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a b s t r a c t

We consider the problem of learning unions of rectangles over the domain [b]n, in the
uniform distribution membership query learning setting, where both b and n are ‘‘large’’.
We obtain poly(n, log b)-time algorithms for the following classes:

• poly(n log b)-wayMajority of O(
log(n log b)

log log(n log b) )-dimensional rectangles.

• Union of poly(log(n log b)) many O(
log2(n log b)

(log log(n log b) log log log(n log b))2
)-dimensional rectan-

gles.
• poly(n log b)-way Majority of poly(n log b)-Or of disjoint O(

log(n log b)
log log(n log b) ) dimensional

rectangles.

Our main algorithmic tool is an extension of Jackson’s boosting- and Fourier-based
Harmonic Sieve algorithm [J.C. Jackson, An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution, Journal of Computer and System
Sciences 55 (3) (1997) 414–440] to the domain [b]n, building on work of Akavia et al.
[A. Akavia, S. Goldwasser, S. Safra, Proving hard core predicates using list decoding, in:
Proc. of the 44th Annual IEEE Symposium on Foundations of Computer Science, FOCS
’03, 2003, pp. 146–156]. Other ingredients used to obtain the results stated above are
techniques fromexact learning [A. Beimel, E. Kushilevitz, Learning boxes in high dimension,
Algorithmica 22 (1/2) (1998) 76–90] and ideas from recent work on learning augmented
AC0 circuits [J.C. Jackson, A.R. Klivans, R.A. Servedio, Learnability beyond AC0, in: Proc. of
the 34th Annual ACM Symposium on Theory of Computing, STOC ’02, 2002, pp. 776–784]
and on representing Boolean functions as thresholds of parities [A.R. Klivans, R.A. Servedio,
Learning DNF in time 2Õ(n1/3), Journal of Computer and System Sciences 68 (2) (2004)
303–318].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

The learnability of Boolean valued functions defined over the domain

[b]n = {0, 1, . . . , b− 1}n

has long elicited interest in computational learning theory literature. In particular, much research has been done on learning
various classes of ‘‘unions of rectangles’’ over [b]n (see e.g. [3,5,6,9,11,17]), where a rectangle is a conjunction of properties
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of the form ‘‘the value of attribute xi lies in the range [αi, βi]’’. One motivation for studying these classes is that they are a
natural analogue of classes of DNF (Disjunctive Normal Form) formulae over {0, 1}n; for instance, it is easy to see that in the
case b = 2 any union of s rectangles is simply a DNF with s terms.

Since the description length of a point x ∈ [b]n is n log b bits, a natural goal in learning functions over [b]n is to obtain
algorithms which run in time poly(n log b). Throughout the article we refer to such algorithms with poly(n log b) runtime
as efficient algorithms. In this article we give efficient algorithms which can learn several interesting classes of unions of
rectangles over [b]n in the model of uniform distribution learning with membership queries.

1.2. Previous results

In a breakthrough result a decade ago, Jackson [11] gave the Harmonic Sieve (HS) algorithm and proved that it can learn
any s-term DNF formula over n Boolean variables in poly(n, s) time. In fact, Jackson showed that the algorithm can learn any
s-way majority of parities in poly(n, s) time; this is a richer set of functions which includes all s-term DNF formulae. The HS
algorithm works by boosting a Fourier-based weak learning algorithm, which is a modified version of an earlier algorithm
due to Kushilevitz and Mansour [16].

In [11] Jackson also described an extension of theHS algorithm to the domain [b]n. Hismain result for [b]n is an algorithm
that can learn any union of s rectangles over [b]n in poly(sb log log b, n) time; note that this runtime is poly(n, s) if and only if
b is Θ(1) (and the runtime is clearly exponential in b for any s).

There has also been substantial work on learning various classes of unions of rectangles over [b]n in themore demanding
model of exact learning from membership and equivalence queries. Some of the subclasses of unions of rectangles which
have been considered in this setting are

The dimension of each rectangle is O(1): Beimel and Kushilevitz established an algorithm learning any union of s O(1)-
dimensional rectangles over [b]n using equivalence queries only, in poly(n, s, log b) time steps [3].

The number of rectangles is limited: In [3] an algorithm is also given which exactly learns any union of O(log n) many
rectangles in poly(n, log b) time using membership and equivalence queries. Earlier, Maass and Warmuth [17]
gave an algorithmwhich uses only equivalence queries and can learn any union of O(1) rectangles in poly(n, log b)
time.

The rectangles are disjoint: If no input x ∈ [b]n belongs to more than one rectangle, then [3] can learn a union of s such
rectangles in poly(n, s, log b) time with membership and equivalence queries.

1.3. Our techniques and results

Because efficient learnability is established for unions of O(log n) arbitrary dimensional rectangles by [3] in a more
demandingmodel, we are interested in achieving positive results when the number of rectangles is strictly larger. Therefore
all the cases we study involve at least poly(log(n log b)) and sometimes as many as poly(n log b) rectangles.

We start by describing a new variant of the Harmonic Sieve algorithm for learning functions defined over [b]n; we call
this new algorithm the Generalized Harmonic Sieve, or GHS. The key difference between GHS and Jackson’s algorithm for
[b]n is that whereas Jackson’s algorithm used a weak learning algorithm whose runtime is poly(b), the GHS algorithm uses
a poly(log b) time weak learning algorithm described in recent work of Akavia et al. [1].

We then apply GHS to learn various classes of functions defined in terms of ‘‘b-literals’’ (see Section 2 for a precise
definition; roughly speaking a b-literal is like a 1-dimensional rectangle). We first show the following result:

Theorem 1.1. The concept class of s-wayMajority of r-way Parity of b-literals where s = poly(n log b), r = O(
log(n log b)

log log(n log b) ) is
efficiently learnable using GHS.

Learning this class has immediate applications for our goal of ‘‘learning unions of rectangles’’; in particular, it follows
that

Theorem 1.2. The concept class of s-way Majority of r-dimensional rectangles where s = poly(n log b), r = O(
log(n log b)

log log(n log b) ) is
efficiently learnable using GHS.

This clearly implies efficient learnability for unions (as opposed to majorities) of s such rectangles as well.
We then employ a technique of restricting the domain [b]n to a much smaller set and adaptively expanding this set

as required. This approach was used in the exact learning framework by Beimel and Kushilevitz [3]; by an appropriate
modification we adapt the underlying idea to the uniform distribution membership query framework. Using this approach
in conjunction with GHS we obtain almost a quadratic improvement in the dimension of the rectangles if the number of
terms is guaranteed to be small:

Theorem 1.3. The concept class of unions of poly(log(n log b)) many r-dimensional rectangles where r = O
(

log2(n log b)
(log log(n log b) log log log(n log b))2

) is efficiently learnable via Algorithm 2 (see Section 5).
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Finally we consider the case of disjoint rectangles (also studied by [3] as mentioned above), and improve the depth of
our circuits by 1 provided that the rectangles connected to the same Or gate are disjoint:

Corollary 1.4. The concept class of s-wayMajority of t-way Or of disjoint r-dimensional rectangles where s, t = poly(n log b),
r = O(

log(n log b)
log log(n log b) ) is efficiently learnable under GHS.

