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ARTICLE

Whole-Genome Sequencing Uncovers
the Genetic Basis of Chronic Mountain Sickness
in Andean Highlanders

Dan Zhou,12 Nitin Udpa,212 Roy Ronen,212 Tsering Stobdan,! Junbin Liang,3 Otto Appenzeller,+
Huiwen W. Zhao,! Yi Yin,3 Yuanping Du,3 Lixia Guo,3 Rui Cao,3 Yu Wang,? Xin Jin,3 Chen Huang,3
Wenlong Jia,3 Dandan Cao,3 Guangwu Guo,3 Jorge L. Gamboa,> Francisco Villafuerte,®

David Callacondo,” Jin Xue,! Sigi Liu,3 Kelly A. Frazer,® Yingrui Li,3 Vineet Bafna,13

and Gabriel G. Haddad!,10,11,13,*

The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-
altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge
disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with
CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with
selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcrip-
tional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs
of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays
an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation

to high altitudes and identifies potentially targetable mechanisms for CMS treatment.

Introduction

More than 140 million humans have permanently settled
in high-altitude regions in various locations around the
world, such as the Ethiopian plateau in East Africa, the
Tibetan plateau in Asia, and the Andes Mountains in South
America. These geographically distinct populations have
each adapted to cope with high-altitude hypoxia. For
example, a higher hemoglobin concentration and oxygen
saturation were detected among Andean highlanders as
compared with Tibetans at the same altitude, but there
was no difference between Ethiopian highlanders and
sea-level residents in these two traits.! Furthermore,
Tibetans have higher plasma concentrations of nitric oxide
metabolites than do North Americans,? and their infants
have higher birth weight and higher arterial oxygen satura-
tion than do Han Chinese infants at the same altitude.>* A
statistical analysis of four quantitative traits (i.e., resting
ventilation, hypoxic ventilatory response, oxygen satura-
tion, and hemoglobin concentration) provided further
evidence that the phenotypic adaptive responses to high-
altitude hypoxia are different between the Tibetan and
Andean populations.® Such differences in the patterns of

hypoxia-tolerant phenotypes suggest that distinct genetic
mechanisms underlie hypoxia adaptation in different
high-altitude human populations. Several studies on these
populations have found high heritability in traits corre-
lated with hypoxia tolerance (such as hemoglobin con-
centration,' increased lung capacity,® and higher birth
weight”), leading to the belief that the adaptation is (at
least partly) genetic in nature. Although the genetic contri-
bution to human adaptation to high altitude has been pro-
posed for a long time, research is still at an early stage and
additional evidence is critical for our understanding adap-
tation at high altitude.®'* In fact, some of the individuals
living at high altitudes are maladapted and present symp-
toms of chronic mountain sickness (CMS).

CMS, or Monge disease, is characterized by severe poly-
cythemia and an array of neurologic symptoms including
headache, fatigue, somnolence, and depression.15 Often,
people with CMS suffer from strokes and myocardial
infarctions in early adulthood because of increased blood
viscosity. Previous studies have shown that CMS is com-
mon in Andeans, found occasionally in Tibetans, and
absent from the Ethiopian population living on the East
African high-altitude plateau.'®'” Therefore, the Andean
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high-altitude population provides us with the opportunity
to dissect the genetic mechanisms underlying high-alti-
tude adaptation by comparing genetic variation between
individuals with CMS and adapted subjects without CMS.

To address this, we sequenced the whole genomes of 20
individuals (10 with CMS and 10 without) residing in
Cerro de Pasco, Peru. Unlike genotyping arrays or exome
sequencing, whole-genome sequencing (WGS) captures
the entire spectrum of variation in a region, thus providing
nearly complete characterization of the site frequency
spectrum (SFS) and allowing maximal information for
discovering selective sweeps.

Material and Methods

Subjects and Clinical Characterization

All subjects are adult males residing in the Andean mountain
range, in Cerro de Pasco, Peru, at an elevation of more than
4,300 m. CMS, or Monge disease, is diagnosed by CMS scores.
Individuals with CMS score >15 were selected as CMS subjects,
and those with CMS score <5 were chosen as non-CMS subjects
(Table S1 available online). Both blood samples (for DNA samples
used in WGS) and skin biopsies (for fibroblast cell cultures used in
cell-based assays) were collected. Subjects were volunteers, and
each subject gave informed, written consent. The UCSD institu-
tional review board approved the protocol.

