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ABSTRACT

The following theorems are proved:

(1) Let AD B = AV B (A + B). If G is a finite Abelian group and A, + -+ + A,
subsets of G with | Ay + - + 1A > |G| then either A, @ - D A, =G or
0c A, + -+ + Ay . For k = 2 this statement is true for any group.

(2) Let ay ..., Gpiu_y be a sequence of p + k — 1 integers. Then it is possible to select
k distinct indices i, ,..., iy such that

a;, R a‘ik = 0 (mod p).

By means of (2), the proof of a theorem of Erdds, Ginzburg, and Ziv can be con-
siderably simplified.

Let G be a group and A, B subsets of G. We shall use the notation of [2}
and define

A®B=A+B UAUB (1)

The operation @ is clearly associative.
We shall prove the following theorem.

THEOREM 1. If |A|+ |B| = | G| then either 0 A, and 0 B or
APB=0G.

PrOOF: Suppose c ¢ A @ B then (¢ — B) " A = . Since
A+ Bl > |G|

it follows that every element of G is either in 4 or in ¢ — B. The element
¢ itself is not in 4 hence is in ¢ — B. Therefore 0 € B. Similarly we find
0 € 4 and Theorem 1 is proved.
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P. Scherk [3] proved: If G is an Abelian group A4, B finite subsets of G
such that 0 4,0e Banda + b = Owithae 4 and be Bonly ifa = 0,
b = 0, then

A+ B[ >[4+ |B|—1 (2)
The inequality (2) implies: If 0 ¢ 4 + B then
|A@B| =14+ |B| ©)

To prove (3) let A4y = A V0,By, = BUO.If 450, B30 then
|AD@B|=1[Ady+ Be| = Ag| + 1Byl —1=14]|+[B].
If A3 0, B30 then
|ADB| =14+ B| —1 =14l +[B| —2=14[|+|B].
Together with Theorem 1 Scherk’s result gives the following corollary.

COROLLARY TO THEOREM 1. Let G be a finite Abelian group, A, ,..., A,
subsets of G, and let | Ay | + - + | Ay | = | G| . Then either

4, D4, DDA =G Q)

or

0cd, @ - @DA,. ©)

By applying the D transform of [2, p. 5] one can refine the corollary in
various ways. We can for instance set

A¥ = A, N Ay iy AF = (A, U Ay - U 4;) N 4.
Then either (4) holds or
0cdr @ PAF.

THEOREM 2. Let G be a group of prime order p and let a, ..., 4,1 bea
sequence of p + k — 1 elements of G such that no element is repeated more
than k times. Let b be any element of G. Then we can find a;_,..., a;, such
that iy << -+ < i, and

a, + - +a,=>=

ProoF: We partition the elements a ,..., @,,;_; into k non-empty sets
A, ..., A, . By the theorem of Cauchy-Davenport [2, p. 3] we have

k
| Ay + o+ 4| = ) 14| —(—1) =p
j=1

which proves Theorem 2.
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Erd6s, Ginzburg, and Ziv [1] proved the following theorem: If G is a
solvable group (written additively), | G| = v and a, ,..., ay,_; is a sequence
of 2v — 1 elements of G then one can always find v distinct indices iy ..., i,
such that

ail + e “}_ aiv = 0.

The major portion of [1] is devoted to the proof for the case v = p a prime,
while the induction to all solvable groups is comparatively easy. The
theorem of Erdos, Ginzburg, and Ziv for a group of prime order p is
however an immediate consequence of Theorem 2 with k = p.
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