1.4. Organization

In Section 3 we describe the Generalized Harmonic Sieve algorithm GHSwhich will be our main tool for learning unions
of rectangles. In Section 4 we show that s-way Majority of r-way Parity of b-literals is efficiently learnable using GHS for
suitable r, s; this concept class turns out to be quite useful for learning unions of rectangles. In Section 5we improve over the
results of Section 4 slightly if the number of terms is small, by adaptively selecting a small subset of [b] in each dimension
which is sufficient for learning, and invokeGHS over the restricted domain. In Section 6 we explore the consequences of the
results in Sections 4 and 5 for the ultimate goal of learning unions of rectangles.

2. Preliminaries

2.1. The learning model

We are interested in Boolean functions defined over the domain [b]n, where [b] = {0, 1, . . . , b − 1}. We view Boolean
functions as mappings into {−1, 1}where−1 is associated with True and 1 with False.

A concept class C is a collection of classes (sets) of Boolean functions {Cn,b : n > 0, b > 1} such that if f ∈ Cn,b then
f : [b]n → {−1, 1}. As a simple example, consider the case where b = 2 and C is the class of all monotone Boolean
conjunctions; then for each n we have that Cn,b is the set of all Boolean conjunctions over a subset of the Boolean input
variables x1, . . . , xn. Throughout this article we view both n and b as asymptotic parameters, and our goal, as mentioned
in Section 1.1, is to construct algorithms that learn various classes Cn,b in poly(n, log b) time. (Note that given this goal, it
only makes sense to attempt to learn concept classes such that each concept in the class has ‘‘description length’’ at most
poly(n log b) bits. It will be clear that this is the case for all the concept classes we consider; note that any union of at most
poly(n, log b)many rectangles has description length poly(n, log b).)Wenowdescribe the uniformdistributionmembership
query learning model that we will consider.

Amembership oracleMEM(f ) is an oracle which, when queried with input x, outputs the label f (x) assigned by the target
f to the input. Let f ∈ Cn,b be an unknownmember of the concept class and letA be a randomized learning algorithmwhich
takes as input accuracy and confidence parameters ε, δ and can invoke MEM(f ). We say that A learns C under the uniform
distribution on [b]n provided that given any 0 < ε, δ < 1 and access to MEM(f ), with probability at least 1 − δ A outputs
an ε-approximating hypothesis h : [b]n → {−1, 1} (which need not belong to C) such that Prx∈[b]n [f (x) = h(x)] ≥ 1− ε.

We are interested in computationally efficient learning algorithms. We say that A learns C efficiently if for any target
concept f ∈ Cn,b,

• A runs for at most poly(n, log b, 1/ε, log 1/δ) steps;
• Any hypothesis h that A produces can be evaluated at any x ∈ [b]n in at most poly(n, log b, 1/ε, log 1/δ) time steps.

2.2. The functions we study

The reader might wonder which classes of Boolean valued functions over [b]n are interesting. In this article we study
classes of functions that are defined in terms of ‘‘b-literals’’; these include rectangles and unions of rectangles over [b]n as
well as other richer classes. As described below, b-literals are a natural extension of Boolean literals to the domain [b]n.

Definition 2.1. A function ` : [b] → {−1, 1} is a basic b-literal if for some σ ∈ {−1, 1} and some α ≤ β with α, β ∈ [b]
we have `(x) = σ if α ≤ x ≤ β , and `(x) = −σ otherwise. A function ` : [b] → {−1, 1} is a b-literal if there exists a basic
b-literal `′ and some fixed z ∈ [b], gcd(z, b) = 1 such that for all x ∈ [b]we have `(x) = `′(xz mod b).

Basic b-literals are the most natural extension of Boolean literals to the domain [b]n. General b-literals (not necessarily
basic) were previously studied in [1] and are also quite natural.

Example 2.2. If b is odd then the least significant bit function lsb(x) : [b] → {−1, 1}, defined by lsb(x) = −1 iff x is even, is
a b-literal.

To see this, let z = (2)−1 mod b (this value exists since b is odd). Let E = {0, 2, 4, . . . , b− 1} denote the set of all the even
residues in [b], i.e. E is precisely the set of inputs that are mapped to−1 under lsb. We have

E =
{
0 · 2, 1 · 2, . . . ,

b− 1
2
· 2
}
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and consequently

E · z mod b ≡
{
0 · 2 · 2−1 mod b, 1 · 2 · 2−1 mod b, . . . ,

b− 1
2
· 2 · 2−1 mod b

}
≡

{
0, 1, 2, . . . ,

b− 1
2

}
.

The function `′(x) which equals −1 iff x ∈ {0, 1, . . . b−1
2 } is a basic b-literal, and consequently lsb(x) = `′(xz mod b) is a

b-literal.

Definition 2.3. A function f : [b]n → {−1, 1} is a k-dimensional rectangle if it is an And of k basic b-literals `1, . . . , `k over
k distinct variables xi1 , . . . , xik . If f is a k-dimensional rectangle for some k then we may simply say that f is a rectangle. A
union of s rectangles R1, . . . , Rs is a function of the form f (x) = Orsi=1Ri(x).

The class of unions of s rectangles over [b]n is a natural generalization of the class of s-term DNF over {0, 1}n. Similarly
Majority of Parity of basic b-literals generalizes the class of Majority of Parity of Boolean literals, a class which has been
the subject of much research (see e.g. [11,4,14]).

If G is a logic gate with potentially unbounded fan-in (e.g. Majority, Parity, And, etc.) we write ‘‘s-way G’’ to indicate
that the fan-in of G is restricted to be at most s. Thus, for example, an ‘‘s-way Majority of r-way Parity of b-literals’’ is a
Majority of at most s functions g1, . . . , gs, each of which is a Parity of at most r many b-literals. We will further assume
that any two b-literals which are inputs to the same gate depend on different variables. This is a natural restriction to impose
in light of our ultimate goal of learning unions of rectangles. Although our results hold without this assumption, it provides
simplicity in the presentation.

2.3. Harmonic analysis of functions over [b]n

We will make use of the Fourier expansion of complex valued functions over [b]n.
Consider f , g : [b]n → C endowedwith the inner product 〈f , g〉 = E[f g] and induced norm ‖f ‖ =

√
〈f , f 〉. Letωb = e

2π i
b

and for each α = (α1, . . . , αn) ∈ [b]n, let χα : [b]n → C be defined as

χα(x1, . . . , xn) = ω
α1x1+···+αnxn
b .

Let B denote the set of functions B = {χα : α ∈ [b]n}. It is easy to verify the following properties:

• Elements in B are normal: for each α = (α1, . . . , αn) ∈ [b]n, we have ‖χα‖ = 1.

