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a b s t r a c t

In order to determine the similarity between two planar shapes, which is an important
problem in computer vision and pattern recognition, it is necessary to first match the two
shapes as well as possible. As sets of allowed transformation to match shapes we consider
translations, rigid motions, and similarities. We present a generic probabilistic algorithm
based on random sampling for matching shapes which are modelled by sets of curves.
The algorithm is applicable to the three considered classes of transformations. We ana-
lyze which similarity measure is optimized by the algorithm and give rigorous bounds on
the number of samples necessary to get a prespecified approximation to the optimalmatch
within a prespecified probability.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Matching two geometric shapes under certain transformations and evaluating their similarity is one of the central prob-
lems in computer vision systems where the evaluation of the resemblance of two images is based on their geometric shape
and not color or texture. Because of its significance the problem has been widely covered in the literature; see [4,16] for
surveys.

We assume that shapes aremodelled by sets of plane curves. As possible classes of transformationswewill consider trans-
lations, rigid motions (rotation and translation) and similarities (rotation, scaling, and translation). Our objective is to develop
an algorithm which allows an efficient implementation and whose result comes close to human similarity perception.

Several similarity measures and algorithms are known for matching two curves, especially polygonal curves. One of the
most widely investigated similarity measures is the Hausdorff distance which is defined for any two compact sets A and B.
Alt et al. describe in [2,4] efficient algorithms for computing the Hausdorff distance andminimizing it under translations and
rigid motions for arbitrary sets of line segments. One of the drawbacks of the Hausdorff distance is that it is very sensitive
to noise. A few similarity measures are defined for pairs of curves, which capture the relative course of two curves: Fréchet
distance [3], turning function distance [8], and dynamic time warping distance [13]. There are few generalizations of those
distances to sets of curves: In [5] a generalization of the Fréchet distance to geometric graphs is given, and in [22] Tanase
et al. describe an algorithm formatching a set of polygonal curves to a single polygon. A similaritymeasurewhich is designed
for sets of curves is the reflection visibility distance [15]. The reflection visibility distance is robust against different kinds of
disturbances but is expensive to compute.

The method we describe and analyze in this paper is close to an intuitive notion of ‘‘matching’’, i.e., it finds one or more
candidates for the best transformations, that when applied to the shape B map the most similar parts of the two shapes to
each other. The major idea is to take random samples of points from both shapes and give a ‘‘vote’’ for that transformation
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(translation, rigid motion, or similarity) matching one sample with the other. If that experiment is repeated frequently, the
distribution of votes in the transformation space allows us to approximate a certain probability function underlying the
random experiment. Maxima of this function indicate which transformations give the best match between the two shapes.
Thematching step of our algorithm is, therefore, a voting scheme. The idea of random sampling for geometric problemswith
an analysis similar to ours has been used in a more general context by Cheong et al. in [11] and a similar random sampling
method for symmetry detection in 3D shapes with a different clustering method was described by Mitra et al. in [17].

Related methods in the image processing community are the generalized Hough transform, also called pose clustering
[1,21], the Radon transform [23] and the RANSAC algorithm [14].

In contrast to thosemethods we do not consider a discrete set of features that describe shapes, but workwith continuous
curves. Our method is independent of the choice of the parameterization and the discretization grid in the transformation
space.

The algorithm itself is a quite straightforward heuristic. The challenge lies in its exact analysis. On the one hand it is
not obvious what is really being computed by the algorithm, i.e., what distance or similarity function between shapes is
optimized. We first clarify this question. In addition, we give rigorous bounds on the runtime (number of experiments)
necessary to obtain the optimal match within a certain approximation factor with a prespecified probability. We consider
these insights as the major contribution of this paper, the analysis leads to a better understanding of this kind of heuristic.

In fact, our algorithm is not meant to be directly applied to shape comparison problems arising in practice. For practical
purposes it makes sense to modify our technique and enhance it with heuristic methods, which we did (see [6]) within a
shape retrieval system developed in the EU-funded project PROFI. Its major application, in cooperation with the industrial
PROFI-partner Thomson–Compumark in Antwerp, is to identify potentially illegal similarities between new trademark
designs and existing trademarks of various companies in a large trademark database.

2. The probabilistic algorithm

Weassume that shapes aremodelled by finite sets of rectifiable curves in the plane, and that for each curve a randompoint
under uniform distributionwith respect to curve length can be generated in constant time. This is the case for line segments,
which would be the most common representation in practice, but also for curves for which the natural parameterization,
i.e., their parameterization by arc length, is explicitly given.

