines (n¼ 6) or vice versa. Sufficient time (~3 days) was given

for the flies tomate/cross. These are referred to as ‘‘cross.’’ The vials

were kept under ambient conditions for the flies to lay a sufficient

number of fertilized eggs. After 48 hr, adults were transferred to a

new vial. The original vials were then transferred to a computer-

controlled hypoxia chamber, maintained at 5% oxygen on a 12/

12 hr light/dark cycle at room temperature. The adults were dis-

carded after 48 hr from the second batch of vials and these vials

were then kept at ambient oxygen conditions (~21% oxygen) to

be used as ‘‘control.’’ After 21 days, the ratio of empty pupae

(eclosed) to total pupae formed (eclosed þ uneclosed) in each vial

was calculated to determine the percentage eclosion rate. Simulta-

neously, the w1118, da-GAL4, and RNAi were ‘‘self-crossed’’ to be

used as controls. Each set was performed in triplicate and the entire

experiment was repeated to check for consistency. The differences

in eclosion rate for the crosses under 21% and 5% O2 were

calculated with a chi-square test and between the (UAS-RNAi 3

da-Gal4) cross and the UAS-RNAi alone (stock control) with an

unpaired t test. A p value of <0.05 was considered significant.
Results

We sequenced the genomes with the Illumina HiSeq 2000

platform to a mean depth of 343 per individual (Table S1),

mapped the reads to the UCSC Genome Browser (hg19)

reference genome by BWA,18 and called SNVs with the

GATK pipeline19,20 (Figure S1). Applying PLINK’s IBD bp
test,28 we found that none of the individuals have hidden

relatedness.

Lowlander Control Populations

By using cross-population tests of selection, we compared

the non-CMS highlanders to the nearest 1000 Genomes
454 The American Journal of Human Genetics 93, 452–462, Septemb
(lowlander) controls.29 Applying ADMIXTURE analysis30

to 10,363 variant sites, we observed varying amounts of

shared ancestry between our Andean subjects and the

three American populations: CLM, MXL, and PUR (Fig-

ure S2). The closest population consists of 66 Mexican

(MXL) individuals from Los Angeles, California, and was

thus chosen as the lowlander control for all cross-

population tests of selection. To verify this, we also used

principal component analysis (PCA). In Figure S3A, we

show the first two principal components of a PCA per-

formed on the MXL samples and our Peruvian individuals.

The proximity of the two populations in this space implies

that MXL is an appropriate control.

We additionally performed PCA on our 20 non-CMS and

CMS subjects and observed some evidence of population

substructure (Figures S3B and S3C). There are many

possible reasons for this, one of which is that relatively

recent (and presumably less adapted) migrants to Cerro

de Pasco still retain some population substructure. There-

fore, in addition to comparing the non-CMS individuals

to lowlander controls, we also searched for evidence of

selective sweeps in the non-CMS individuals relative to

the CMS individuals. Finally, as outgroup (for the PBS

test), we used a distant population consisting of 67 Luhya

(LWK) individuals from Webuye, Kenya. Importantly, our

highlander subjects and control populations had consider-

able differences in read coverage (~343 and ~43, respec-

tively), leading to discrepancies in variant calling.

Variant Filters

To adjust for these differences, we filtered our call set by

three steps. First, we observed several variants in clustered

genomic loci that were discarded by the variant caller in

the (CMS and non-CMS) study populations. This happens

due to sequencing and mapping artifacts such as strand

bias, low sequence complexity, or structural variations.

We considered a region as suspicious if ten consecutive

SNPs were filtered out by GATK in our study populations

and filtered out any SNPs present in these regions in the

controls. Second, following the protocol used by the

1000 Genomes project, we removed any site with a

mean coverage higher than twice the median genome-

wide coverage as likely to be caused by duplication.29

This removes variants found in repetitive regions, such

as centromeric sequence. We also removed any site with

less than 23 coverage per person in the study popula-

tion as being too poorly covered to accurately call.

Finally, we removed sites with an excess of heterozygotes,

by using a test from Emigh31 describing the heterozygote

probability as

PAa ¼ n!

nAA!nAa!naa!
� nA!na!

ð2nÞ! � 2
nAa :

We discarded variants with p value less than 0.05. After

applying the above filters, a total of 5,937,347 variants in

the subjects with CMS and 5,777,092 variants in the sub-

jects without CMS remained.
er 5, 2013



Identifying Regions under Positive Selection

Under positive directional selection, any haplotype

harboring a beneficial mutation, as well as linked

‘‘hitchhiking’’ mutations, rapidly increases in frequency.