• Elements in B are orthogonal: For α, β ∈ [b]n, we have 〈χα, χβ〉 =

{
1 if α = β
0 if α 6= β

• B constitutes an orthonormal basis for all functions {f : [b]n → C} considered as a vector space over C. Thus every
f : [b]n → C can be expressed uniquely as:

f (x) =
∑

α

f̂ (α)χα(x)

which we refer to as the Fourier expansion or Fourier transform of f .

The values {f̂ (α) : α ∈ [b]n} are called the Fourier coefficients or the Fourier spectrum of f . As is well known, Parseval’s Identity
relates the values of the coefficients to the values of the function:

Lemma 2.4 (Parseval’s Identity).
∑

α |f̂ (α)|2 = E[|f |2] for any f : [b]n → C.

We write L1(f ) to denote
∑

α |f̂ (α)| and L∞(f ) to denote maxα |f̂ (α)|.
We will also make use of the following simple fact:

Observation 2.5. For any f , h : [b]n → C and D over [b]n,

|ED[f h]| = |ED[f
∑
α

ĥ(α)χα]| = |
∑
α

ĥ(α)ED[fχα]| ≤ L1(h)max
α
|ED[fχα]|.

2.4. Additional tools: Weak hypotheses and boosting

Definition 2.6. Let f : [b]n → {−1, 1} and D be a probability distribution over [b]n. A function g : [b]n → [−1, 1] is said to
be a weak hypothesis for f with advantage γ under D if ED[fg] ≥ γ .
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The first boosting algorithm was described by Schapire [19] in 1990; since then boosting has been intensively studied
(see [8] for an overview). The basic idea is that by combining a sequence of weak hypotheses h1, h2, . . . (the i-th of which
has advantage γ with respect to a carefully chosen distribution Di) it is possible to obtain a high accuracy final hypothesis h
which satisfies Pr[h(x) = f (x)] ≥ 1−ε. The following theorem, which can be obtained easily from the results of [20, Section
2.3], gives a precise statement of the performance guarantees of a particular boosting algorithm, whichwe call AlgorithmB.
Many similar statements are nowknown about a range of different boosting algorithms but this is sufficient for our purposes.

Theorem 2.7 (Boosting Algorithm [20]). Suppose that Algorithm B is given:

• 0 < ε, δ < 1, and membership query access MEM(f ) to f : [b]n → {−1, 1};
• access to an algorithm WLwhich has the following property: given a value δ′ and access toMEM(f ) and to EX(f , D) (the latter

is an example oracle which generates random examples from [b]n drawn with respect to distribution D), it constructs a weak
hypothesis for f with advantage γ under D with probability at least 1− δ′ in time polynomial in n, log b, log(1/δ′).

Then Algorithm B behaves as follows:

• It runs for S = O(1/εγ 2) stages and runs in total time polynomial in n, log b, ε−1, γ−1, log(δ−1).
• At each stage 1 ≤ j ≤ S it constructs a distribution Dj such that L∞(Dj) < poly(ε−1)/bn, and simulates EX(f , Dj) for WL in

stage j. Moreover, there is a value c ∈ [1/2, 3/2] (the precise value of c depends on Dj and is not known to the algorithm) and
a fixed ‘‘pseudo-distribution’’ D̃j satisfying D̃j(x) = cDj(x) for all x, such that D̃j(x) can be computed in time polynomial in
n log b for each x ∈ [b]n.
• It outputs a final hypothesis h = sign(h1 + h2 + · · · + hS) which ε-approximates f under the uniform distribution with

probability 1− δ; here hj is the output of WL at stage j invoked with simulated access to EX(f , Dj).

Wewill sometimes informally refer to distributionsDwhich satisfy the bound L∞(D) <
poly(ε−1)

bn as smooth distributions.
In order to use boosting, it must be the case that there exists a suitable weak hypothesis with advantage γ . In this paper

wewill use the ‘‘discriminator lemma’’ of Hajnal et al. [10] (see also [18]) at various points (see e.g. the proofs of Theorem 4.5
and Lemma 4.8) to assert that the desired weak hypothesis exists:

Lemma 2.8 (The Discriminator Lemma [10,18]). Let H be a class of±1-valued functions over [b]n and let f : [b]n → {−1, 1} be
expressible as

f = Majority(h1, . . . , hs)

where each hi ∈ H and h1(x) + · · · + hs(x) 6= 0 for all x. Then for any distribution D over [b]n there is some hi such that
|ED[fhi]| ≥ 1/s.

3. The generalized Harmonic Sieve algorithm

In this section our goal is to describe a variant of Jackson’s Harmonic Sieve Algorithm and show that under suitable
conditions it can efficiently learn certain functions f : [b]n → {−1, 1}. As mentioned earlier, our aim is to attain poly(log b)
runtime dependence on b and consequently obtain efficient algorithms as described in Section 2. This goal precludes using
Jackson’s original Harmonic Sieve variant for [b]n since the runtime of his weak learner depends polynomially rather than
polylogarithmically on b (see [11, Lemma 15]).

As we describe below, this poly(log b) runtime can be achieved by modifying the Harmonic Sieve over [b]n to use a weak
learner due to Akavia et al. [1] which is more efficient than Jackson’s weak learner. We shall call the resulting algorithm
‘‘The Generalized Harmonic Sieve’’ algorithm, or GHS for short.

Recall that in the Harmonic Sieve over the Boolean domain {−1, 1}n, the weak hypotheses used are simply the Fourier
basis elements over {−1, 1}n, which correspond to the Boolean-valued parity functions. For [b]n, we will use the real
component of the complex-valued Fourier basis elements {χα, α ∈ [b]n} (as defined in Section 2.3) as our weak hypotheses.

The following theorem of Akavia et al. [1, Theorem 5] will play a crucial role towards construction of the GHS algorithm.

Theorem 3.1 (See [1]). There is a learning algorithm that, given membership query access to f : [b]n → C, 0 < γ and
0 < δ < 1, outputs a list L of indices such that with probability at least 1− δ, we have {α : |f̂ (α)| > γ } ⊆ L and |f̂ (β)| ≥

γ

2 for
every β ∈ L. The running time of the algorithm is polynomial in n, log b, ‖f ‖∞, γ−1, log(δ−1).

Lemma 3.2 (Construction of the Weak Hypothesis). Given

• Membership query access MEM(f ) to f : [b]n → {−1, 1};
• A smooth distributionD;more precisely, access to an algorithm computing D̃(x) in time polynomial in n, log b for each x ∈ [b]n.

Here D̃ is a ‘‘pseudo-distribution’’ for D as in Theorem 2.7, i.e. there is a value c ∈ [1/2, 3/2] such that D̃(x) = cD(x) for all
x.
• A value 0 < γ < 1/2 such that there exists an element of the Fourier basis χτ satisfying |ED[fχτ ]| > γ ,

there is an algorithm that outputs a weak hypothesis for f with advantage γ /4 under D with probability 1− δ and runs in time
polynomial in n, log b, ε−1, γ−1, log(δ−1).
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Proof. Let f∗(x) = bnD̃(x)f (x). Observe that

• Since D is smooth, ‖f∗‖∞ < poly(ε−1).