Given two shapes A, B ⊂ R2, a class of allowed transformations T (the ‘‘transformation space’’) and a tolerance parame-
ter δ, we want to find a transformation t ∈ T which lets the transformed image of B, t(B), ‘‘match best ’’ Awithin a tolerance
of δ. The exact definition of the quality measure by which a ‘‘best match’’ is defined will be given in Section 3. We follow
an intuitive notion: two shapes are similar if they can be mapped to each other in such a way that large parts of them are
close. We assume that the underlying metric in the plane (in the image space) is a piecewise algebraic function, e.g., an Lp
metric. Commonly used distancemeasures are Euclidean distance (L2), Manhattan distance (L1), or maximum distance (L∞).
A δ-neighborhood of a point p is defined as Uδ(p) =


x ∈ R2

| dist(x, p) ≤ δ

, where dist(x, p) is the distance with respect

to the chosen metric.
The idea of the probabilistic approach is quite simple. We first describe an algorithm for matching under translations:

1. Take a random point a from the shape A and a random point b from B and give one ‘‘vote’’ to the translation t whichmaps
b to a, that is t = a − b.

2. Repeat this random experiment many times.
3. For a prespecified neighborhood size δ return the points of T with the highest number of votes in their δ-neighborhood

as candidates for good transformations.

The idea behind this algorithm is that the transformations that map large parts of shapes to each other should have signifi-
cantly more votes in their δ-neighborhood than others. The size of the δ-neighborhood influences the quality of the match.

To extend this algorithm for matching under more complex transformations, we need a way to draw sample pairs and
interpret them as votes for transformations. Obviously, there are infinitelymany rigidmotions and similarities thatmap one
point to another. Thus, a pair of points does not give a vote for a unique rigid motion, or a unique similarity map. Therefore,
random samples SA, SB of the shapes A and B, that togethermake a sample pair in the first step of the algorithm, should contain
more than one point. The size of a random sample and the type of its elements, i.e., the number of points, or possibly a point
and a direction vector, depends on the class of transformations allowed as described below. Further, we denote by SB

t
−→
δ

SA
the fact that the transformation t maps every element of SB into the δ-neighborhood of the corresponding element of SA. A
‘‘vote’’ generated by a pair of random samples SA and SB is called a δ-region in the transformation space, which is defined as
the set of transformations t such that SB

t
−→
δ

SA. For transformation classes other than translations the shape of a δ-region

depends on the sample pair generating it.
Before giving a generic variant of the algorithm we briefly describe the random samples and δ-regions for the basic

transformation classes:
For translations we use a sample pair (a, b), with points a ∈ A and b ∈ B chosen randomly, in one random experiment
to determine uniquely a translation mapping one point to the other. Thus, a random sample consists of a single randomly
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Fig. 1. δ-region in the space of rigid motions corresponding to a pair of points a ∈ A and b ∈ B. (a) Points a and bwith translation vectors corresponding to
some rotated positions of b. (b) Projection of the δ-region to the translation plane for δ = 1. (c) δ-region in the 3-dimensional space of rigid motions.

selected point of each shape, SA = a ∈ A and SB = b ∈ B. The transformation space is two-dimensional and a δ-region
in translation space corresponding to the sample pair (a, b) is a δ-neighborhood of the translation vector t = a − b with
respect to the same metric as used for points in image space.

A rigid motion t = (α, vx, vy) is defined by a rotation angle α and a translation v = (vx, vy) and maps a point b ∈ R2 to
the point t(b) = Mb + v, where

M =


cosα − sinα
sinα cosα


=


m1 −m2
m2 m1


is the rotation matrix. Thus, the transformation space for rigid motions is three-dimensional. For computational reasons we
consider the four dimensional parameterization by (m1,m2, vx, vy) where m1 = cosα and m2 = − sinα and restrict it to
a three dimensional algebraic variety by the constraint m2

1 + m2
2 = 1, i.e., det(M) = 1. Thus, we consider the space of rigid

motions as a three dimensional variety in the four dimensional space of similarity transformations.
Obviously, for any two points a, b ∈ R2 and every rotation angle α there exists a unique translation vector vα , such that

the rigid motion t = (α, vα) maps b to a. Therefore, we use a single random point of each shape a ∈ A and b ∈ B as a sample
in one random experiment and record the δ-region {(M, v) | dist(M · b + v, a) ≤ δ}, where all matricesM of the form given
above are allowed.

In the three dimensional transformation space parameterized by the rotation angle and the translation vector the δ-
region corresponding to a sample pair (a, b) in this approach has the shape of a spiral tube extending from 0 to 2π in the
direction of the rotation axis, where for each value α ∈ [0, 2π ] the cross-section parallel to the translation plane has the
shape of the δ-neighborhood with respect to the chosen metric in image space as illustrated in Fig. 1.