DNA Extraction, Library Construction, and
Sequencing

Genomic DNA was isolated by blood DNA extraction kit
(QIAGEN) and randomly fragmented. Fragments of the desired
length were gel purified. Adaptor ligation and DNA cluster prepa-
ration were performed with the library preparation kit according
to the manufacturer’s instruction (Illumina). WGS was performed
on all 20 individuals with the Illumina HiSeq2000 platform to a
mean, per-sample depth of 20x-40x (Table S2).

Read Alignment, Score Recalibration, and Variant
Calling

We aligned the reads to the human reference genome (UCSC
Genome Browser hg19) by BWA'® with default parameter settings.
We adjusted the alignments via GATK indel realignment, Picard
read duplicate marking, and GATK quality score recalibration
modules'®?° under default parameter settings, as defined by the
GATK manual v.2. We finally called and filtered SNVs via the
GATK UnifiedGenotyper under default parameter settings. As
can be seen in Table S2, the sequencing was free of mapping bias
in coverage, mapping percentage, or variant counts for all
subjects. See Figure S1 for an overview of the computational work-
flow. The variant data are available upon request.

Tests of Selection

We applied four cross-population tests of neutrality. The first two
tests are based on common estimators of the scaled mutation
rate 6 = 4Np: the summed nonfixed frequencies estimator,
denoted 6; and the average pairwise heterozygosity estimator,
denoted 6,..2"*? For a given region, observing a high log ratio of
0~ (0y) in the control relative to the case population indicates
selection.>® We label these log ratio statistics as S,. for the average

heterozygosity estimator and S¢ for the summed frequency esti-

mator, where
Sf _ log (af,cuntml)
0ﬂcase

0
S1r _ 10g< mcuntrol) )
aw.case
The two remaining cross-population tests we applied are both
based on the fixation index (Fsy) between two populations,24

where differential variant frequencies are aggregated across two
populations. For instance, Hudson?® defines Fsr as

Fo=1-2%
Ty
where T, is the within-population average heterozygosity and
is the between-population average heterozygosity. As two popula-
tions diverge, the variability between the populations increases
much more than the variability within each the population, and
the statistic approaches one. One possible cause of rapid diver-
gence observed in a specific region is positive selection. The fixa-
tion index roughly correlates to the evolutionary branch length
T between two populations®® as

T = —log(l — FST)-

This approach is not directional, however. As a result, a signifi-
cant statistic value may indicate a selective sweep in either the
case or the control population. To address this, Shriver et al.>’
and Yi et al."! developed the concept of the population branch sta-
tistic (PBS). This combines the pairwise branch lengths of three
populations as follows:

TCN + TCO _ TNO

PBS = ——————.

where C represents a case population, N represents an evolution-
arily close control population, and O represents a distant out-
group. For the four tests, we used 50 kbp sliding windows
overlapping at 2 kbp intervals, with a 0.1% genome-wide FDR to
determine the windows of interest.

Human Fibroblast Cell Culture, Hypoxia Treatment,
and Real-Time qPCR Assay

To determine the transcriptomic impact of significant variants
identified by the tests of selection, we derived primary fibroblast
cells from CMS or non-CMS skin biopsies and expended them in
DMEM medium supplement with 10% fetal calf serum, 2.5%
penicillin/streptomycin, and 1% fungizone antibiotic (Life Tech-
nologies). When reaching 75%-80% confluence, the cells were
treated with 1.5% O, for 24 hr. Untreated cultures were used as
controls. After treatment, the cells were first washed with PBS
(Cellgro) and then treated with TrypLE Express (Life Technologies)
for 5-10 min at 37°C to detach the cells. The detached/trypsinized
cells were washed with fresh culture media and centrifuged at
200 x g for 3 min. The pelleted cells were frozen at —80°C until
RNA extraction.