• For any α ∈ [b]n, f̂∗(α) = E[f∗χα] =
1
bn

∑
x∈[b]n

bnD̃(x)f (x)χα(x) = ED[cfχα].

Therefore one can invoke the algorithm of Theorem 3.1 over f∗(x) by simulating MEM(f∗) via MEM(f ), each time with
poly(n, log b) time overhead, and obtain a list L of indices. Note that since we are guaranteed that there exists an index
τ satisfying |ED[fχτ ]| > γ implying |f̂∗(τ )| ≥ cγ , we can invoke Theorem 3.1 in such a way that for any index β in its
output, we know |f̂∗(β)| ≥ cγ /2.

It is easy to see that the algorithm runs in the desired time bound and outputs a nonempty list L. Letβ be any element of L.
Since f̂∗(β) = E[bnD̃(x)f (x)χβ(x)], one can approximate ED[fχβ ]

|ED[fχβ ]|
=

ˆf∗(β)

| ˆf∗(β)|
= eiθ using uniformly drawn random examples.

Let eiθ
′

be the approximation thus obtained.
By assumption we know that for random x ∈ [b]n, the random variable

(bnD̃(x)f (x)χβ(x))

always takes a valuewhosemagnitude isO(poly(ε−1)) in absolute value. Using a straightforward Chernoff bound argument,
this implies that |θ − θ ′| can be made smaller than any constant using poly(n, log b, ε−1) time and random examples.

Now observe that we have

ED[fχβ ] = eiθ |ED[fχβ ]| ⇒ ED[f eiθχβ ] = |ED[fχβ ]| = c−1|f̂∗(β)| ≥ γ /2.

Therefore for a sufficiently small value of |θ − θ ′|, we have

ED[f<{eiθ
′
χβ}] = <{ED[f eiθ

′
χβ ]} = <

ei(θ−θ ′) ED[f eiθχβ ]︸ ︷︷ ︸
real valued and≥ γ /2

 ≥ γ /4.

Since <{eiθ ′χβ} always takes values in [−1, 1], we conclude that <{eiθ ′χβ} constitutes a weak hypothesis for f with
advantage γ /4 under D with high probability. �

Rephrasing the statement of Lemma 3.2, now we know: As long as for any function f in the concept class it is guaranteed
that under any smooth distribution D there is a Fourier basis element χβ that has non-negligible correlation with f (i.e.
|ED[fχα]| > γ ), then it is possible to efficiently identify and use such a Fourier basis element to construct aweak hypothesis.

Now one can invoke Algorithm B from Theorem 2.7 as in Jackson’s original Harmonic Sieve: At stage j, we have a
distributionDj over [b]n forwhich L∞(Dj) < poly(ε−1)/bn. Thus one can pass the values ofDj to the algorithm in Lemma 3.2
and use this algorithm as WL in Algorithm B to obtain the weak hypothesis at each stage. Repeating this idea for every
stage and combining the weak hypotheses generated for all the stages as described by Theorem 2.7, we have the GHS
algorithm:

Corollary 3.3 (The Generalized Harmonic Sieve). Let C be a concept class. Suppose that for any concept f ∈ Cn,b and any
distribution D over [b]n with L∞(D) < poly(ε−1)/bn there exists a Fourier basis element χα such that |ED[fχα]| ≥ γ . Then C

can be learned in time poly(n, log b, ε−1, γ−1).

4. LearningMajority of Parity using GHS

In this section we identify classes of functions which can be learned efficiently using the GHS algorithm and prove
Theorem 1.1.

Let C◦ denote the concept class of Theorem 1.1: the concept class of s-way Majority of r-way Parity of b-literals where
s = poly(n log b), r = O(

log(n log b)
log log(n log b) ).

To prove Theorem 1.1, we show that for any concept f ∈ C◦ and under any smooth distribution there must be some
Fourier basis element which has high correlation with f ; this is the essential step which lets us apply the Generalized
Harmonic Sieve. We prove this in Section 4.2. In Section 4.3 we give an alternate argument which yields a Theorem 1.1
analogue but with a slightly different bound on r , namely r = O(

log(n log b)
log log b ).
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4.1. Setting the stage

In this section we first focus our attention to functions defined over [b], i.e. the case n = 1.
For ease of notation we will write abs(α) to denote min{α, b− α}. We will use the following simple lemma from [1]:

Lemma 4.1 (See [1]). For all 0 ≤ ` ≤ b, we have |
∑`−1

y=0 ω
αy
b | < b/abs(α).

Corollary 4.2. Let f : [b] → {−1, 1} be a basic b-literal. Then if α = 0, |f̂ (α)| ≤ 1, while if α 6= 0, |f̂ (α)| < 2
abs(α)

.

Proof. The first inequality follows immediately from Parseval’s Identity given in Lemma 2.4, because f is {1,−1}-valued.
For the latter, note that |f̂ (α)| = |E[fχα]| =

1
b

∣∣∣∣∣ ∑
x∈f−1(1)

χα(x)−
∑

x∈f−1(−1)
χα(x)

∣∣∣∣∣ ≤ 1
b

∣∣∣∣∣ ∑
x∈f−1(1)

χα(x)

∣∣∣∣∣+ 1
b

∣∣∣∣∣ ∑
x∈f−1(−1)

χα(x)

∣∣∣∣∣
where the inequality is simply the triangle inequality. It is easy to see that each of the sums on the RHS above equals
1
b

∣∣ωαc
b

∣∣ |∑`−1
y=0 ω

αy
b | =

1
b |
∑`−1

y=0 ω
αy
b | for some suitable c and ` ≤ b, and hence Lemma 4.1 gives the desired result. �

The following easy lemma is useful for relating the Fourier transform of a b-literal to the corresponding basic b-literal:

Lemma 4.3. For f , g : [b] → C such that g(x) = f (xz) where gcd(z, b) = 1, we have ĝ(α) = f̂ (αz−1).

Proof.

ĝ(α) = Ex[g(x)χα(x)] = Ex[f (xz)χα(x)] = Exz−1 [f (x)χα(xz−1)]

= Exz−1 [f (x)χαz−1(x)] = Ex[f (x)χαz−1(x)] = f̂ (αz−1). �

A natural way to approximate a b-literal is by truncating its Fourier representation. We make the following definition:

Definition 4.4. Let k be a positive integer. For f : [b] → {−1, 1} a basic b-literal, the k-restriction of f is f̃ : [b] → C,

f̃ (x) =
∑

abs(α)≤k f̂ (α)χα(x). More generally, for f : [b] → {−1, 1} a b-literal (so f (x) = f ′(xz) where f ′ is a basic b-literal)
the k-restriction of f is f̃ : [b] → C, f̃ (x) =

∑
abs(αz−1)≤k f̂ (α)χα(x) =

∑
abs(β)≤k f̂ ′(β)χβ(xz).