For similarity maps the transformation space is four-dimensional. A similarity map t = (α, k, vx, vy) is defined by a
rotation angle α, a scaling factor k, and a translation vector v = (vx, vy). t maps a point b ∈ R2 to a point t(b) = Mb + v,
where

M =


k cosα −k sinα
k sinα k cosα


=


m1 −m2
m2 m1


.

A random sample from each shape contains two points: SA = (a1, a2), where a1, a2 ∈ A, and SB = (b1, b2), where
b1, b2 ∈ B. Thus, a sample pair in the first step of the algorithm is the pair of point pairs. The sample pair (SA, Sb) determines
a unique similarity transformation t mapping b1 to a1 and b2 to a2. Although a standard way to parameterize the space of
similarity transformations is by (α, k, vx, vy), for computational reasons it is more convenient to use the parameterization
(m1,m2, vx, vy) where m1 = k cosα and m2 = k sinα. For a general piecewise algebraic metric a δ-region is then bounded
by algebraic surfaces.

Generic probabilistic algorithm. Nowwe can define the shapematching problem in a generic way: Given two shapes A and B,
a class of allowed transformations T and a certain tolerance parameter δ, we want to find a transformation t ∈ T which
lets t(B) in some sense match best Awithin a range of δ. We can solve an instance by the following probabilistic algorithm:

1. Repeat the following experiment N times: Take random samples SA from A and SB from B and record the corresponding
δ-region in the space of transformations T .

2. Return the points of T covered by the largest number of δ-regions as candidates for good transformations.

In the next section we define and analyze a suitable probability function in transformation space underlying the exper-
iments made by the algorithm and provide the bounds on the number of experiments needed to approximate the value of
the maximum of this function within a certain factor with a prespecified probability.
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Fig. 2. The maximum of the measure of the set Mδ(t) for shapes A and B2 is approximately twice the maximum measure of the set Mδ(t) for shapes A and
B1 , whereas the maximum values of pδ(t) are approximately equal for both pairs of shapes.

Fig. 3. Matching A (dashed lines) with B (solid lines) with large (left) and small (right) values of δ and the graphs of the corresponding functions pδ(t) in
translation space.

3. Analysis of the probabilistic algorithm

3.1. Hit probability in transformation space

In this sectionwe determinewhatmeasure of resemblance between shapes is approximated by the algorithm and bound
the number of experiments needed to get an ε-approximation of the maximum of that measure.

First we introduce some formal notation and definitions. Let Ω denote the sample space, i.e., the set of all sample pairs
(SA, SB). By the definition of our random experiment, the samples of two shapes are drawn independently and uniformly,
therefore, we have a uniform distribution on Ω .

Let T ⊂ Rd denote the d-dimensional transformation space. We define a function pδ : T → R as the probability
that a transformation vector t is covered by a δ-region corresponding to a randomly selected sample pair. We will call
pδ(t) the hit probability of transformation t . The set of sample pairs yielding a δ-region that covers a transformation t is
Mδ(t) = {(SA, SB) ∈ Ω | SB

t
−→
δ

SA}, and pδ(t) =
|Mδ(t)|

|Ω|
, where |·| denotes the Lebesgue measure in the sample space.

Consequently, we have
Remark 1. The hit probability pδ(t) in the transformation space has its maximum at the transformation maximizing the
Lebesgue measure of the setMδ(t) defined as

Mδ(t) = {(SA, SB) ∈ Ω | SB
t

−→
δ

SA}.

We can interpret the Lebesgue measure of the set Mδ(t) as a measure of resemblance associated with a transformation t .
Intuitively, this should reflect the perceived notion of ‘‘closeness’’ of two shapes. However, if we want to compare several
pairs of shapes, pδ(t) appears to be a better measure of similarity. Due to normalization by the total measure of the sample
space, pδ(t) is invariant under scaling and is less sensitive to multiple occurrences of curves within one shape, as illustrated
in Fig. 2.

Let us discuss the meaning of Remark 1 for the different classes of transformations.

Translations and rigid motions. The sample space is in this case Ω = A× B andMδ(t) = {(a, b) ∈ A× B | dist(a, t(b)) ≤ δ}.
To maximize the measure of this set means to find a transformation that maps largest possible parts of the shapes into
proximity of each other.

In the case of translations, it can be observed that for δ → 0 the resulting probability distribution corresponds to the
normalized generalized Radon transform of the shape A with respect to shape B as defined in [23].