Total RNA was extracted with the NucleoSpin RNA II Kit
(Clontech) and eluted with 40 pl of RNase-free water. RNA concen-
trations were measured with a NanoDrop 1000 (Thermo Scienti-
fic). cDNA was synthesized with 1 ug of total RNA with the
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SuperScript III First-Strand Synthesis System according to the
manufacturer’s instructions (Life Technologies). Real-time qPCR
was performed in duplicates in 20 pl reaction volume on a
MicroAmp Fast Optical 96-Well Reaction Plate (Life Technologies).
Each reaction contained 1 pl of cDNA, 2 ul of 3 uM forward and
reverse primer mix, 10 ul of Power SYBR Green PCR Master Mix
(Life Technologies), and 7 pl of water. The real-time PCRs were
run on a 7900HT Fast Real-Time PCR System (Life Technologies)
under the following conditions: 95°C for 10 min followed by 40
cycles of 95°C for 15 s and 60°C for 1 min. GAPDH was used as
internal control for normalization.

Fly Lines and Culture

We assessed the impact of observed transcriptomic changes on
function under hypoxia in a model system (fruit flies). The candi-
date genes were obtained from the human study and their fly
orthologs were identified with FlyBase. Publicly available RNAi
stock lines for each candidate gene (if available, duplicate or tripli-
cate lines per gene) were obtained from Vienna Drosophila Research
Stock Center (Table S3). The w1118 was used as background con-
trol. To ubiquitously knock down the candidate gene in the F1
progeny, the da-GAL4 driver was obtained from Bloomington
Drosophila Stock Center at Indiana University. All stock lines were
raised at room temperature and maintained on standard cornmeal.

In Vivo Hypoxia Tolerance Test

The virgin females (n = 9) da-GAL4 were crossed to different UAS-
RNAi lines (n = 6) or vice versa. Sufficient time (~3 days) was given
for the flies to mate/cross. These are referred to as “cross.” The vials
were kept under ambient conditions for the flies to lay a sufficient
number of fertilized eggs. After 48 hr, adults were transferred to a
new vial. The original vials were then transferred to a computer-
controlled hypoxia chamber, maintained at 5% oxygen on a 12/
12 hr light/dark cycle at room temperature. The adults were dis-
carded after 48 hr from the second batch of vials and these vials
were then kept at ambient oxygen conditions (~21% oxygen) to
be used as “control.” After 21 days, the ratio of empty pupae
(eclosed) to total pupae formed (eclosed + uneclosed) in each vial
was calculated to determine the percentage eclosion rate. Simulta-
neously, the w1118, da-GAL4, and RNAi were “self-crossed” to be
used as controls. Each set was performed in triplicate and the entire
experiment was repeated to check for consistency. The differences
in eclosion rate for the crosses under 21% and 5% O, were
calculated with a chi-square test and between the (UAS-RNAi x
da-Gal4) cross and the UAS-RNAI alone (stock control) with an
unpaired t test. A p value of <0.05 was considered significant.

Results

We sequenced the genomes with the Illumina HiSeq 2000
platform to a mean depth of 34 X per individual (Table S1),
mapped the reads to the UCSC Genome Browser (hg19)
reference genome by BWA,'® and called SNVs with the
GATK pipeline'®?° (Figure S1). Applying PLINK’s IBD 7=
test,?® we found that none of the individuals have hidden
relatedness.

Lowlander Control Populations
By using cross-population tests of selection, we compared
the non-CMS highlanders to the nearest 1000 Genomes

(lowlander) controls.>’ Applying ADMIXTURE analysis*®
to 10,363 variant sites, we observed varying amounts of
shared ancestry between our Andean subjects and the
three American populations: CLM, MXL, and PUR (Fig-
ure S2). The closest population consists of 66 Mexican
(MXL) individuals from Los Angeles, California, and was
thus chosen as the lowlander control for all cross-
population tests of selection. To verify this, we also used
principal component analysis (PCA). In Figure S3A, we
show the first two principal components of a PCA per-
formed on the MXL samples and our Peruvian individuals.
The proximity of the two populations in this space implies
that MXL is an appropriate control.

We additionally performed PCA on our 20 non-CMS and
CMS subjects and observed some evidence of population
substructure (Figures S3B and S3C). There are many
possible reasons for this, one of which is that relatively
recent (and presumably less adapted) migrants to Cerro
de Pasco still retain some population substructure. There-
fore, in addition to comparing the non-CMS individuals
to lowlander controls, we also searched for evidence of
selective sweeps in the non-CMS individuals relative to
the CMS individuals. Finally, as outgroup (for the PBS
test), we used a distant population consisting of 67 Luhya
(LWK) individuals from Webuye, Kenya. Importantly, our
highlander subjects and control populations had consider-
able differences in read coverage (~34X and ~4X, respec-
tively), leading to discrepancies in variant calling.