4.2. There exist highly correlated Fourier basis elements for functions in C◦ under smooth distributions

In this section we show that given any f ∈ C◦, the concept class of Theorem 1.1, and any smooth distribution D, some
Fourier basis element must have high correlation with f . In more detail, the main result of this section is the following
theorem:

Theorem 4.5. Let τ ≥ 1 be any value, and let C be the concept class consisting of s-way Majority of r-way Parity of b-literals
where s = poly(τ ) and r = O(

log(τ )

log log(τ )
). Then for any f ∈ Cn,b and any distribution D over [b]n with L∞(D) = poly(τ )/bn,

there exists a Fourier basis element χα such that

|ED[fχα]| > Ω(1/poly(τ )).

We prove the theorem after some preliminary lemmata about approximating basic b-literals and products of basic b-
literals. We begin by bounding the error of the k-restriction of a basic b-literal:

Lemma 4.6. For f : [b] → {−1, 1} a b-literal and f̃ the k-restriction of f , we have E[|f − f̃ |2] = 8/k and E[|f − f̃ |] <
√
8/k.

Proof. Without loss of generality assume f to be a basic b-literal. By an immediate application of Lemma 2.4 (Parseval’s
Identity) we obtain:

E[|f − f̃ |2] =
∑

abs(α)>k
|f̂ (α)|2 <︸︷︷︸

by Corollary 4.2

2 ·
∞∑

m=k+1

4
m2

< 8
∫
∞

k

1
ξ 2

dξ =
8
k
.

By the non-negativity of variance, this implies E[|f − f̃ |] <
√
8/k. �

Now suppose that f is an r-way Parity of b-literals f1, . . . , fr . Since Parity corresponds tomultiplication over the domain
{−1, 1}, this means that f =

∏r
i=1 fi. It is natural to approximate f by the product of the k-restrictions

∏r
i=1 f̃i. The following

lemma bounds the error of this approximation:

Lemma 4.7. For i = 1, . . . , r, let fi : [b] → {−1, 1} be a b-literal and let f̃i be its k-restriction. Then

E[|f1(x1)f2(x2) . . . fr(xr)− f̃1(x1)f̃2(x2) . . . f̃r(xr)|] < er
√
8/k
− 1.
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Proof. First note that by Lemma 4.6, we have that for each i = 1, . . . , r:

Exi [|fi(xi)− f̃i(xi)|] ≤
√
Exi [|fi(xi)− f̃i(xi)|2] <

√
8/k.

Therefore we also have for each i = 1, . . . , r:

Exi [|f̃i(xi)|] < Exi [|f̃i(xi)− fi(xi)|]︸ ︷︷ ︸
<
√
8/k

+ Exi [|fi(xi)|]︸ ︷︷ ︸
=1

< 1+
√
8/k.

For any (x1, . . . , xr) we can bound the difference in the lemma as follows:

|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)| ≤

|f1(x1) . . . fr(xr)− f1(x1) . . . fr−1(xr−1)f̃r(xr)| +

|f1(x1) . . . fr−1(xr−1)f̃r(xr)− f̃1(x1) . . . f̃r(xr)| ≤

|fr(xr)− f̃r(xr)| + |f̃r(xr)||f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|.

Therefore the expectation in question is at most:

E
xr
[|fr(xr)− f̃r(xr)|]︸ ︷︷ ︸

<
√
8/k

+ E
xr
[|f̃r(xr)|]︸ ︷︷ ︸
<1+
√
8/k

·E(x1,...,xr−1)[|f1(x1) . . . fr−1(xr−1)− f̃1(x1) . . . f̃r−1(xr−1)|].

We can repeat this argument successively until the base case

Ex1 [|f1(x1)− f̃1(x1)|] <
√
8/k

is reached. Thus one obtains the upper bound

E[|f1(x1) . . . fr(xr)− f̃1(x1) . . . f̃r(xr)|] <
√
8/k

r−1∑
i=0

(1+
√
8/k)i

= (1+
√
8/k)r − 1 < er

√
8/k
− 1. �

Now we are ready to prove Theorem 4.5, which asserts the existence (under suitable conditions) of a highly correlated
Fourier basis element. The basic approach of the following proof is reminiscent of the main technical lemma from [12].

Proof of Theorem 4.5. Assume f is a Majority of h1, . . . , hs each of which is a r-way Parity of b-literals. Then Lemma 2.8
implies that there exists hi such that |ED[fhi]| ≥ 1/s. Let hi be Parity of the b-literals `1, . . . , `r .

Since s and bn · L∞(D) are both at most poly(τ ) and r = O(
log(τ )

log log(τ )
), Lemma 4.7 implies that there are absolute constants

C1, C2 such that if we consider the k-restrictions ˜̀1, . . . , ˜̀r of `1, . . . , `r for k = C1 · τ
C2 , we will have E[|hi −

∏r
j=1
˜̀ j|] ≤

1/(2sbnL∞(D)) where the expectation on the left hand side is with respect to the uniform distribution on [b]n. This in turn
implies that ED[|hi −

∏r
j=1
˜̀ j|] ≤ 1/2s. Let us write h′ to denote

∏r
j=1
˜̀ j. We then have

|ED[f h′]| ≥ |ED[f hi]| − |ED[f (hi − h′)]| ≥ |ED[f hi]| − ED[|f (hi − h′)|]
= |ED[fhi]| − ED[|hi − h′|] ≥ 1/s− 1/2s = 1/2s.

By Observation 2.5 we additionally have

|ED[f h′]| = | ≤ L1(h′)max
α
|ED[fχα]|.

Moreover, for each j = 1, . . . , r we have the following (where we write `′j to denote the basic b-literal associated with the
b-literal `j):

L1( ˜̀ j) =
∑

abs(α)≤k
|̂̀′j(α)| <︸︷︷︸

by Corollary 4.2

1+ 2
k∑

m=1
2/m < 5+ 4 ln(k+ 1).

Therefore, for some absolute constant c > 0 we have L1(h′) ≤
∏r

j=1 L1( ˜̀ j) ≤ (c log k)r , where the first inequality holds as a
consequence of the elementary fact that the L1 norm of a product is at most the product of the L1 norms of the components.
Combining inequalities, we obtain

max
α
|ED[fχα]| ≥ 1/(2s(c log k)r) = Ω(1/poly(τ ))

which is the desired result. �

Since we are interested in algorithms with runtime poly(n, log b, ε−1), setting τ = nε−1 log b in Theorem 4.5 and
combining its result with Corollary 3.3, gives rise to Theorem 1.1.
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4.3. The second approach

A different analysis, similar to that which Jackson uses in the proof of [11, Fact 14], gives us an alternate bound to
Theorem 4.5:

Lemma 4.8. Let C be the concept class consisting of s-wayMajority of r-way Parity of b-literals. Then for any f ∈ Cn,b and any
distribution D over [b]n, there exists a Fourier basis element χα such that |ED[fχα]| = Ω(1/s(log b)r).