Similarity maps. In the case of similarity maps a sample taken from one shape consists of two random points, the sample
space is thenΩ = A2

×B2. By Remark 1 the similarity mapwithmaximum coverage by the δ-regions is the onemaximizing
the measure of the set Mδ(t) =


(a1, a2, b1, b2) ∈ A2

× B2
| dist(t(b1), a1) ≤ δ and dist(t(b2), a2) ≤ δ


. This measure is

less intuitive with respect to matching shapes than the one in the previous cases. A simple consideration shows, however,
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(a) Nearly congruent shapes yield a function pδ(t) with a clear maximum.

(b) Shape B occurs twice in A which results in two (almost) equally large local maxima of pδ(t).

(c) A rough complete-partial match of horse and carriage shapes from the MPEG7-ShapeB dataset results in a less distinct maximum of pδ(t)
than in the case of nearly congruent shapes.

Fig. 4.Matched shapes and the corresponding function pδ(t) in translation space.

that maximizing the measure ofMδ(t) also means to maximize the measure ofM ′

δ(t) = {(a, b) ∈ A × B | dist(t(b), a) ≤ δ}.
Themeasure of the setMδ(t) is exactly

M ′2
δ (t)

 =
M ′

δ(t)
2. Since themeasure of a set is always non-negative, both functions

have maxima at the same values of t . So the same, intuitively understandable measure, is maximized as in the cases of
translations and rigid motions.
The role of the parameter δ. In the description of the algorithm we introduced a parameter δ, which defines how far apart
two samples are allowed to be and still be considered close. The choice of δ, therefore, should be specified by the user and
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controls the trade-off between the quality of match and the size of the parts matched. With a small value of δ our algorithm
would find a transformation which maps nearly congruent parts of two shapes to each other. A large value of δ leads to a
transformation which gives a rough match but for larger parts of the shapes; see Fig. 3.

For nearly congruent shapes, however, a small δ already leads to a complete matching, see Fig. 4(a). If shape B or parts
of it are nearly congruent to some parts of A, then with a small value of δ we detect these occurrences as shown in Fig. 4(b)
and (c).

For some applications it might be worth to consider several local maxima of the distribution, since they can give us
additional information about the shapes. For example, multiple local maxima of the distribution, that are almost equally
good, indicate multiple occurrences of one shape, or its parts, depending on the value of the similarity measure, within the
other; see Fig. 4(b).

3.2. Approximation of the hit probability

In this section we determine how many samples are needed in order to approximate the function pδ(t) in the transfor-
mation space within a certain accuracy ε with high probability. We also analyze the total running time of the algorithm.

In order to find a transformation covered by the highest number of δ-regions corresponding to the samples, we consider
the arrangement of these δ-regions, i.e., the subdivision of the transformation space inducedby the boundaries of the regions.
All transformations in the same cell of the arrangement have the same region coverage. Therefore, it is sufficient to consider
one point in each cell of the arrangement, which we will call a witness point. Then we can traverse the arrangement and
take the witness points with the highest number of δ-regions that contain this point.

We will show that the fraction of δ-regions covering the deepest cell of the arrangement gives a good approximation
to the maximum value of the hit probability pδ(t). The number of necessary samples is expressed in terms of the allowed
approximation error ε and the maximally allowed probability of failure η. Let the random variable Z(t) denote the number
of δ-regions produced by N random experiments that cover t . Let p̃δ(t) denote the ratio of the number of the observed
δ-regions that cover t to the total number of samples, that is p̃δ(t) =

Z(t)
N . p̃δ(t) is an estimate of pδ(t).

Using Chernoff bounds, see [18], and the technique described by Cheong et al. in [11] we will bound the relative error
for the estimate of the hit probability in the transformation space. The following theorem bounds the number of samples
needed for an approximationwith a relative error atmost εwith probability of failure atmost η for all transformation classes
considered in this work:
Theorem 1. Let A and B be two shapes, i.e., finite sets of rectifiable curves with total lengths LA, LB, respectively, and δ > 0
be a given tolerance value. Assume that tapp is a transformation maximizing p̃δ(t) after some number N of random experiments
and topt is a transformation maximizing pδ(t), and let m = max(LA, LB, nδ), where n is the total number of curves in A and B.

