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Abstract--Results of research into the use of fuzzy sets for handling various forms of uncertainty 
in optimization problems related to the design and control of complex systems are presented. Much 
attention is given to considering the uncertainty of goals that is associated with a multicriteria 
character of many optimization problems. The application of a multicriteria approach is needed to 
solve 

(1) problems in which solution consequences cannot be estimated on the basis of a single criterion, 
that involves the necessity of analyzing a vector of criteria, and 

(2) problems that may be considered on the basis of a single criterion but their unique solutions 
are not achieved because the uncertainty of information produces so-called decision uncertainty 
regions, and the application of additional criteria can serve as a convincing means to contract 
these regions. 

According to this, two classes of models ((X, M) and (X, R) models) are considered with applying the 
Bellman-Zadeh approach and techniques of fuzzy preference relations to their analysis. The consid- 
eration of (X, R) models is associated with a general approach to solving a wide class of optimization 
problems with fuzzy coefficients. This approach consists in formulating and analyzing one and the 
same problem within the framework of interrelated models with constructing equivalent analogs with 
fuzzy coefficients in objective functions alone. It allows one to maximally cut off dominated alterna- 
tives. The subsequent contraction of the decision uncertainty region is associated with reduction of 
the problem to multicriteria decision making in a fuzzy environment with its analysis applying one 
of two techniques based on fuzzy preference relations. The results of the paper are of a universal 
character and are already being used to solve problems of power engineering. @ 2002 Elsevier Science 
Ltd. All rights reserved. 

Keywords-uncertainty factor, Multicriteria optimization problems, Bellman-Zadeh approach, 
Fuzzy coefficients, Fuzzy preference relations. 

1. INTRODUCTION 

In the process of posing and solving a wide range of problems related to the design and control 
of complex systems, one inevitably encounters diverse kinds of uncertainty. Taking into account 
the uncertainty factor in shaping the mathematical models serves as a means for increasing their 
adequacy and, as a result, the credibility and factual efficiency of decisions based on their analysis. 

Investigations of recent years show the utility of applying fuzzy set theory [l] for considering 
diverse kinds of uncertainty. Its use in problems of optimization character offers advantages 
of both fundamental nature (the possibility of validly obtaining more effective, less “cautious 
solutions”) and computational character [2]. 

The uncertainty of goals is the notable kind of uncertainty that is associated with a multicriteria 
character of many optimization problems. It is possible to classify two types of problems, which 
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need the use of a multicriteria approach [3]: 

- problems in which solution consequences cannot be estimated on the basis of a single 

criterion: these problems are associated with the analysis of models including economic as 

well as natural indices (when alternatives cannot be reduced to the comparable form) and 

also by the need to consider indices whose cost estimates are hampered or impossible, 

- problems that, from the substantial point of view, may be solved on the basis of a single 

criterion; however, if the uncertainty of information does not allow one to obtain a unique 

solution, it is possible to reduce these problems to multicriteria decision making; the use of 

additional criteria (including the criteria of qualitative character) can serve as a convincing 

means to contract the decision uncertainty regions [4]. 

In accordance with these types of problems, two classes of models (so-called (X, M) and (X, R) 

models) may be constructed. Their analysis is associated with the application of the Bellman- 

Zadeh approach and techniques of fuzzy preference relations, which are the main subject of the 

present paper. 

2. BELLMAN-ZADEH APPROACH AND MULTICRITERIA 
OPTIMIZATION PROBLEMS 

When analyzing (X, M) models, a vector of objective functions F(X) = {Fi(X), . . . , F,(X)} 

is considered, and the problem consists in simultaneous optimizing all objective functions (local 

criteria), i.e., 

&(X) -+ extr, 
XEL 

p=l,...,q, (1) 

where L is a feasible region in Rn. 

The first step in solving problem (1) is associated [5] with determining a set of Pareto optimal 

solutions R c L, which is to include the solution X0 of the problem. The construction of fl c L 

is useful for reducing a number of alternatives. However, it does not permit one to obtain unique 

solutions. It is necessary to choice a particular Pareto optimal solution on the basis of additional 

information of a decision-maker (DM). It is possible to classify three approaches to using this 

information [6]: a priori, a posteriori, and adaptive. 

When analyzing multicriteria optimization problems, it is necessary to solve some questions 

related to normalizing criteria, selecting principles of optimality and considering priorities of the 

local crciteria. The solution of these questions and, therefore, developing multicriteria methods 

is carried out in the following directions [5,6]: scalarization techniques, imposing constraints on 

criteria, utility function method, goal programming, and using the principle of guarantee result. 