Proof. Assume f is aMajority of h1, . . . , hs each of which is a r-way Parity of b-literals. Then Lemma 2.8 implies that there
exists hi such that |ED[fhi]| ≥ 1/s. Let hi be Parity of the b-literals `1, . . . , `r . Observation 2.5 gives:

1/s ≤ |ED[fhi]| = |ED[f hi]| ≤ L1(hi)max
α
|ED[fχα]|.

Also note that for j = 1, . . . , r we have the following (where as before we write `′j to denote the basic b-literal associated
with the b-literal `j):

L1(`j) =︸︷︷︸
by Lemma 4.3

∑
α

|̂̀′j(α)| <︸︷︷︸
by Corollary 4.2

1+ 2 ·
b−1∑
m=1

2/m < 5+ 4 ln b.

Therefore for some constant c > 0 we have L1(hi) ≤
∏r

j=1 L1(`j) = O((log b)r), from which we obtain maxα |ED[fχα]| =

Ω(1/s(log b)r). �

Combining this result with that of Corollary 3.3 we obtain the following result:

Theorem 4.9. The concept class C consisting of s-way Majority of r-way Parity of b-literals can be learned in time
poly(s, n, (log b)r) using the GHS algorithm.

As an immediate corollary we obtain the following close analogue of Theorem 1.1:

Theorem 4.10. The concept class C consisting of s-way Majority of r-way Parity of b-literals where s = poly(n log b),
r = O(

log(n log b)
log log b ) is efficiently learnable using the GHS algorithm.

5. Locating sensitive elements and learning with GHS on a restricted grid

In this section we consider an extension of the GHS algorithm which lets us achieve slightly better bounds when we are
dealing only with basic b-literals. Following an idea from [3], the new algorithmworks by identifying a subset of ‘‘sensitive’’
elements from [b] for each of the n dimensions.

Definition 5.1 (See [3]). A value σ ∈ [b] is called i-sensitive with respect to f : [b]n → {−1, 1} if there exist values
c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ [b] such that

f (c1, . . . , ci−1, (σ − 1) mod b, ci+1, . . . , cn) 6= f (c1, . . . , ci−1, σ , ci+1, . . . , cn).

A value σ is called sensitivewith respect to f if σ is i-sensitive for some i. If there is no i-sensitive value with respect to f , we
say index i is trivial.

The main idea is to run GHS over a restricted subset of the original domain [b]n, which is the grid formed by the sensitive
values and a few more additional values, and therefore lower the algorithm’s complexity.

Definition 5.2. A grid in [b]n is a set S = L1 × L2 × · · · × Ln with 0 ∈ Li ⊆ [b] for each i. We refer to the elements of S

as corners. The region covered by a corner (x1, . . . , xn) ∈ S is defined to be the set {(y1, . . . , yn) ∈ [b]n : ∀i, xi ≤ yi < dxie}
where dxie denotes the smallest value in Li which is larger than xi (by convention dxie := b if no such value exists). The area
covered by the corner (x1, . . . , xn) ∈ S is therefore defined to be

∏n
i=1(dxie− xi). A refinement of S is a grid in [b]n of the form

L′1 × L′2 × · · · × L′n where each Li ⊆ L′i .

Lemma 5.3. Let S be a grid L1× L2× · · · × Ln in [b]n such that each |Li| ≤ `. Let IS denote the set of indices for which Li 6= {0}.
If |IS| ≤ κ , then S admits a refinement S′ = L′1 × L′2 × · · · × L′n such that

(1) All of the sets L′i which contain more than one element have the same number of elements: Lmax, which is at most ` + Cκ`,
where C = b

κ`
·

1
bb/4κ`c

≥ 4.
(2) Given a list of the sets L1, . . . , Ln as input, a list of the sets L′1, . . . , L

′
n can be generated by an algorithm with a running time

of O(nκ` log b).
(3) L′i = {0} whenever Li = {0}.
(4) Any ε fraction of the corners in S′ cover a combined area of at most 2εbn.
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Algorithm 1 Computing a refinement of the grid S with the desired properties.
1: Lmax ← 0.
2: for all 1 ≤ i ≤ n do
3: if Li = {0} then
4: L′i ← {0}.
5: else
6: Consider Li = {xi0, x

i
1, . . . , x

i
`−1}, where xi0 < xi1 < · · · < xi`−1 (Also let xi` = b).

7: Set L′i ← Li and τ ← bb/4κ`c.
8: for all r = 0, . . . , `− 1 do
9: if |xir+1 − xir | > τ then

10: L′i ← L′i ∪ {x
i
r + τ , xir + 2τ , . . .} (up to and including the largest xir + j · τ which is less than xir+1)

11: end if
12: end for
13: if |L′i| > Lmax then
14: Lmax ← |L′i|.
15: end if
16: end if
17: end for
18: for all 1 ≤ i ≤ nwith |L′i| > 1 do
19: while (|L′i| < Lmax) do
20: L′i ← L′i ∪ {an arbitrary element from [b]}.
21: end while
22: end for
23: S′ ← L′1 × L′2 × · · · × L′n.

Proof. Consider Algorithm 1 which, given S = L1 × L2 × · · · × Ln, generates S′.
The purpose of the code between lines 18–22 is to make every L′i 6= {0} contain equal number of elements. Therefore

the algorithm keeps track of the number of elements in the largest L′i in a variable called Lmax and eventually adds more
(arbitrary) elements to those L′i 6= {0}which have fewer elements.

It is clear that the algorithm satisfies Property 3 above.
Now consider the state of Algorithm 1 at line 18. Let i be such that |L′i| = Lmax. Clearly L′i includes the elements in Li which

are at most `many. Moreover every new element added to L′i in the loop spanning lines 8-12 covers a section of [b] of width
τ , and thus b/τ = Cκ` elements can be added. Thus Lmax ≤ `+ Cκ`. At the end of the algorithm every L′i contains either 1
element (which is {0}) or Lmax elements. This gives us Property 1. Note that C ≥ 4 by construction.

It is easy to verify that it satisfies Property 2 as well (the log b factor in the runtime is present because the algorithm
works with (log b)-bit integers).

Property 1 and the bound |IS| ≤ κ together give that the number of corners in S is at most (`+ Cκ`)κ . It is easy to see
from the algorithm that the area covered by each corner in S′ is at most bn

(Cκ`)κ
(again using the bound on |IS|). Therefore

any ε fraction of the corners in S′ cover an area of at most:

ε(`+ Cκ`)κ ×
bn

(Cκ`)κ
= ε

(
1+

1
Cκ

)κ

× bn <︸︷︷︸
C≥4

e1/3εbn < 2εbn.