Then for all ε, η, 0 < ε, η < 1, there exists a constant c such that for N ≥ c m2

ε2δ2
ln

max( 1

η
, m2

ε2δ2
)

the probability thatp̃δ(tapp) − pδ(topt)

 ≥ εpδ(topt) is at most η.
For the proof of the theorem we first show that for a fixed transformation t the probability of a bad estimate of pδ(t) falls
exponentiallywithN (Lemma2). Thenwedefine some experiment dependent transformations t and show that also for those
t the probability of a bad estimate falls exponentially with N (Lemma 3). Finally, we argue that it is sufficient to compute the
estimate p̃δ for a finite set of experiment dependent transformations t in order to get a good approximation of themaximum
of pδ . These considerations are valid for all transformation classes considered.
Lemma 2. For all 0 < ε, ν < 1, for a sample set S of size N, and any transformation represented by some vector t ∈ Rd the
following holds:

• If pδ(t) ≤ ν then P(p̃δ(t) > (1 + ε)ν) ≤ e−
ε2νN

3 .
• If pδ(t) > ν then P

p̃δ(t) − pδ(t)
 > εpδ(t)


≤ 2e−

ε2νN
4 .

Proof. If pδ(t) ≤ ν:

P(p̃δ(t) > (1 + ε)ν) = P(Z(t) > (1 + ε)νN)

= P

erZ(t)

≥ er(1+ε)νN for all r > 0

≤
E

erZ(t)


er(1+ε)νN

by the Markov inequality [18]

≤
e(er−1)pδ(t)N

er(1+ε)νN
since r ≤ er − 1

≤


e(er−1)

er(1+ε)

νN

= (eε−(1+ε) ln(1+ε))νN for r = ln(1 + ε)

≤ e−
ε2νN

3 for 0 < ε < 1.
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In the case pδ(t) > ν:

P
p̃δ(t) − pδ(t)

 > εpδ(t)


= P(|Z(t) − pδ(t)N| > εpδ(t)N)

= P(|Z(t) − E(Z(t))| > εE(Z(t)))

≤ e−
ε2E(Z(t))

2 + e−
ε2E(Z(t))

4

by the simplified Chernoff bound [18, Theorems 4.4,4.5]. Since pδ(t) ≥ ν, we get

P
p̃δ(t) − pδ(t)

 > εpδ(t)


≤ 2e−
ε2pδ (t)N

4 ≤ 2e−
ε2νN

4 ,

which concludes the proof. �

Weassociatewith each cell C of the arrangementA of δ-regions a so-calledwitness point, i.e., a point that lies on a lowest-
dimensional face F of A that contributes to the boundary of C . Observe, that F is in general a connected component of the
intersection of k boundaries of δ-regions with 1 ≤ k ≤ d. The dimension of F is d − k. Thus, by considering all k-subsets
of δ-regions for all k, 1 ≤ k ≤ d, and taking a point in each connected component of the intersection of those k region
boundaries we can be sure to have at least one witness point for each cell of the arrangement.

Since we assume that the distance metric is a piecewise algebraic function of constant degree, the number of connected
components of every intersection of k δ-region boundaries is bounded by a constant. Thus, the total number of witness
points is at most c

d
k=1

N
k


≤ cNd, where c is a constant.

A witness point t is not independent of all N experiments the algorithm performs and their corresponding δ-regions, but
it depends only on a few of them, namely at most d. Since t is independent of the remaining N − d experiments, we can
apply Lemma 2 to t and those experiments. We elaborate on this idea in the following lemma.

Lemma 3. For all ε, ν , 0 < ε, ν < 1, and a sample set S of size N ≥
2d
εν

+ d, for each witness point t ∈ Rd of the arrangement
of the δ-regions corresponding to the samples in S, the following holds:

• If pδ(t) ≤ ν then P(p̃δ(t) > (1 + ε)ν) ≤ e−
ε2(N−d)ν

12 .

• If pδ(t) > ν then P
p̃δ(t) − pδ(t)

 > εpδ(t)


≤ 2e−
ε2ν(N−d)

16 .

Proof. Observe that Lemma 2 cannot be applied to the witness points directly since they depend on the experiment, i.e.,
the chosen samples. However, since they depend on at most d samples, the remaining ≥ N − d samples are ‘‘random’’ for
them and we can apply Lemma 2 replacing N by N − d. More specifically:

Let S1, . . . , Si ∈ S, 1 ≤ i ≤ d, be the sample pairs whose δ-regions induce the witness point t . Consider the sample set
Q = S \ {S1, . . . , Si}, |Q | = N − i. The point t and the sample set Q are independent. Let ZQ (t) and ZS(t) denote the number
of δ-regions that cover t in sample sets Q and S, respectively, and p̃δQ (t), p̃δS(t) denote the estimate of the hit probability
by sample sets Q and S, respectively, i.e., p̃δQ (t) = ZQ (t)/(N − i) and p̃δS(t) = ZS(t)/N .