This leads to a characteristic loss of genetic diversity

centered on the beneficial mutation known as a ‘‘selective

sweep.’’21 Importantly, the loss of genetic diversity and

the consequent skew in the site frequency spectrum (SFS)

can be used to detect loci important for adaptation to selec-

tive stress.21,22 We use cross-population tests to adjust for

events shared between case and control populations (such

as population bottlenecks, genetic drift, or even directional

selection acting on unrelated phenotypes). These are prob-

ably due to events that took place before the divergence of

our case and control populations, and are thus less likely to

be related to hypoxia tolerance. Population-specific selec-

tion can be measured as a large decrease in diversity in

the case population compared to controls.21

This is usually captured as a skew in the site frequency

spectrum (SFS) of a region under selection. However, the

SFS (and thus theperformanceof different tests of selection)

is significantly affected by many parameters, including the

selective pressure(s) affecting the beneficial allele, as well as

the length of time (t) for which the allele has been under

selection.23 For a complexphenotype suchashypoxia toler-

ance, we expect that multiple loci throughout the genome

may simultaneously undergo selective sweeps, each under

a distinct selection pressure and for a distinct time period.

For this reason, we apply several tests of selection: Sf, Sp,

FST, and PBS. Because the tests are powerful under different

regimes (weak/strong and early/late) of selection,23 and

because we have no prior knowledge of the regime we are

after, we consider regions found significant in any of the

above tests as potentially interesting.

We also assume that the genetic basis for adaptation to

hypoxia influences relatively few loci genome-wide. As a

result, for a cross-population test, the null distribution of

two neutrally evolving populations can be approximated

by the observed case versus control distribution. We set

significance thresholds corresponding to the top 0.1%

genome-wide value for each statistic. For the non-CMS

versus MXL tests, these values were 0.11 (PBS), 0.19 (FST),

2.93 (Sp), and 3.87 (Sf). For the non-CMS versus CMS tests,

these were 0.17 (PBS), 0.31 (FST), 2.18 (Sp), and 3.23 (Sf).

This set of analyses identified 314 regions spanning

29.67 Mbp that were significant in at least one test under

a 0.1% genome-wide false discovery rate (see Figures S4–

S26 and Table S5).

Region Prioritization Criteria

Because we wanted to validate potential gene candidates

experimentally, we developed a series of automated priori-

tization criteria in order to shortlist candidates that

showed the strongest signals of selection.

Frequency Block Differential Relative to Control Population

A region under strong selection should have multiple var-

iants present with a high frequency differential between
The American
case and control populations. To identify this, we iterate

over all possible case frequency values f, where f ¼ (1/n,

2/n, ..., (n � 1)/n) (for a case population sample of size n

haplotypes). For a given value of f, we isolate all variants

in the regionwith frequency within 1/n from f. From these,

we define an f frequency block as a subset of R10 consec-

utive SNPs. For each f frequency block, we calculate the

frequency differential, defined by the absolute difference

in mean frequency between the non-CMS population

and the associated control population (either CMS or

the closer of the MXL/CEU populations). We prioritize

regions where the maximum block differential in the

region is greater than 20%. We set the threshold at 20%

because this is the expected sampling variance of a variant

at a given frequency when sampling 20 haplotypes (corre-

sponding to ten CMS or ten non-CMS subjects) from a

population. A total of 170 regions were considered priori-

tized under this criterion.

Frequency Block Differential Relative to HapMap Control

Populations

In order to ensure that the prioritized regions represent

selection for high-altitude adaptation (rather than other

phenotypes, potentially shared with different popula-

tions), we expanded our controls to include additional

populations. These controls included the CMS individuals

we sequenced, the MXL/CEU 1000 Genomes populations,

and other lowlander HapMap populations.32 We prioritize

regions where the observed haplotype block has frequency

differential of greater than 20% (our sampling error, as

mentioned above) compared to all other sampled controls.

A total of 35 regions were considered prioritized under this

(as well as the previous) criterion.

Frequency Block Differential after Integrating Existing Genotype

Data

We also used variant calls from a previous genotyping

study by Bigham et al.12 to further prioritize candidate

regions. The data from this study provided us with two ad-

vantages. First, the authors performed genotyping on 49

Andean highlanders with no symptoms of CMS (including

24 from the same population we sequenced, in Cerro de

Pasco, Peru). This helped us refine our sample frequencies

and identify any false signals caused by sampling. Second,

they genotyped 39 lowlanders of Native American ancestry

from Southern Mexico, providing us with an additional

lowlander control population. This population is both

geographically closer to our Andean highlander subjects

and does not show any signs of admixture12 with Euro-

peans.