Variant Filters

To adjust for these differences, we filtered our call set by
three steps. First, we observed several variants in clustered
genomic loci that were discarded by the variant caller in
the (CMS and non-CMS) study populations. This happens
due to sequencing and mapping artifacts such as strand
bias, low sequence complexity, or structural variations.
We considered a region as suspicious if ten consecutive
SNPs were filtered out by GATK in our study populations
and filtered out any SNPs present in these regions in the
controls. Second, following the protocol used by the
1000 Genomes project, we removed any site with a
mean coverage higher than twice the median genome-
wide coverage as likely to be caused by duplication.”’
This removes variants found in repetitive regions, such
as centromeric sequence. We also removed any site with
less than 2X coverage per person in the study popula-
tion as being too poorly covered to accurately call.
Finally, we removed sites with an excess of heterozygotes,
by using a test from Emigh*' describing the heterozygote
probability as

PAa

= *
NaaNa'ng!  (2n)!

We discarded variants with p value less than 0.05. After
applying the above filters, a total of 5,937,347 variants in
the subjects with CMS and 5,777,092 variants in the sub-
jects without CMS remained.
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Identifying Regions under Positive Selection

Under positive directional selection, any haplotype
harboring a beneficial mutation, as well as linked
“hitchhiking” mutations, rapidly increases in frequency.
This leads to a characteristic loss of genetic diversity
centered on the beneficial mutation known as a “selective
sweep.”?! Importantly, the loss of genetic diversity and
the consequent skew in the site frequency spectrum (SFS)
can be used to detect loci important for adaptation to selec-
tive stress.?"?* We use cross-population tests to adjust for
events shared between case and control populations (such
as population bottlenecks, genetic drift, or even directional
selection acting on unrelated phenotypes). These are prob-
ably due to events that took place before the divergence of
our case and control populations, and are thus less likely to
be related to hypoxia tolerance. Population-specific selec-
tion can be measured as a large decrease in diversity in
the case population compared to controls.*!

This is usually captured as a skew in the site frequency
spectrum (SFS) of a region under selection. However, the
SFS (and thus the performance of different tests of selection)
is significantly affected by many parameters, including the
selective pressure(s) affecting the beneficial allele, as well as
the length of time (t) for which the allele has been under
selection.” For a complex phenotype such as hypoxia toler-
ance, we expect that multiple loci throughout the genome
may simultaneously undergo selective sweeps, each under
a distinct selection pressure and for a distinct time period.
For this reason, we apply several tests of selection: Sg, S,
Fs1, and PBS. Because the tests are powerful under different
regimes (weak/strong and early/late) of selection,”® and
because we have no prior knowledge of the regime we are
after, we consider regions found significant in any of the
above tests as potentially interesting.

We also assume that the genetic basis for adaptation to
hypoxia influences relatively few loci genome-wide. As a
result, for a cross-population test, the null distribution of
two neutrally evolving populations can be approximated
by the observed case versus control distribution. We set
significance thresholds corresponding to the top 0.1%
genome-wide value for each statistic. For the non-CMS
versus MXL tests, these values were 0.11 (PBS), 0.19 (Fsy),
2.93 (S»), and 3.87 (S¢). For the non-CMS versus CMS tests,
these were 0.17 (PBS), 0.31 (Fsy), 2.18 (S,), and 3.23 (Sy).
This set of analyses identified 314 regions spanning
29.67 Mbp that were significant in at least one test under
a 0.1% genome-wide false discovery rate (see Figures S4-
$26 and Table S5).

Region Prioritization Criteria

Because we wanted to validate potential gene candidates
experimentally, we developed a series of automated priori-
tization criteria in order to shortlist candidates that
showed the strongest signals of selection.

Frequency Block Differential Relative to Control Population

A region under strong selection should have multiple var-
iants present with a high frequency differential between

case and control populations. To identify this, we iterate
over all possible case frequency values f, where f= (1/n,
2/n, ..., (n — 1)/n) (for a case population sample of size n
haplotypes). For a given value of f, we isolate all variants
in the region with frequency within 1/#n from f. From these,
we define an f frequency block as a subset of >10 consec-
utive SNPs. For each f frequency block, we calculate the
frequency differential, defined by the absolute difference
in mean frequency between the non-CMS population
and the associated control population (either CMS or
the closer of the MXL/CEU populations). We prioritize
regions where the maximum block differential in the
region is greater than 20%. We set the threshold at 20%
because this is the expected sampling variance of a variant
at a given frequency when sampling 20 haplotypes (corre-
sponding to ten CMS or ten non-CMS subjects) from a
population. A total of 170 regions were considered priori-
tized under this criterion.