Since we consider closed regions, ZQ (t) = ZS(t) − i, p̃δQ (t) ≤ p̃δS(t) and

p̃δQ (t) =
ZS(t) − i
N − i

=
ZS(t)
N

N
N − i

−
i

N − i
≥ p̃δS(t) −

i
N − i

≥ p̃δS(t) −
d

N − d
.

Therefore,p̃δS(t) − pδ(t)
 ≤

p̃δQ (t) − pδ(t)
+ p̃δS(t) − p̃δQ (t)

 ≤
p̃δQ (t) − pδ(t)

+ d
N − d

.

In case pδ(t) ≤ ν:

P(p̃δS(t) > (1 + ε)ν) ≤ P

p̃δQ (t) +

d
N − d

> (1 + ε)ν


= P


p̃δQ (t) > (1 + ε)ν −

d
N − d


≤ P


p̃δQ (t) >


1 +

ε

2


ν


for N ≥
2d
εν

+ d

≤ e−
(ε/2)2(N−d)ν

3 by Lemma 2

= e−
ε2(N−d)ν

12
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If pδ(t) > ν:

P
p̃δS(t) − pδ(t)

 > εpδ(t)


≤ P
p̃δQ (t) − pδ(t)

+ d
N − d

> εpδ(t)


≤ P
p̃δQ (t) − pδ(t)

 >
ε

2
pδ(t)


for N ≥

2d
εν

+ d

≤ 2e−
(ε/2)2ν(N−d)

4 by Lemma 2

= 2e−
ε2ν(N−d)

16 . �

In the above lemmata we used an additional parameter ν for the smallest value of pδ(t) which we want to approximate
well enough. Next, we eliminate this parameter:

Lemma 4. For any two shapes A and B of total lengths LA and LB, respectively, and for the following classes of transformations:
translations, rigid motions, and similarities, there exists a transformation t such that pδ(t) ≥

δ2

m2 , where m = max(LA, LB, nδ)
and n is the total number of curves in A and B.

Proof. Let sa denote a part of one of the curves of A of length δ if there exists one, otherwise sa denotes the longest curve
of A. The length of sa is at least LA

n ≤ δ in the second case. Similarly sb denotes a subcurve of length δ or the longest curve
of B with length at least LB

n ≤ δ. Let v denote the translation vector that maps the center of sb to the center of sa. For an
arbitrary point pa of sa and an arbitrary point pb of sb it holds that dist(pa, pb +v) ≤ δ, therefore v is covered by the δ-region
corresponding to pa, pb. Thus, in the case of translations sa × sb is a subset ofMδ(v) and

pδ(v) ≥
|sa × sb|

|Ω|
≥

min

δ2, δLA/n, δLB/n, LALB/n2


LALB

≥
δ2

m2
.

For rigid motions the same argument as above shows that the rigid motion t with rotation angle 0 and translation vector v
is covered by every δ-region corresponding to an arbitrary point in sa and an arbitrary point in sb.

In the case of similaritymaps, the shape B can be scaled by the factor δ
DB

, whereDB is the diameter of B, so that the diameter
of the scaled shape B is δ. If A contains a connected component of length at least δ, then we can place the scaled shape B in
such a way that for any point of a part of A of length δ the distance to any point of the scaled B is at most δ. Therefore, the

measure of the set Mδ(t) for that t is at least L2B · δ2. The corresponding value of pδ is pδ(t) =
|Mδ(t)|

|Ω|
≥

L2B·δ
2

L2AL
2
B

=
δ2

L2A
≥

δ2

m2 .

Otherwise, observe that the largest connected component of A must have length at least LA
n ≤ δ. For the transformation t

that maps the scaled B to the largest component of A the measure of Mδ(t) is then at least L2A
n2
L2B and pδ(t) ≥

1
n2

≥
δ2

m2 . �

Now we can prove Theorem 1:

Proof of Theorem 1. Any witness point lies on the boundary of a k-subset of δ-regions. Furthermore, any k-subset yields a
system of constantly many polynomial equations of constant degree. There are constantly many connected components of
the solution set of such system of equations, and with each connected component we associate a witness point. Therefore,
there are at most c0

d
k=1

N
k


≤ c0Nd witness points, where c0 is a constant. Then the probability that there exists a witness

point t with pδ(t) ≥ ν and
p̃δ(t) − pδ(t)

 > εpδ(t) or with pδ(t) < ν and p̃δ(t ′) > (1 + ε)ν is, according to Lemma 3,

at most c0Nd2e−
ε2ν(N−d)

16 . A straightforward calculation shows that for N ≥
c1
ε2ν

ln


1
ε2ν


with some suitable constant c1 this

value is at most e−
ε2ν(N−d)

32 , which is less than η for N ≥
32
ε2ν

ln 1
η

+ d. So the probability that there exists a witness point, for
which the estimate of pδ(t) is bad in the sense described above, is at most η/2 for

N ≥
c2
ε2ν

ln

max


1
η
,

1
ε2ν


(1)

for some constant c2. Observe, that this is a combinatorial result which does not depend on the spatial position of witness
points corresponding to a certain sequence of N experiments.