For a given region, we extracted all variants sampled

from the previously identified f frequency block that

were also sampled by Bigham et al.12 For these, we refined

our non-CMS frequencies by taking an average (weighted

by sample size) over the highlander frequencies from

both studies. Because of the increased population size

(total of 59 subjects), the expected error due to sampling

was reduced to less than 10%. As a result, for a given

region, if the revised block frequency of the adapted
Journal of Human Genetics 93, 452–462, September 5, 2013 455



Table 1. List of the Top 11 Genomic Prioritized Regions

Genomic Region Gene Symbol Tests

chr3: 33,254,596–
33,314,596

SUSD5 Sp,CMS

chr6: 58,244,452–
58,392,452

GUSBP4 Sp,MXL

chr6: 157,504,452–
157,554,452

ARID1B FST,MXL

chr10: 101,014,523–
101,092,523

CNNM1 PBSMXL

chr11: 118,147,948–
118,199,948

CD3E Sp,CMS

chr12: 48,411,360–
48,555,360a

SENP1, PFKM, ASB8 Sf,MXL, Sf,CMS,
Sp,MXL, Sp,CMS

chr12: 48,751,360–
48,907,360a

ANP32D, C12orf54 Sp,MXL, Sp,CMS

chr15: 45,338,058–
45,436,058

SORD, DUOX2, DUOXA2,
DUOXA1, DUOX1

FST,MXL

chr19: 19,665,844–
19,747,844

PBX4, LPAR2, GMIP PBSMXL

chrX: 50,147,676–
50,197,676

DGKK Sp,CMS

chrX: 151,275,676–
151,421,676

MAGEA5, MAGEA10,
GABRA3

PBSCMS, FST,CMS

aOnly two of these regions (both on chromosome 12) are significant in both
non-CMS versus CMS and non-CMS versus MXL tests.
population was greater than 10% compared to all con-

trols, we considered the region prioritized. We note that

previously prioritized regions that had no variants sampled

by Bigham et al.12 were unaffected by this criterion. A

total of 20 regions remained under consideration after

this step.

RefSeq Genes Overlapping the Region

Finally, we prioritized candidate regions that had at least

one gene (as defined by RefSeq release 45, downloaded

January 14, 2011) within their boundaries. Although

regions that do not overlap known genes may contain

important regulatory variants, for an initial pass, we

focused our efforts on regions for which there are more

readily accessible methods to identify and validate linked

genes. However, we did attempt to identify important

regulatory variation in the significant nongenic regions

by determining variants within transcription factor

binding sites, as defined by TRANSFAC or ENCODE (see Ta-

ble S5).

The 11 final regions all had haplotypes that were much

higher in frequency in the non-CMS population than in

many controls (including our CMS population as well as

several sequenced and genotyped lowlander populations)

and are presented in Table 1. These include many plausible

candidates, including genes involved in oxidative stress

response (DGKK [MIM 300837], DUOX1 [MIM 606758],

DUOX2 [MIM 606759], DUOXA1 [MIM 612771], and

DUOXA2 [MIM 612772]), response to reactive oxygen

species (GABRA3 [MIM 305660]), cell metabolism, and
456 The American Journal of Human Genetics 93, 452–462, Septemb
signaling (PFKM [MIM 610681], SENP1 [MIM 612157],

and ANP32D [MIM 606878]).

Two genomic regions (both on chromosome 12)

appeared in the top 0.1% in both non-CMS versus MXL

and non-CMS versus CMS tests. The first is a 144 kbp

region at chr12: 48,411,360–48,555,360 that contains a

block of 66 ‘‘differential’’ SNPs with mean frequencies of

99% in non-CMS, 66% in CMS, 58% in MXL, and 14%

in CEU. The second region spans 156 kbp at chr12:

48,751,360–48,907,360 and contains a block of 114

‘‘differential’’ SNPs with mean frequencies of 99% in

non-CMS, 53% in CMS, 47% in MXL, and 5% in CEU

(Figure 1). Three genes (SENP1, PFKM, and ASB8 [MIM

615053]) are located in the first region, and two genes

(ANP32D and C12orf54) are located in the second region.