Frequency Block Differential Relative to HapMap Control
Populations

In order to ensure that the prioritized regions represent
selection for high-altitude adaptation (rather than other
phenotypes, potentially shared with different popula-
tions), we expanded our controls to include additional
populations. These controls included the CMS individuals
we sequenced, the MXL/CEU 1000 Genomes populations,
and other lowlander HapMap populations.®> We prioritize
regions where the observed haplotype block has frequency
differential of greater than 20% (our sampling error, as
mentioned above) compared to all other sampled controls.
A total of 35 regions were considered prioritized under this
(as well as the previous) criterion.

Frequency Block Differential after Integrating Existing Genotype
Data

We also used variant calls from a previous genotyping
study by Bigham et al.'* to further prioritize candidate
regions. The data from this study provided us with two ad-
vantages. First, the authors performed genotyping on 49
Andean highlanders with no symptoms of CMS (including
24 from the same population we sequenced, in Cerro de
Pasco, Peru). This helped us refine our sample frequencies
and identify any false signals caused by sampling. Second,
they genotyped 39 lowlanders of Native American ancestry
from Southern Mexico, providing us with an additional
lowlander control population. This population is both
geographically closer to our Andean highlander subjects
and does not show any signs of admixture'? with Euro-
peans.

For a given region, we extracted all variants sampled
from the previously identified f frequency block that
were also sampled by Bigham et al.'? For these, we refined
our non-CMS frequencies by taking an average (weighted
by sample size) over the highlander frequencies from
both studies. Because of the increased population size
(total of 59 subjects), the expected error due to sampling
was reduced to less than 10%. As a result, for a given
region, if the revised block frequency of the adapted
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Table 1. List of the Top 11 Genomic Prioritized Regions
Genomic Region Gene Symbol Tests
chr3: 33,254,596- SUSDS SxcMs
33,314,596

chré6: 58,244,452- GUSBP4 S MXL
58,392,452

chré6: 157,504,452 ARID1B Fstmxi
157,554,452

chr10: 101,014,523- CNNM1 PBSnix1
101,092,523

chrll: 118,147,948- CD3E Sr.oMms

118,199,948

chr12: 48,411,360—
48,555,360

SENP1, PFKM, ASB8 St MxLr Stems

Sﬁ,MXL/ STC,CMS

chri12: 48,751,360—
48,907,360°

ANP32D, C120rf54 SeMxLs Sr,oMs

chrl5: 45,338,058 SORD, DUOX2, DUOXAZ2, J—
45,436,058 DUOXA1, DUOX1

chr19: 19,665,844 PBX4, LPAR2, GMIP PBSwixt.
19,747,844

chrX: 50,147,676~ DGKK SrcMs

50,197,676

chrX: 151,275,676
151,421,676

MAGEAS, MAGEA10,
GABRA3

PBScwms, Fstoms

2Only two of these regions (both on chromosome 12) are significant in both
non-CMS versus CMS and non-CMS versus MXL tests.

population was greater than 10% compared to all con-
trols, we considered the region prioritized. We note that
previously prioritized regions that had no variants sampled
by Bigham et al.'?> were unaffected by this criterion. A
total of 20 regions remained under consideration after
this step.

RefSeq Genes Overlapping the Region

Finally, we prioritized candidate regions that had at least
one gene (as defined by RefSeq release 45, downloaded
January 14, 2011) within their boundaries. Although
regions that do not overlap known genes may contain
important regulatory variants, for an initial pass, we
focused our efforts on regions for which there are more
readily accessible methods to identify and validate linked
genes. However, we did attempt to identify important
regulatory variation in the significant nongenic regions
by determining variants within transcription factor
binding sites, as defined by TRANSFAC or ENCODE (see Ta-
ble S5).