By Lemma 4 for any two shapes and the transformation classes considered there always exists a transformation t such
that pδ(t) ≥

δ2

m2 , where m = max (LA, LB, nδ). The maximum of pδ is then also greater or equal δ2

m2 and we can choose the

value ν as ν =
δ2

m2 .
Let t∗ be a witness point of the cell of the arrangement containing topt. Plugging the value of ν in formula (1) we obtain

that after

N = O


m2

ε2δ2
ln

max


1
η
,

m2

ε2δ2


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experiments for all witness points, in particular for t∗ and tapp, and additionally for topt it holds with probability at least
1 − η/2 that

p̃δ(t) − pδ(t)
 ≤ εpδ(t). Combining these error bounds we get

p̃δ(tapp) ≥ p̃δ(t∗) since tapp maximizes p̃δ(t)
= p̃δ(topt) for topt is in the cell witnessed by t∗

≥ (1 − ε)pδ(topt) with probability ≥ 1 − η/2

and

p̃δ(tapp) ≤ (1 + ε)pδ(tapp) with probability ≥ 1 − η/2
≤ (1 + ε)pδ(topt) since topt maximizes pδ(t)

Therefore,
p̃δ(tapp) − pδ(topt)

 ≤ εpδ(topt) with probability at least 1 − η. �

Running time. The running time of the algorithm consists of the time needed to generate N random samples denoted by
Tgen(n,N), where n is the number of curves in the shape, and the time needed to determine the depth of the arrangement
of N δ-regions denoted by Tdepth(N).

In order to generate a random point on one shape (set of curves) we proceed as follows: Let l1, l2, . . . be the lengths of
the single curves and L =


i li the total length of the set of curves. We consider the interval [0, L] and partition it into

subintervals of lengths l1, l2, . . .. Then after choosing a random value a in [0, L] we can determine by binary search in which
subinterval it is contained, which identifies one of the curves. The position of a within the subinterval gives a unique point
on this curve. Obviously, this procedure requires O(n) preprocessing time and O(log n) time to generate a random point.
Therefore, Tgen(n,N) = O(n + N log n).

For general metrics Lp and the considered classes of transformations the boundaries of δ-regions are algebraic
hypersurfaces. In order to determine the depth of the arrangement of N δ-regions we can generate a point in each cell
of the arrangement using the O(Nd+1)-time algorithm by Basu et al. [10], which computes a sample point from each cell of
a set of N hypersurfaces in Rd. As we have seen above, there are at most O(Nd) such sample points. Then we can determine
the depth of each of these points and thus the depth of the arrangement in Tdepth(N) = O(Nd+1) time.

Summarizing these results and using Theorem 1we obtain the following theorem for all three classes of transformations
considered:

Theorem 5. Let A and B be two shapes represented by finite sets of rectifiable curves in the plane and δ > 0 be the given tolerance
value. Let topt denote the transformation maximizing pδ(t), LA, LB the total lengths of the curves in A and B, respectively, n the total
number of curves in both shapes, and m = max(LA, LB, nδ). Then for all ε, η, 0 < ε, η < 1, there exists a constant c, such that for
N ≥ c m2

ε2δ2
ln

max( 1

η
, m2

ε2δ2
)

the generic probabilistic algorithm with probability at least 1 − η computes a transformation tapp

such that
p̃δ(tapp) − pδ(topt)

 ≤ εpδ(topt). Its runtime is O(n+N log n+Nd+1), where d is the dimension of the transformation
space.

The theorem states only that with high probability the numerical value obtained by p̃δ(tapp) is close to pδ(topt) which is a
measure for the closeness of the two shapes. tapp and topt need not be close in transformation space. But it is also easily
possible to derive that the transformation tapp is ‘‘good" in the sense that pδ(tapp) is close to the optimum, since p̃δ(tapp) is
close to pδ(tapp).

Observe that, at least for sufficiently small values of δ, the runtime of the algorithm depends much more on the param-
eters ε and η than on the combinatorial input size n, which is needed only in the preprocessing and the drawing of random
samples.