This gives Property 4. �

The following lemma is easy and useful; similar statements are given in [3]. Note that the lemma critically relies on the
b-literals being basic.

Lemma 5.4. Let f : [b]n → {−1, 1} be expressed as an s-way Majority of Parity of basic b-literals. Then for each index
1 ≤ i ≤ n, there are at most 2s i-sensitive values with respect to f .

Proof. A literal ` on variable xi induces two i-sensitive values. The lemma follows directly from our assumption (see
Section 2) that for each variable xi, each of the s Parity gates has no more than one incoming literal which depends on
xi. �

Algorithm 2 is our extension of theGHS algorithm. It essentially works by repeatedly runningGHS on the target function
f but restricted to a small (relative to [b]n) grid. To upper bound the number of steps in each of these invocations we will be
referring to the result of Theorem 4.10. After each execution ofGHS, the hypothesis defined over the grid is extended to [b]n
in a natural way and is tested for ε-accuracy. If h is not ε-accurate, then a point where h is incorrect is used to identify a new
sensitive value and this value is used to refine the grid for the next iteration. The bound on the number of sensitive values
from Lemma 5.4 lets us bound the number of iterations. Our theorem about Algorithm 2’s performance is the following:
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Algorithm 2 An improved algorithm for learningMajority of Parity of basic b-literals.
1: L1 ← {0}, L2 ← {0}, . . . , Ln ← {0}.
2: loop
3: S← L1 × L2 × · · · × Ln.
4: S′ ← the output of refinement algorithm with input S.
5: One can express S′ = L′1 × L′2 × · · · × L′n. If Li 6= {0} then L′i = {x

i
0, x

i
1 . . . , xi(Lmax−1)}. Let x

i
0 < xi1 < · · · < xit−1 and let

τi : ZLmax → L′i be the translation function such that τi(j) = xij. If Li = L′i = {0} then τi is the function simply mapping
0 to 0.

6: Invoke GHS over f |S′ with accuracy ε/8. This is done by simulating MEM(f |S′(x1, . . . , xn)) with
MEM(f (τ1(x1), τ2(x2), . . . , τn(xn))). Let the output of the algorithm be g .

7: Let h be a hypothesis function over [b]n such that h(x1, . . . , xn) = g(τ−11 (bx1c), . . . , τ−1n (bxnc)) (bxic denotes largest
value in L′i less than or equal to xi).

8: if h ε-approximates f then
9: Output h and terminate.

10: end if
11: Perform random membership queries until an element (x1, . . . , xn) ∈ [b]n is found such that f (bx1c, . . . , bxnc) 6=

f (x1, . . . , xn).
12: Find an index 1 ≤ i ≤ n such that

f (bx1c, . . . , bxi−1c, xi, . . . , xn) 6= f (bx1c, . . . , bxi−1c, bxic, xi+1, . . . , xn).

This requires O(log n) membership queries using binary search.
13: Find a value σ such that bxic + 1 ≤ σ ≤ xi and

f (bx1c, . . . , bxi−1c, σ − 1, xi+1, . . . , xn) 6= f (bx1c, . . . , bxi−1c, σ , xi+1, . . . , xn).

This requires O(log b) membership queries using binary search.
14: Li ← Li ∪ {σ }.
15: end loop

Theorem 5.5. Let concept class C consist of s-way Majority of r-way Parity of basic b-literals such that s = poly(n log b) and
each f ∈ Cn,b has at most κ(n, b) non-trivial indices and at most `(n, b) i-sensitive values for each i = 1, . . . , n. Then C is
efficiently learnable if r = O(

log(n log b)
log log κ`

).

Proof. We assume b = ω(κ`) without loss of generality. Otherwise one immediately obtains the result with a direct
application of GHS through Theorem 4.10.

We clearly have κ ≤ n and ` ≤ 2s. By Lemma 5.4 there are at most κ` = O(ns) sensitive values. We will show that the
algorithm finds a new sensitive value at each iteration and terminates before all sensitive values are found. Therefore the
number of iterations will be upper bounded by O(ns). We will also show that each iteration runs in poly(n, log b, ε−1) steps.
This will establish the desired result.

Let us first establish that step 6 takes at most poly(n, log b, ε−1) steps. To observe this it is sufficient to combine the
following facts:

• Due to the construction of Algorithm 1 for every non-trivial index i of f , L′i has fixed cardinality = Lmax. Therefore GHS
could be invoked over the restriction of f onto the grid, f |S′ , without any trouble.
• If f is s-way Majority of r-way Parity of basic b-literals, then the function obtained by restricting it onto the grid: f |S′

could be expressed as t-way Majority of u-way Parity of basic L-literals where t ≤ s, u ≤ r and L ≤ O(κ`) (due to the
1st property of the refinement).
• Due to Theorem4.10, runningGHS over a gridwith alphabet sizeO(κ`) in each non-trivial index takes poly(n, log b, ε−1)

time if the dimension of the rectangles are r = O(
log(n log b)
log log κ`

). The key idea here is that running GHS over this κ`-size
alphabet lets us replace the ‘‘b’’ in Theorem 4.10 with ‘‘κ`’’.

To check whether if h ε-approximates f at step 8, we may draw O(1/ε) · log(1/δ) uniform random examples and use the
membership oracle to empirically estimate h’s accuracy on these examples. Standard bounds on sampling show that if the
true error rate of h is less than (say) ε/2, then the empirical error rate on such a sample will be less than ε with probability
1− δ. Observe that if all the sensitive values are recovered by the algorithm, h will ε-approximate f with high probability.
Indeed, since g (ε/8)-approximates f |S′ , Property 4 of the refinement guarantees that misclassifying the function at ε/8
fraction of the corners could at most incur an overall error of 2ε/8 = ε/4. This is because when all the sensitive elements
are recovered, for every corner in S′, h either agrees with f or disagrees with f in the entire region covered by that corner.
Thus h will be an ε/4 approximator to f with high probability. This establishes that the algorithm must terminate within
O(ns) iterations of the outer loop.

Locating another sensitive value occurs at steps 11, 12 and 13. Note that h is not an ε-approximator to f because the
algorithmmoved beyond step 8. Even if we were to correct all the mistakes in g this would alter at most ε/8 fraction of the
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corners in the grid S′ and therefore ε/4 fraction of the values in h— again due to the 4th property of the refinement and the
way h is generated. Therefore for at least 3ε/4 fraction of the domain we ought to have f (bx1c, . . . , bxnc) 6= f (x1, . . . , xn)
where bxic denotes largest value in L′i less than or equal to xi. Thus the algorithm requires at most O(1/ε) random queries
to find such an input in step 11.

Thus we have observed that steps 6, 8, 11, 12, 13 take at most poly(n, log b, ε−1) steps. Therefore each iteration of
Algorithm 2 runs in poly(n, log b, ε−1) steps as claimed.