Without discussion of these directions, it is necessary to point out the validity and advisability 

of using the direction based on the principle of guarantee result [7]. 

At present much attention is given to rational using additional information of DM and devel- 

oping interactive systems to solve multicriteria problems. When applying the adaptive approach, 
a procedure of improving the solution is realized as a result of transition from Xt E Sl c L to 

Xz+, E R c L with considering information 1, of DM. 

A drawback of existing interactive systems is associated with their attachment to the sole form 

of additional information representation. In many cases, DM has more spacious information 
reflecting his or her preferences and reducing time of the solution search. Thus, the development 

of adaptive interactive decision making systems (AIDMS) allowing to perceive information on a 

limited language of DM is important. 

The lack of clarity in the concept of “optimal solution” is the basic methodological complexity 
in solving multicriteria problems. When applying the Bellman-Zadeh approach [8] for analyzing 

(X, M) models, this concept is defined with reasonable validity: the maximum degree of imple- 

menting all goals serves as a criterion of optimality. This conforms to the principle of guarantee 

result and provides a constructive line in obtaining harmonious solutions [9]. Furthermore, the 
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Bellman-Zadeh approach permits one to realize an effective (from the computational standpoint) 

as well as rigorous (from the standpoint of obtaining solutions X0 E R c L) method of analyzing 

multicriteria optimization models [9,10]. F inally, its use allows one to preserve natural measure 

of uncertainty in decision making and to take into account indices, criteria, and constraints of 

qualitative (contextual) character. 

When using the Bellman-Zadeh approach, each of objective functions FP(X), X E L, p= 1,. , . , q 

of problem (1) is replaced by a fuzzy objective function or a fuzzy set 

A, = ix, pA,(X)h XEL, p=l,..., q, (2) 

where PA,>(X) is a membership function of A, [l]. 

As it is shown in [8], a fuzzy solution D with setting up the fuzzy sets (2) is turned out as a 

result of the intersection D = n& A, with a membership function 

kmcx) = A PA,(x) = p=yi,n qkA,(X), 
p=l 

> .., 
x E L. (3) 

Using (3), it is possible to obtain the solution X0, which provides us with the maximum degree 

of belonging 

maxPD(X) = Fey ,=T’,n qPAp(x) (4) 7 > 

to D, and problem (1) is reduced to 

(5) 

To obtain the solution (5), it is necessary to build the membership functions PA,,(X), p = 

1,. . . , q. These membership functions may be considered as acceptable if they can convincingly 

reflect a degree of achievement of the “own” optimums by the corresponding Fp(X), X E L, 

p= l,..., q. This is satisfied by the use of the membership functions 

Fp(X) - ~2~ Fp(X) At, 
PA,(x) = 

~~yFp(x) - ~2 Fp(X) 
1 

(6) 

for objective functions, which must be maximized, or by the use of the membership functions 

(7) 

for objective functions, which must be minimized. Other types of acceptable membership func- 

tions are considered in [9]. 

In (6) and (7), X,, p = 1,. . . , q are importance factors for the corresponding objective functions. 

The construction of (6) or (7) d emands to solve the following problems: 

G(X) -+ min, 
XEL (8) 

G(X) + max, 
XEL (9) 

. . 
providmg X,” = argmmxeL p F (X) and X,“” = argmaxxeL Fp(X), respectively. 

Thus, the solution of problem (1) on the basis of the Bellman-Zadeh approach demands analysis 
of 2q + 1 monocriteria problems (8), (9), and (4), respectively. 
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As indicated above, the solution of problem (1) must belong to the Pareto set R c L. In other 

words, it is necessary (from the formal standpoint) to consider the membership function 

where 

pi = min ,=yin qPA,(x)~~T(x) 7 
,.. 3 

cl7r(X) = 
{ 

1, ifXER, 

0, if X 4 a. 

Taking this into account, it should be noted that the corresponding construction of procedures 

for solving problem (4) provides the line of obtaining X0 E R c L in accordance with (10). 

Besides, there are theoretical bases [lo] indicating that the fuzzy solution D accords well with 

the set IR c L for a wide class of membership functions PA,(X). Thus, it can be said about 

equivalence of Jim and 1_l0 (X), that makes it possible to give up the necessity of implementing 

a cumbersome procedure of determining the set fl c L. 