Strikingly, some of these genes have been shown to regu-

late CMS-related phenotypes in mammals. Specifically,

mice carrying a deficient Pfkm allele exhibit severe cardiac

and hematological disorders, muscle hypoxia and hyper-

vascularization, impaired oxidative metabolism, fiber

necrosis, and exercise intolerance.33 In addition, previous

studies have also found that Senp1�/� led to erythropoiesis

defect in mice.34,35 SENP1 regulates the activities of several

cell signaling pathways through desumoylation of key

mediators. For example, SENP1 enhances ASK1-JNK activa-

tion and cell apoptosis through desumoylation of HIPK1

in a ROS-dependent manner.36 Furthermore, SENP1-

dependent desumoylation also regulates the stability and

activity of HIF1a and GATA1 transcription factors34,35

that play important roles in regulating physiological

responses to hypoxia including erythrogenesis, angiogen-

esis, and metabolic adaptation.37,38

To further validate the significance of the observed signs

of selection between the non-CMS and CMS subjects in

these regions (see Table 1), we computed an empirical

p value by using 10,000 permutations of the class labels

for (1) the observed Sf value in the first region (p ¼
0.0006) and (2) the observed Sp and Sf values in the second

region (p ¼ 0.0036 and 0.0005, respectively).

Frequency Validations by Sanger Sequencing

It is a well-known fact that CMS is correlated with age.39

The subjects we sequenced via WGS were chosen to have

large differences in signs and symptoms. Thus, it would

be unlikely for our non-CMS individuals to develop strong

CMS symptoms. However, as Table S1 shows, the individ-

uals with CMS were on average 10 years older than the

individuals without CMS. To validate the frequencies of

significant SNPs identified by WGS (ensuring that the

signal we saw was not confounded by this age differential),

we tested 20 more subjects in the two chromosome 12

regions mentioned above. Ten of these had early-onset

CMS symptoms (mean CMS score ¼ 16.4, mean age ¼
28), and the other ten were older residents who did not

have CMS (mean CMS score ¼ 6.9, mean age ¼ 44). In

this sampling, the non-CMS individuals are significantly

older than the CMS individuals. We determined the
er 5, 2013



Figure 1. Profile of the Only Two Candi-
date Regions that Are Significant in Non-
CMS versus CMS and Non-CMS versus
MXL Tests
One of the statistics in which both of these
regions are significant (Sp,MXL) is plotted
across chromosome 12. Five distinct re-
gions exceed the 0.1% FDR threshold–the
two highlighted in light blue do not have
a major frequency differential between
the non-CMS and MXL populations,
whereas the one highlighted in pink is
similar in other controls. The remaining
two are considered prioritized and high-
lighted in green. The SNP frequencies in
the area encompassing these two, part of
q13.11, are plotted in the middle. In this
plot, the two prioritized regions are high-
lighted in white, and other regions are
shaded in gray. As can be seen, in both re-
gions, there is an almost complete fixation
of a haplotype in the non-CMS population
that is at a much lower frequency in all
lowlander and maladapted controls.
frequencies of rs7963934 from the SENP1 region and

rs72644851 from the ANP32D region by Sanger

sequencing. These SNPs were in the primary differential

haplotype blocks identified by WGS. For rs7963934,

WGS revealed a non-CMS frequency of 100% and a CMS

frequency of 70%, whereas Sanger sequencing revealed a

non-CMS frequency of 90% and a CMS frequency of

60%. For rs72644851, WGS revealed a non-CMS frequency

of 100% and a CMS frequency of 50%, whereas Sanger

sequencing revealed a non-CMS frequency of 90% and a

CMS frequency of 50%. In both cases, the frequency differ-

ential discovered by WGS was confirmed by Sanger

sequencing in a larger number of samples, ruling out the

effect of age.

In Vitro and In Vivo Validation of Candidate Genes

We extended our investigation to study the functional

impact of the SNP variants and candidate genes identified

by our current analysis. We did this with human fibroblast

cells40 derived from four of the CMS and non-CMS subjects

as well as in vivo with a Drosophilamodel. Drosophila mela-

nogasterprovides a powerful in vivomodel to dissect genetic

mechanisms that contribute to human disease, including

aging,41,42 neurologic and cardiac disease,43–45 cancer,46,47

andmechanisms underlying hypoxia tolerance or suscepti-

bility.48 One of the reasons fruit flies have been used so

extensively is that many genes that contain human

disease-causing mutations are evolutionarily conserved

in Drosophila melanogaster.49–51 Of the top five candidate
The American Journal of Human Gen
genes identified from our Andean