The 11 final regions all had haplotypes that were much
higher in frequency in the non-CMS population than in
many controls (including our CMS population as well as
several sequenced and genotyped lowlander populations)
and are presented in Table 1. These include many plausible
candidates, including genes involved in oxidative stress
response (DGKK [MIM 300837], DUOX1 [MIM 606758],
DUOX2 [MIM 606759], DUOXA1 [MIM 612771], and
DUOXA2 [MIM 612772]), response to reactive oxygen
species (GABRA3 [MIM 305660]), cell metabolism, and

signaling (PFKM [MIM 610681], SENP1 [MIM 612157],
and ANP32D [MIM 606878]).

Two genomic regions (both on chromosome 12)
appeared in the top 0.1% in both non-CMS versus MXL
and non-CMS versus CMS tests. The first is a 144 kbp
region at chr12: 48,411,360-48,555,360 that contains a
block of 66 “differential” SNPs with mean frequencies of
99% in non-CMS, 66% in CMS, 58% in MXL, and 14%
in CEU. The second region spans 156 kbp at chrl2:
48,751,360-48,907,360 and contains a block of 114
“differential” SNPs with mean frequencies of 99% in
non-CMS, 53% in CMS, 47% in MXL, and 5% in CEU
(Figure 1). Three genes (SENP1, PFKM, and ASBS [MIM
615053]) are located in the first region, and two genes
(ANP32D and C120rf54) are located in the second region.
Strikingly, some of these genes have been shown to regu-
late CMS-related phenotypes in mammals. Specifically,
mice carrying a deficient Pfkm allele exhibit severe cardiac
and hematological disorders, muscle hypoxia and hyper-
vascularization, impaired oxidative metabolism, fiber
necrosis, and exercise intolerance.®® In addition, previous
studies have also found that SenpI~/~ led to erythropoiesis
defect in mice.***> SENP1 regulates the activities of several
cell signaling pathways through desumoylation of key
mediators. For example, SENP1 enhances ASK1-JNK activa-
tion and cell apoptosis through desumoylation of HIPK1
in a ROS-dependent manner.>® Furthermore, SENP1-
dependent desumoylation also regulates the stability and
activity of HIFle. and GATA1 transcription factors®*3°
that play important roles in regulating physiological
responses to hypoxia including erythrogenesis, angiogen-
esis, and metabolic adaptation.3”-*®

To further validate the significance of the observed signs
of selection between the non-CMS and CMS subjects in
these regions (see Table 1), we computed an empirical
p value by using 10,000 permutations of the class labels
for (1) the observed S¢ value in the first region (p =
0.0006) and (2) the observed S.. and S; values in the second
region (p = 0.0036 and 0.0005, respectively).

Frequency Validations by Sanger Sequencing

It is a well-known fact that CMS is correlated with age.*®
The subjects we sequenced via WGS were chosen to have
large differences in signs and symptoms. Thus, it would
be unlikely for our non-CMS individuals to develop strong
CMS symptoms. However, as Table S1 shows, the individ-
uals with CMS were on average 10 years older than the
individuals without CMS. To validate the frequencies of
significant SNPs identified by WGS (ensuring that the
signal we saw was not confounded by this age differential),
we tested 20 more subjects in the two chromosome 12
regions mentioned above. Ten of these had early-onset
CMS symptoms (mean CMS score = 16.4, mean age =
28), and the other ten were older residents who did not
have CMS (mean CMS score = 6.9, mean age = 44). In
this sampling, the non-CMS individuals are significantly
older than the CMS individuals. We determined the
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Figure 1. Profile of the Only Two Candi-
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plot, the two prioritized regions are high-
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shaded in gray. As can be seen, in both re-
gions, there is an almost complete fixation
of a haplotype in the non-CMS population
that is at a much lower frequency in all

1204 lowlander and maladapted controls.
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identified in the Drosophila genome

frequencies of rs7963934 from the SENPI region and
172644851 from the ANP32D region by Sanger
sequencing. These SNPs were in the primary differential
haplotype blocks identified by WGS. For 157963934,
WGS revealed a non-CMS frequency of 100% and a CMS
frequency of 70%, whereas Sanger sequencing revealed a
non-CMS frequency of 90% and a CMS frequency of
60%. For 172644851, WGS revealed a non-CMS frequency
of 100% and a CMS frequency of 50%, whereas Sanger
sequencing revealed a non-CMS frequency of 90% and a
CMS frequency of 50%. In both cases, the frequency differ-
ential discovered by WGS was confirmed by Sanger
sequencing in a larger number of samples, ruling out the
effect of age.