Finally, the existence of additional conditions of qualitative character reduces (5) to 

(11) 

wherepA,(X),XEL,p=q+i ,..., s are the membership functions of fuzzy values of linguistic 

variables [l], which reflect additional conditions (indices, criteria and/or constraints of qualitative 

character). 

There are attempts to use the product operation as well as other aggregation operators in 

place of the min operation in (5) and (11). However, investigations (for example, [ll]) show the 

validity of applying min operation. Besides, our computing practice shows that its use provides 

the most harmonious solutions [3]. 

The use of the Bellman-Zadeh approach in multicriteria optimization has found wide appli- 

cations in solving power engineering problems [3,12]. For example, it is possible to distinguish 

a problem of power and energy shortage (natural or associated with the advisability of load 

management) allocation. This problem is applicable to regulated and deregulated (conditions of 

energy markets) environments and is to be analyzed as the technical, economical, ecological, and 

social problem. In addition, when solving the problem, it is necessary to account for considera- 

tions of creating incentive influences for consumers. From these points of view, existing methods 

of its solution have drawbacks [9]. Their overcoming is possible on the basis of formulating the 

problem within the framework of the multicriteria model (1) (that includes linear, fractional 

and/or quadratic functions [9]) with 

XER~IO<X~<A~, &A 
i=l 

(12) 

where X = (xi,. . . ,x,,) is the sought for a vector of limitations, Ai is the permissible value of 
limitation for the ith consumer, A is a total value of limitatios for all customers considered in 

planning or control. 
The AIDMS has been developed to solve problem (l),( 12). Its calculating kernel destined for 

obtaining X0 on the basis of (5) or (11) is associated with a nonlocal search that is a modification 

of the Gelfand’s and Tsetlin’s “long valley” method [13]. The AIDMS includes a procedure for 
constructing a term-set [l] and membership functions of the linguistic variable Q-Limitation 

for Consumer (the initial available term-set is T(Q) = (Near, Approximately, Slightly Less, 
Considerably Less, Slightly More, Considerably More)) to provide DM with the possibility to 

take into account conditions, which are difficult to formalize. Furthermore, the AIDMS includes 

diverse procedures for forming and correcting the vector X,= (Xi, . . . , A,) of importance factors. 
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These procedures are oriented to the individual DM as well as to the group DM. In particular, one 

of the procedures is associated with processing of the results of paired qualitative comparisons 

of the importance for different goals (objective functions). The use of this type of information 

is rational because psychological experiments [14] show that DM is faced with difficulties in 

direct estimating the importance factors. In accordance with [14], DM is to indicate which 

among two goals is more important and to estimate his or her perception of distinction using 

a rank scale. This scale includes the following ranks: Identical Significance, Weak Superiority, 

Strong Superiority, Evident Superiority, and Absolute Superiority. The comparisons allow one 

to construct the matrix [bpt], p, t = 1,. . . , q. The components of the eigenvector corresponding 

to the maximum eigennumber of the matrix (normalized in a certain way, if necessary) can serve 

as estimates for X,, p = 1,. . . , q. 

Among other applications of the Bellman-Zadeh approach, it is possible to indicate the follow- 

ing. As it is shown in [15], there is a deep connection between production rules used in fuzzy 

control technology and multicriteria optimization models. This opens up new ways for tuning 

fuzzy models applying the Bellman-Zadeh approach. 

3. OPTIMIZATION PROBLEMS WITH FUZZY COEFFICIENTS 

Numerous problems related to the design and control of complex systems [4,16] may be formu- 

lated as follows 

maximizeP(s~,. . . ,2,), (13) 

subject to the constraints 

fijh,... ,%) c fij7 j=l ,*..,m. (14) 

The objective function (13) and constraints (14) include fuzzy coefficients, as indicated by the 

N symbol. 

Given the maximization problem (13),(14), we can state the following problem: 

minimize F(x~, . . . ,2,), (15) 

subject to the constraints (14). 