We note that we have been somewhat cavalier in our treatment of the failure probabilities for various events. These
include the possibility of getting an inaccurate estimate of h’s error rate in step 9, or not finding a suitable element
(x1, . . . , xn) soon enough in step 11, or having the GHS algorithm fail to return a good hypothesis in one of its executions. A
standard analysis shows that all these failure probabilities can be made suitably small so that the overall failure probability
is at most δ within the claimed runtime. �

6. Applications to learning unions of rectangles

In this sectionwe apply the results we have obtained in Sections 4 and 5 to obtain results on learning unions of rectangles
and related classes.

6.1. Learning majorities and unions of many low-dimensional rectangles

The following lemmawill let us apply our algorithm for learningMajority of Parity of b-literals to learnMajority of And
of b-literals:

Lemma 6.1. Let f : {−1, 1}n → {−1, 1} be expressible as an s-way Majority of r-way And of Boolean literals. Then f is also
expressible as a O(ns2)-wayMajority of r-way Parity of Boolean literals.

We note that Krause and Pudlák also gave a related but slightly weaker bound in [15]; they used a probabilistic argument
to show that any s-way Majority of And of Boolean literals can be expressed as an O(n2s4)-way Majority of Parity. Our
boosting-based argument below closely follows that of [11, Corollary 13].

Proof of Lemma 6.1. Let f be the Majority of h1, . . . , hs where each hi is an And gate of fan-in r . By Lemma 2.8, given any
distributionD there is some And function hj such that |ED[fhj]| ≥ 1/s. Moreover the L1-norm of any And function is at most
3. To see this observe that one can express And as follows:

And(x1, . . . , xr) = 2

(
r∏

i=1

(
1− xi

2

))
− 1 = 2

( ∑
S⊆{1,...,r}

(−1)|S|

2r
χS

)
− 1

= −1+
2
2r
+

∑
|S|≥1

2(−1)|S|

2r
χS .

Consequently L1(Andr) ≤ 1+ (2r) · 1
2r−1
= 3 and thus we have L1(hj) ≤ 3.

NowObservation 2.5 implies that theremust be some parity functionχa such that |ED[fχa]| ≥ 1/4s, where the variables
in χa are a subset of the variables in hj — and thus χa is a parity of at most r literals. As in the proof of [11, Corollary 13], we
can now apply the boosting algorithm of [7]; this algorithm runs for O(log(1/ε)/γ 2) stages to construct an ε-accurate final
hypothesis if it is given a weak hypothesis with advantage γ at each stage. We choose the weak hypothesis to be a Parity
with fan-in at most r at each stage of boosting, and the above arguments ensure that each weak hypothesis has advantage
at least 1/4s at every stage of boosting. If we boost to accuracy ε = 1

2n+1 , then the resulting final hypothesis will have zero
error with respect to f and will be aMajority of O(log(1/ε)/s2) = O(ns2) many r-way Parity functions. �

Note that while this argument does not lead to a computationally efficient construction of the desiredMajority of r-way
Parity, it does establish its existence, which is all we need.

Also note that any union (Or) of s many r-dimensional rectangles can be expressed as an O(s)-way Majority of r-
dimensional rectangles as well.

Theorem 1.1 and Lemma 6.1 together give us Theorem 1.2. (In fact, these results give us learnability of s-way Majority
of r-way And of b-literals which need not necessarily be basic.)

6.2. Learning unions of fewer rectangles of higher dimension

We now show that the number of rectangles s and the dimension bound r of each rectangle can be traded off against
each other in Theorem 1.2 to a limited extent. We state the results below for the case s = poly(log(n log b)), but one could
obtain analogous results for a range of different choices of s.

We require the following lemma:
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Lemma 6.2. Any s-term r-DNF can be expressed as an rO(
√
r log s)-wayMajority of O(

√
r log s)-way Parity of Boolean literals.

Proof. [14, Corollary 13] states that any s-term r-DNF can be expressed as an rO(
√
r log s)-way Majority of O(

√
r log s)-way

Ands. Now recall that the Fourier representation of an And of t variables is a linear combination of 2t Paritys (or negated
Paritys), each with a coefficient of 1/2t (this Fourier representation is given explicitly in the proof of Lemma 6.1). Clearing
this common denominator, we may simply replace each And that is input the Majority with the corresponding sum of 2t

Paritys (or negated Paritys). This gives the lemma. �

Now we can prove Theorem 1.3, which gives us roughly a quadratic improvement in the dimension r of rectangles over
Theorem 1.2 when s = poly(log(n log b)).

Proof of Theorem 1.3. First note that by Lemma 5.4, any function in Cn,b (as defined by Section 2.1) can have at most
κ = O(rs) = poly(log(n log b)) non-trivial indices, and at most ` = O(s) = poly(log(n log b)) many i-sensitive values
for all i = 1, . . . , n. Now use Lemma 6.2 to express any function in Cn,b as an s′-way Majority of r ′-way Parity of basic
b-literals where s′ = rO(

√
r log s)

= poly(n log b) and r ′ = O(
√
r log s) = O(

log(n log b)
log log log(n log b) ). Finally, apply Theorem 5.5 to

obtain the desired result. �

Note that it is possible to obtain a similar result for learning poly(log(n log b))-way union of O(
log2(n log b)

(log log(n log b))4
)-way And

of b-literals if one were to invoke Theorem 1.1.

6.3. Learning majorities of unions of disjoint rectangles

A set {R1, . . . , Rs} of rectangles is said to be disjoint if every input x ∈ [b]n satisfies at most one of the rectangles. Learning
unions of disjoint rectangles over [b]n was studied by [3], and is a natural analogue over [b]n of learning ‘‘disjointDNF’’ which
has been well studied in the Boolean domain (see e.g. [13,2]).

We observe that when disjoint rectangles are considered Theorem 1.2 extends to the concept class of majority of unions
of disjoint rectangles. This extension relies on the easily verified fact that if f1, . . . , ft are functions from [b]n to {−1, 1}n such
that each x satisfies at most one fi, then the function Or(f1, . . . , ft) satisfies L1(Or(f1, . . . , ft)) = O(L1(f1) + · · · + L1(ft)).
This fact lets us apply the argument behind Theorem 4.5 without modification, and we obtain Corollary 1.4. Note that only
the rectangles connected to the same Or gate must be disjoint in order to invoke Corollary 1.4.

7. Conclusions and future work

For future work, besides the obvious goals of strengthening our positive results, we feel that it would be interesting
to explore the limitations of current techniques for learning unions of rectangles over [b]n. At this point we cannot rule
out the possibility that the Generalized Harmonic Sieve algorithm is in fact a poly(n, s, log b)-time algorithm for learning
unions of s arbitrary rectangles over [b]n. Can evidence for or against this possibility be given? For example, can one show
that the representational power of the hypotheses which the Generalized Harmonic Sieve algorithm produces (when run
for poly(n, s, log b) many stages) is – or is not – sufficient to express high-accuracy approximators to arbitrary unions of s
rectangles over [b]n?
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