In Vitro and In Vivo Validation of Candidate Genes

We extended our investigation to study the functional
impact of the SNP variants and candidate genes identified
by our current analysis. We did this with human fibroblast
cells** derived from four of the CMS and non-CMS subjects
as well as in vivo with a Drosophila model. Drosophila mela-
nogaster provides a powerful in vivo model to dissect genetic
mechanisms that contribute to human disease, including
aging,*"*? neurologic and cardiac disease,**** cancer,***’
and mechanisms underlying hypoxia tolerance or suscepti-
bility.*® One of the reasons fruit flies have been used so
extensively is that many genes that contain human
disease-causing mutations are evolutionarily conserved
in Drosophila melanogaster.**~>' Of the top five candidate

(FlyBase gene symbol CG32110 for
human gene SENPI and Mapmodulin
for human gene ANP32D).>*3

We measured the transcriptional response of the candi-
date genes to hypoxia challenge by real-time qPCR. Inter-
estingly, the expression levels of SENP1 and ANP32D
were significantly higher in the CMS cells as compared to
the non-CMS cells after hypoxia treatment. In contrast,
PFKM was downregulated in both non-CMS and CMS cells
(Figure 2). These results suggested that as compared to
room-air cultured cells, the suppression of SENPI,
ANP32D, and/or PFKM in non-CMS cells is beneficial for
high-altitude adaptation. As a corollary, when comparing
the transcriptional response of CMS cells to that of non-
CMS cells, the upregulation of SENP1 and ANP32D in
CMS cells might reflect mechanisms that underlie malad-
aptation to high altitudes in the CMS individuals. We
then proceeded to test this hypothesis in vivo in Drosophila
melanogaster.

We took advantage of a Drosophila GAL4/UAS-RNAi
system>*~>° to knock down the transcript levels of these
orthologs individually, mimicking the transcriptional sup-
pression of these candidate genes in the non-CMS sam-
ples in an attempt to determine their potential role in
adaptation to high-altitude hypoxia. In addition, this
strategy is also relevant to test the opposite hypothesis
that the upregulation of SENPI and ANP32D after hypox-
ia in the CMS samples is deleterious for survival in a hyp-
oxic environment. The UAS-RNAi x GAL4 crosses were
first cultured in normoxia to determine the effect of
RNAi-mediated knockdown of each candidate gene on
development. All the crosses developed normally with
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Figure 2. Hypoxia Response of Top Candidate Genes in Non-
CMS and CMS Cells

Fibroblast cells were derived from skin biopsies obtained from the
subjects with and without CMS. Two non-CMS and two CMS cell
lines were treated with 1.5% O, for 24 hr. The expression levels of
SENP1, ANP32D, and PFKM were measured by quantitative real-
time PCR. Compared to the normoxia controls (represented by
the green line), hypoxia treatment induced a significant downre-
gulation of SENP1, ANP32D, and PFKM in non-CMS cells (blue
bars). In contrast, hypoxia treatment upregulated the expression
of SENP1 and ANP32D in the CMS cells (red bars), an opposite
effect to the changes observed in the non-CMS cells (*p < 0.05,
nonparametric Wilcoxon rank test). Each bar represents mean =
SEM of two measurements in duplicate.

eclosion rates of more than 95%, demonstrating that
downregulation of the candidate genes had no significant
effect on development in normoxia. The flies resulting
from these crosses were then tested under a hypoxic con-
dition (5% O,) by scoring the eclosion rate, an index of
completion of development and survival. This hypoxic
condition has been previously proven to be critical for dis-
tinguishing hypoxia-tolerant flies from others.>”*® In
order to minimize false positive results induced by off-
target effects of RNAi or insertion effects of a particular
UAS-RNAI transgene, we included only Drosophila ortho-
logs with multiple available UAS-RNAi transgenic lines
in this analysis. As shown in Figure 3, a dramatic
enhancement of hypoxia tolerance was observed when
both CG32110 and Mapmodulin were knocked down,
demonstrating that downregulation of the orthologs of
SENP1 and ANP32D is indeed beneficial for survival in se-
vere hypoxic conditions in vivo.

Discussion

We present here a genome-wide study of genetic adapta-
tion in humans that confirms the effect of relevant geno-
types on expression and further validates their role in
model organisms. With the enhanced power of WGS,
we identified a number of putative regions showing
strong signals of selective sweep. We find that two genes

in these regions, ANP32D and SENPI, show significantly
increased expression in individuals with CMS compared
to those without. Consequently, we hypothesized that
downregulating these genes could be beneficial in coping
with hypoxia. We found that flies with these genes down-
regulated had a remarkably enhanced survival rate under
hypoxia.