A possible approach to handling constraints of form (14) is proposed in [4]. This approach 

involves approximate replacement of each of the constraints of form (14) by a finite set of deter- 

ministic (nonfuzzy) constraints, represented in the form of inequalities; these can be formulated 

readily, but with considerable increase in the dimension of the problem being solved. However, 

the principle of explicit domination [4], realized using the method of normalized functions [17], 

substantially reduces the dimensionality of the resulting equivalent nonfuzzy analog before so- 

lution of the problem commences. According to the physical essence of the problem solved, we 

may go over the constraints with fuzzy coefficients (14) to constraints 

Sjh,... ,4 5 bj, j=l , . . . , d’ 2 m, (16) 

or to constraints 

Sj(Sl,. . . 7~) 2 bj, j=l , . . . , d” 2 m. (17) 

The solution of problems with fuzzy coefficients in the objective functions alone is possible 

by a modification of traditional mathematical programming methods [2,4]. In particular, it is 

possible to solve problem (13) with satisfying the constraints (16) as well as problem (15) with 

satisfying the constraints (17). As an example of these problems, we can consider the analysis of 
fuzzy discrete optimization models. 
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The desirability of allowing for constraints on the discreteness of variables in the form of discrete 

sequences 

zcsi,psi,rsi,..., Si = 1 r...,ri, (18) 

has been validated in [18,19]; here psi,rsir.. . are characteristics required for forming objective 

functions, constraints, and their increments that correspond to the sth standard value of the 

variable zi . 

Taking this into account, the maximization problem (13), (16) may be formulated as follows. 

Assume, we are given discrete sequences of type (18) (’ increasing or decreasing, depending on the 

formulation of the problem). From these sequences it is necessary to choose elements such that 

the objective 

maximize F(z,, , PSI, Tag,. . . ,2,,, , h,, TV,, . . .I 

is met while satisfying the constraints 

(19) 

gj(~:91)P91,T51,...,ZS”.IPs,,T~Ts,r...) I bj, j = l,...,d’. (20) 

Given the maximization problem (18)-(20), we can state a problem of minimization as follows 

while satisfying the constraints 

Generalized algorithms of discrete optimization have been proposed in [18,19]. These algo- 

rithms are based on the method of normalized functions [17] and belong to the class of greedy 

algorithms (201. They allow one to obtain quasioptimal solutions after a small number of steps, 

thus overcoming the NP-completeness of discrete optimization problems. The algorithms do not 

require the objective functions and constraints to be in analytical form. They may be tabular or 

algorithmic, ensuring flexibility and the possibility to solve complex problems for which adequate 

analytical descriptions are difficult. Considering this, we shall describe the algorithm next on the 

basis of results of [18,19]. 

Assume that at step t, variable Xi is at its discrete level z$f’ and its associated parameters 

Pi,Ti, 1.. are at the respective levels &), rs(f), . . . . These can be gathered in what we introduce 

as the set cp$“,’ = {zit), pit’, rJt) I I I Y... }. Then, the algorithm of solving problem (18)-(20) can be 

written as follows. 

(1) The components of the constraint increment vector {AGit)} are calculated 

AC(t) = mm Ag!!) t j .7r ’ i E Ict), j = 1,. . . ,d’, (23) 

where t is the index number of the optimization step, I ct) is the set of variables at the tth 
step, which, at their present values, satisfy all constraints. 

In (23), AglP is the increment in the jth constraint when ~$4’ undergoes a step change 

from the current level si to the level si + 1 while all the other SK’, k # i, remain at their 

current levels Si 

j = l,...,d’, i E I@), 



Fuzzy Sets 869 

(2) 
(3) 

where b is a normalizing factor (an arbitrary positive number), which may be interpreted 

as unit resource. For the first step (t = l), we have i E 1, (1, is the initial set of variables), 
/_J+ = b(c) = bj. 

I;I(t) = {; 1 A&) < b - 1 i E dt)} # 0, then go to Operation 3, otherwise go to Operation 9. 

The component; of the increment vector of the objective function {A&/“‘} are calculated 

as 

AR/‘) =F((~S4),...,lp~!~,...,~St,)) -~(10!11),...,10!f),...,iO~~)) 1 i E I@). (24) 

(4) If lct) = {i 1 AFjt) > 0, i E lct)} # 8, then go to Operation 5, otherwise go to Operation 9. 

(5) The components of a vector {@“‘} are calculated as 

(25) 

(6) The index i = 1 of the incremented variable is determined from 

p = max p@) 
1 iz’ 

i E I@). (26) 

(7) 

(3) 

(9) 

We recalculate the current values of the quantities 

z(f) = 
if i # 1, i E lct), 

5% 
if i = 1, 

b@-l) 
b(f) = #-l) _ A#‘L 
3 3 31 b ’ j = l,...,d’. 