samples, two genes have orthologs

identified in the Drosophila genome

(FlyBase gene symbol CG32110 for

human gene SENP1 and Mapmodulin

for human gene ANP32D).52,53
We measured the transcriptional response of the candi-

date genes to hypoxia challenge by real-time qPCR. Inter-

estingly, the expression levels of SENP1 and ANP32D

were significantly higher in the CMS cells as compared to

the non-CMS cells after hypoxia treatment. In contrast,

PFKM was downregulated in both non-CMS and CMS cells

(Figure 2). These results suggested that as compared to

room-air cultured cells, the suppression of SENP1,

ANP32D, and/or PFKM in non-CMS cells is beneficial for

high-altitude adaptation. As a corollary, when comparing

the transcriptional response of CMS cells to that of non-

CMS cells, the upregulation of SENP1 and ANP32D in

CMS cells might reflect mechanisms that underlie malad-

aptation to high altitudes in the CMS individuals. We

then proceeded to test this hypothesis in vivo inDrosophila

melanogaster.

We took advantage of a Drosophila GAL4/UAS-RNAi

system54–56 to knock down the transcript levels of these

orthologs individually, mimicking the transcriptional sup-

pression of these candidate genes in the non-CMS sam-

ples in an attempt to determine their potential role in

adaptation to high-altitude hypoxia. In addition, this

strategy is also relevant to test the opposite hypothesis

that the upregulation of SENP1 and ANP32D after hypox-

ia in the CMS samples is deleterious for survival in a hyp-

oxic environment. The UAS-RNAi 3 GAL4 crosses were

first cultured in normoxia to determine the effect of

RNAi-mediated knockdown of each candidate gene on

development. All the crosses developed normally with
etics 93, 452–462, September 5, 2013 457



Figure 2. Hypoxia Response of Top Candidate Genes in Non-
CMS and CMS Cells
Fibroblast cells were derived from skin biopsies obtained from the
subjects with and without CMS. Two non-CMS and two CMS cell
lines were treated with 1.5% O2 for 24 hr. The expression levels of
SENP1, ANP32D, and PFKM were measured by quantitative real-
time PCR. Compared to the normoxia controls (represented by
the green line), hypoxia treatment induced a significant downre-
gulation of SENP1, ANP32D, and PFKM in non-CMS cells (blue
bars). In contrast, hypoxia treatment upregulated the expression
of SENP1 and ANP32D in the CMS cells (red bars), an opposite
effect to the changes observed in the non-CMS cells (*p < 0.05,
nonparametric Wilcoxon rank test). Each bar represents mean 5
SEM of two measurements in duplicate.
eclosion rates of more than 95%, demonstrating that

downregulation of the candidate genes had no significant

effect on development in normoxia. The flies resulting

from these crosses were then tested under a hypoxic con-

dition (5% O2) by scoring the eclosion rate, an index of

completion of development and survival. This hypoxic

condition has been previously proven to be critical for dis-

tinguishing hypoxia-tolerant flies from others.57,58 In

order to minimize false positive results induced by off-

target effects of RNAi or insertion effects of a particular

UAS-RNAi transgene, we included only Drosophila ortho-

logs with multiple available UAS-RNAi transgenic lines

in this analysis. As shown in Figure 3, a dramatic

enhancement of hypoxia tolerance was observed when

both CG32110 and Mapmodulin were knocked down,

demonstrating that downregulation of the orthologs of

SENP1 and ANP32D is indeed beneficial for survival in se-

vere hypoxic conditions in vivo.
Discussion

We present here a genome-wide study of genetic adapta-

tion in humans that confirms the effect of relevant geno-

types on expression and further validates their role in

model organisms. With the enhanced power of WGS,

we identified a number of putative regions showing

strong signals of selective sweep. We find that two genes
458 The American Journal of Human Genetics 93, 452–462, Septemb
in these regions, ANP32D and SENP1, show significantly

increased expression in individuals with CMS compared

to those without. Consequently, we hypothesized that

downregulating these genes could be beneficial in coping

with hypoxia. We found that flies with these genes down-

regulated had a remarkably enhanced survival rate under

hypoxia.