There are several implications of our study. First, many of
the haplotypes found in our regions under selection are
also present in lowlander controls. This implies that the
beneficial mutations leading to adaptation in Andeans
may be very old. This has been suggested as likely in previ-
ous studies,® because the time under selective stress
(approximately 600 generations) is relatively short for
adaptation to be driven by de novo mutations. As a result,
we designed our prioritization criteria to look for large fre-
quency differentials. This type of approach has been
shown to be robust to selection on standing variation.®”

We also performed high-coverage WGS of 20 individ-
uals. Traditionally, genome-wide scans for selection
generally involve sampling the genome through genotyp-
ing or whole-exome sequencing. However, there is an
important trade-off when using these experimental de-
signs. Specifically, WGS provides for a complete sampling
of variant sites, albeit (usually) on a much smaller
number of individuals. This completeness is critical for
detecting selection. For instance, consider the prioritized
region found on chromosome 19 (Figure 4). With WGS,
this region corresponds to the highest peak in the chro-
mosome, with a block of 84 variants at roughly 40% fre-
quency in individuals without CMS but only 6% in
MXL. However, the Nimblegen 2.1 M exon capture array
targets only two variants in this block. As for genotyping,
the ~1 M Affymetrix Genome-Wide Human SNP Array 6.0
samples only one variant site in the block. In both cases,
the resulting signal is much weaker and far below the
0.1% genome-wide FDR. Importantly, this argument
holds for 10 of the 11 prioritized regions identified in
our study, where we find strong peaks for our tests at a
low genomic FDR (Figures S27-S37) by WGS, but not
when restricting to sites sampled by the alternative
approaches. In fact, as Figures S27-S37 show, the genotyp-
ing array used in Bigham et al.'®’s work does not capture a
single variant in 5 of the 11 regions’ differential haplotype
blocks.

Finally, our study reveals many mechanistic insights
on human adaptation (and maladaptation) to hypoxia.
Because individuals with CMS are polycythemic (with
hematocrit > 65%), their blood becomes much more
viscous. In turn, this increased viscosity jeopardizes blood
flow to major organs, sometimes to the degree of
ischemia, leading in some individuals to myocardial
infarction and stroke.®'"®* SENP1 is known to regulate
erythropoiesis,®® and indeed Senp1 '~ mice die of anemia
in early life.>* This gives credence to the idea that the
increased expression of SENP1 plays a role in the basic
pathogenesis of polycythemia in CMS individuals. In
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contrast, in spite of the fact that there is little known
about ANP32D and the PP32 phosphatase gene family,
ANP32D functions as an oncogene. We raise here the pos-
sibility that this particular gene alters cellular metabolism
in a fashion that is similar to that of cancer cells, espe-
cially given that such cells can flourish in low-oxygen
conditions. In conclusion, a better understanding of the
mechanisms underlying hypoxia tolerance in high-
altitude human populations will, in all likelihood, eluci-
date the pathogenesis of other conditions at sea level,
including congenital heart disease, obstructive sleep
apnea, and cancer.

A Ewi118 Figure 3. Downregulation of Human
[CdaGal4 SENP1 and ANP32D Orthologs in
1007 HcG32110 1 Drosophila Enhances Survival under Hyp-
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Supplemental Data include 37 figures and 5 tables and can be
found with this article online at http://www.cell.com/AJHG/.
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Figure 4. The Impact of Sequence Assay Type on Signals of Selection

(A-C) S, values across chromosome 19 in subjects without CMS, compared to the MXL population, when applied to (A) variants present
in our WGS study, (B) variants included in targets from whole-exome sequencing, and (C) the subset of ~1 M variants from genotyping.
The red line represents a genome-wide, 0.1% FDR. Highlighted in green is the genomic region of PBX4, LPAR2, and GMIP, one of the 11

strongest candidate regions in our study.

(D-F) SNP frequency profiles of the region highlighted in green for non-CMS (blue) compared to MXL (brown, inverted) for (D) WGS, (E)
whole-exome sequencing, and (F) genotyping. As can be seen, the strong signal present via WGS is reduced drastically in genotyping and

entirely absent by exome sequencing.
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