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ABSTRACT 

The following theorems are proved: 

(1) Let  A • B = A u B v (A + B). I f  G is a finite Abelian group and Aj + ... + A~ 
subsets o f  G with I A1T + ' " +  I Ak l >~ I G I then either A 1 0  "" G A~ = G or 
0 ~ As q- "" q- Ak .  For k = 2 this s tatementis  true for  any group. 

(2) Let  al ,..., a~+~_~ be a sequence o f  p q- k -- 1 integers. Then it is possible to select 
k distinct indices i~ ..... ik such that 

aq + "" + al k =-- 0 (modp). 

By means of (2), the proof of a theorem of Erd6s, Ginzburg, and Ziv can be con- 
siderably simplified. 

Let  G be a group and A, B subsets of  G, W e  shall use the no ta t ion  of  [2] 
and  define 

A Q B =  ( . 4 + B )  u A  w B .  (1) 

The opera t ion  �9 is clearly associative.  
We shall  p rove  the fo l lowing theorem.  

THEOREM 1. I f  I A ] + I B I >~ [ G I then  e i ther  O ~ A ,  a n d  O ~ B o r  

A O B = G .  

PROOF: Suppose  e ~ A �9 B then (e - -  B) n A = 0. Since 

[ A [ + I B I ~ I G ]  

i t  fol lows tha t  every e lement  o f  G is e i ther  in A or  in e - -  B. The  element  
e i tself  is no t  in A hence is in e - -  B. Therefore  0 ~ B. S imi lar ly  we find 
0 ~ A and  Theorem 1 is proved.  

�9 MRC Technical Summary Report No. 681, July, 1966. Contract No. DA-11-022- 
ORD-2059. 
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P. Scherk [3] proved: I f  G is an Abelian group A, B finite subsets of  G 
such that 0 e A, 0 ~ B and a -F b = 0 with a ~ A and b ~ B only if a - -  0, 
b = 0, then 

I A q - B I  ~ I A I  + I B I - - 1 .  (2) 

The inequality (2) implies: I f  0 ~ A + B then 

IA  G B I  >~ I A I  § IB[ .  (3) 

To prove (3) l e t A o = A  w0,  Bo = B w 0 .  I f A ~ 0 ,  B ~ 0 t h e n  

I A @ B I  = I A 0 §  ~> I A o I - F  I B o l - - 1  = I A [ - ? I B [ .  

I f  A ~b 0, B ~b 0 then 

I A • B ]  = I A o + Z 0 l - - 1  > ~ l A o l q - l B o j - - 2 =  I A I + I B I .  

Together with Theorem 1 Scherk's result gives the following corollary. 

COROLLARY TO THEOREM 1. Let  G be a finite Abelian group, A t ..... Ak 
subsets o f  G, and let I A t  I + "'" + I Ak I ~ I G I �9 Then either 

Ai | A~ | "" | Ak = G (4) 
OF 

0 e A2 | "" | Ak.  (S) 

By applying the D transform of [2, p. 5] one can refine the corollary in 
various ways. We can for instance set 

A * = A l n A s  .... , A * = ( A l U A s . . . u A j _ ~ ) c ~ A ~ .  

Then either (4) holds or 

0 ~ A *  @-" @ A * .  

THEOREM 2. Let  G be a group o f  prime order p and let aa ,..., a~+k-t be a 
sequence o f  p q- k --  1 elements o f  G such that no element is repeated more 
than k times. Let  b be any element o f  G. Then we can f ind  aq ..... ai~ such 
that i a < ... < ik and 

aq -k "'" -F ai~ = b. 

PROOF: We partition the elements a 1 ,..., a~+k_l into k non-empty sets 
A 1 , . . . ,  A k . By the theorem of Cauchy-Davenport  [2, p. 3] we have 

/c 

I a t  -k "" -k Ak l ~> ~ [ A j l - - ( k - - 1 ) = p  
j=t 

which proves Theorem 2. 
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Erd6s, Ginzburg,  and Ziv [l] proved the following theorem: I f  G is a 

solvable group (written additively), I G ] = v and a 1 ..... a2~-1 is a sequence 

o f  2v - -  1 elements  o f  G then one can a lways  f i n d  v distinct indices il ..... iv 
such that 

ai~ + "'" + ai~ = O. 

The major  por t ion of  [1] is devoted to the p r o o f  for the case v = p a prime, 
while the induction to all solvable groups is comparat ively easy. The 
theorem of  Erd(Ss, Ginzburg,  and Ziv for  a group of  prime order p is 
however an immediate consequence of  Theorem 2 with k = p. 
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