For translations in combination with convex algebraic distance functions and for similarities in combination with the L1
and L∞ metrics the running time of the algorithm is actually better than that stated in Theorem 5: In the case of translations,
the arrangement of δ-regions is an arrangement of pseudo-disks, which can be constructed straightforwardly in time O(N2).
During the construction of the arrangement we can keep record of the depth of the cells. Then at the end of the construction
algorithm we know the depth of the deepest cell. For similarities in combination with the L1 or L∞ metric the δ-regions in
transformation space are bounded by a constant number of 3-dimensional hyperplanes. Using the algorithmof Edelsbrunner
et al. [12] the arrangement of N such δ-regions can be constructed in O(N4) time.

For translations, further speed-up can be achieved in combination with the depth approximation algorithm by Aronov
and Har-Peled [9] resulting in running time Tdepth(N) = O(Nε−2 logN).

4. Problems, variants, and concluding remarks

Downscaling problem. The algorithm that we described for similarity transformations has a minor problem that could be
called ‘‘downscaling problem’’. On the one hand, as we observed in Lemma 4 a transformation t1 that scales the shape B
down to a shape of diameter δ and maps the scaled B to some position on the shape A has a measure of resemblance of
δ2

m2 . On the other hand, if the shapes A and B are similar, then the transformation t2 that matches best the shape B to the
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shape A has approximately the same measure of resemblance, since for every point b of B there is a segment sa(b) of A of
length (approximately) δ such that b is in the δ-neighborhood of every point in sa(b). Because of this overrating of shrinking
transformations some other, reasonable transformations are likely to be missed.

This problem can easily be avoided by setting a lower bound for the allowed scaling factor to some constant times δ
DB

,
where DB is the diameter of the shape B. Samples yielding a smaller scaling factor will be discarded. By this restriction
of the scaling factor we could achieve good experimental results. A similar problem arises in matching under affine
transformations, where the analogue to a lower bound on the scaling factor is a lower bound on the value of the determinant
of the linear transformation matrix.

Variants for rigid motions and similarities. We also considered some variants of random sample generation for rigid motions
and similarities, which we partially analyzed and tested experimentally.

For rigid motions, in addition to a point of the shape we take the (interpolated) direction of the tangent line at that point
and restrict the corresponding δ-region so that not only the points but also the sample directions are close. The idea behind
this approach is to reduce the search space.

For similarity transformations, a sample of one shape can alternatively consist of one point, the direction of the tangent
line at that point and the (possibly interpolated) curvature at that point instead of a sample consisting of two points. This
approach is not affected by the downscaling problem described above.

Both alternative approaches, for rigid motions and for similarities, are best suitable for shapes where the tangent slopes
actually contribute to the shape characterization, as opposed to shapes with noisy contours or shapes composed of many
sparse and small parts.

Higher dimensional matching problems. Although we did not carry it out in detail, we expect that the techniques used here
can be applied for matching higher dimensional objects, as well. In fact, analysis of an analogous variant of our method
has been carried out for two-dimensional regions in two-dimensional space, see [7], and an extension to objects of arbitrary
dimension in arbitrary-dimensional space should be possible. Practical experiments using the idea formatching triangulated
surfaces in three-dimensional space in the framework of a M.Sc. thesis [19] in our work group showed promising results.

Experimental evaluation. As was mentioned before, for practical purposes we enhanced this algorithm with various
heuristics (see [6]) but even with an implementation of the simple form presented here we observed reasonable matching
results in experiments with the MPEG-7 Core Experiment CE-Shape-1 dataset and a selection of trademark images. The
experiments show that the theoretical bounds on the number of experiments N are rather pessimistic. For simple images,
like most of the MPEG-7 Core Experiment CE-Shape-1 images, reasonable matching results were achieved with N between
1000 and 2000 for translations and N = 50 000 to 100 000 for rigid motions. For similarity transformations, after restricting
the range of the scaling factor for the reasons described above, good matching results could be obtained with 50 000 to
500 000 experiments depending on the structure of the shapes.

Concluding remarks. We presented a probabilistic approach for matching two shapes which comes close to the human
notion of match and is easy to implement. In this paper, we considered only three classes of transformations: translations,
rigid motions, and similarities, since those are the ones most commonly used for shape matching. However, our approach
is much more general. An elaborate description of the details of the algorithm and the analysis for homotheties, shear
transformations and affine transformations can be found in [20].

In general the probabilistic algorithm presented here is robust to noise, deformations and cracks in the representation of
shapes and does not require shapes to be modelled by a single contour line. It is applicable to the problem of complete and
partial matching.
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