There are several implications of our study. First, many of

the haplotypes found in our regions under selection are

also present in lowlander controls. This implies that the

beneficial mutations leading to adaptation in Andeans

may be very old. This has been suggested as likely in previ-

ous studies,59 because the time under selective stress

(approximately 600 generations) is relatively short for

adaptation to be driven by de novo mutations. As a result,

we designed our prioritization criteria to look for large fre-

quency differentials. This type of approach has been

shown to be robust to selection on standing variation.60

We also performed high-coverage WGS of 20 individ-

uals. Traditionally, genome-wide scans for selection

generally involve sampling the genome through genotyp-

ing or whole-exome sequencing. However, there is an

important trade-off when using these experimental de-

signs. Specifically, WGS provides for a complete sampling

of variant sites, albeit (usually) on a much smaller

number of individuals. This completeness is critical for

detecting selection. For instance, consider the prioritized

region found on chromosome 19 (Figure 4). With WGS,

this region corresponds to the highest peak in the chro-

mosome, with a block of 84 variants at roughly 40% fre-

quency in individuals without CMS but only 6% in

MXL. However, the Nimblegen 2.1 M exon capture array

targets only two variants in this block. As for genotyping,

the ~1 M Affymetrix Genome-Wide Human SNP Array 6.0

samples only one variant site in the block. In both cases,

the resulting signal is much weaker and far below the

0.1% genome-wide FDR. Importantly, this argument

holds for 10 of the 11 prioritized regions identified in

our study, where we find strong peaks for our tests at a

low genomic FDR (Figures S27–S37) by WGS, but not

when restricting to sites sampled by the alternative

approaches. In fact, as Figures S27–S37 show, the genotyp-

ing array used in Bigham et al.12’s work does not capture a

single variant in 5 of the 11 regions’ differential haplotype

blocks.

Finally, our study reveals many mechanistic insights

on human adaptation (and maladaptation) to hypoxia.

Because individuals with CMS are polycythemic (with

hematocrit > 65%), their blood becomes much more

viscous. In turn, this increased viscosity jeopardizes blood

flow to major organs, sometimes to the degree of

ischemia, leading in some individuals to myocardial

infarction and stroke.61–63 SENP1 is known to regulate

erythropoiesis,35 and indeed Senp1�/� mice die of anemia

in early life.34 This gives credence to the idea that the

increased expression of SENP1 plays a role in the basic

pathogenesis of polycythemia in CMS individuals. In
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Figure 3. Downregulation of Human
SENP1 and ANP32D Orthologs in
Drosophila Enhances Survival under Hyp-
oxic Condition
da-Gal4 driver was used for ubiquitously
knocking down the candidate gene by
crossing with respective UAS-RNAi lines.
Respective eclosion rates were observed at
21% and 5% O2 (Table S2).
(A) CG32110-RNAi when crossed with da-
Gal4 significantly increases the eclosion
rate at 5% O2. The results were consistent
in three RNAi lines targeting the same hu-
man SENP1 ortholog gene CG32110 (*p <
0.005, unpaired t test).
(B) The differences were also significant
for eclosion rates (%) of the F1
progeny for the two Mapmodulin-RNAi fly
lines (*p < 0.005, unpaired t test).
Each bar represents mean 5 SEM of eclo-
sion rate. The w1118 and da-Gal4 stocks
were tested and used as background con-
trols. The genotypes of each RNAi line are
provided in Table S4.
contrast, in spite of the fact that there is little known

about ANP32D and the PP32 phosphatase gene family,

ANP32D functions as an oncogene. We raise here the pos-

sibility that this particular gene alters cellular metabolism

in a fashion that is similar to that of cancer cells, espe-

cially given that such cells can flourish in low-oxygen

conditions. In conclusion, a better understanding of the

mechanisms underlying hypoxia tolerance in high-

altitude human populations will, in all likelihood, eluci-

date the pathogenesis of other conditions at sea level,

including congenital heart disease, obstructive sleep

apnea, and cancer.
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Figure 4. The Impact of Sequence Assay Type on Signals of Selection
(A–C) Sp values across chromosome 19 in subjects without CMS, compared to theMXL population, when applied to (A) variants present
in our WGS study, (B) variants included in targets from whole-exome sequencing, and (C) the subset of ~1 M variants from genotyping.
The red line represents a genome-wide, 0.1% FDR. Highlighted in green is the genomic region of PBX4, LPAR2, and GMIP, one of the 11
strongest candidate regions in our study.
(D–F) SNP frequency profiles of the region highlighted in green for non-CMS (blue) compared toMXL (brown, inverted) for (D)WGS, (E)
whole-exome sequencing, and (F) genotyping. As can be seen, the strong signal present viaWGS is reduced drastically in genotyping and
entirely absent by exome sequencing.
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