If lct) = {i ] si < ri, i E lct)} # 8, then go to Operation 1, taking t:= t + 1, otherwise go 

to Operation 9. 

The calculations are completed. 

The algorithm of solving the minimization problem (18),(21),(22) can be written in an analog 

manner on the basis of results in references [18,19]. 

When characterizing the algorithm given above, it is necessary to point out that the execution 

of algebraic operations by means of (24) and (25) is accomplished on the basis of algorithms given 

in [21] with taking into account the results of [22,23]. 

To compare alternatives on the basis of (26) ( in essence, the comparison or ranking of fuzzy 

numbers qCt), i E lct) on the basis of magnitude in order to choose the largest) it is necessary to 

use the corresponding methods, which are analyzed in [23,24]. In particular, the authors of [24] 
classify four groups of methods related to comparing alternatives in a fuzzy environment. One of 

the groups is based on the construction of fuzzy preference relations, that provides [25] the most 

justified and practical way to compare alternatives. Taking this into account, it is necessary to 

distinguish the choice function or fuzzy number ranking index introduced by Orlovski [26]. It is 

based on the conception of a membership function of a generalized preference relation. 

If the membership functions corresponding to the natural or relative (as in (25)) values 1’i 

and ps of the objective function to be maximized are /.@I) and I, the quantity ~{~(fi), @z)} 

is the degree of preference I t I, while r]{p(fz), /.@I)} is the degree of preference I k 
I. Then, the membership functions of the generalized preference relations q{p(fi), I} 
and n{p(fz),p(fi)} take the following form: 

77Mfl)> cLLf2)I = rIs;wF minb(flh PL(f2)r PR(.fl, fi)), (27) 

Mf2L dfl)) = pwF min{df2)7 P(fdt PR(f2, fl)), (28) 
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where 11R(fl, f2) and PR(f2, fd are the membership functions of the corresponding fuzzy prefer- 

ence relations. 

If F is the numerical axis on which the values of the maximized objective function are plotted, 

and R is the natural order (2) along F, then (27) and (28) reduce to the following expressions: 

(29) 

(30) 

that agree with the Baas-Kwakernaak [27], Baldwin-Guild [28], and one of the Dubois-Prade [29] 

fuzzy number ranking indices. 

On the basis of the relations between (29) and (30), it is possible to judge the preference 

(and the degree of preference) of any of the alternatives compared. Utilization of this approach 

is justified, that is confirmed by the results of [30]. However, experience shows that in many 

cases the membership functions of the alternatives n(fr) and CL(&) compared form flat apices 

(for example, [2,3]), i.e., they are so-called flat fuzzy numbers [21]. In view of this, using (29) 

and (30), we can say that the alternatives pi and F2 are indistinguishable if 

77Wl)~ P(f2)) = rlbL(fz), P(fl)I. (31) 

In such situations the algorithm given above does not allow one to obtain a unique solution 

because it %tops” when conditions like (31) arise. This occurs also with other modifications of 

traditional mathematical programming methods because combination of the uncertainty and the 

relative stability of optimal solutions can be produce these so-called decision uncertainty regions. 

In this connection, other choice functions or indices (for example, [23,25,31-341) may be used as 

additional means for the ranking of fuzzy numbers. However, these indices occasionally result 

in choices which appear inconsistent with intuition [4,23], and their application does not permit 

one to close the question of constructing an order on a set of fuzzy numbers [4]. Besides, from 

the substantial point of view, these indices have been proposed with the aspiration for obligatory 

distinguishing the alternatives, that is not natural because the uncertainty of information creates 

the decision uncertainty regions. There actually is another approach that is better validated 

and natural for the practice of decision making. This approach is associated with transition to 

multicriteria choosing alternatives in a fuzzy environment because the application of additional 

criteria can serve as convincing means to contract the decision uncertainty regions. 

4. MULTICRITERIA CHOICE PROCEDURES 
IN A FUZZY ENVIRONMENT 

Before starting to discuss multicriteria decision making in a fuzzy environment, it is necessary 

to note that considerable contraction of the decision uncertainty regions may be obtained by 

formulating and solving one and the same problem within the framework of mutually interrelated 

models: 

(a) the model of maximization (13) with satisfaction of the constraints (16) interpreted as 

convex down, 
(b) the model of minimization (15) with satisfaction of the constraints (17) interpreted as 

convex up. 

For example, we can solve problem (19),(20) with the discrete sequences (18) given as de- 

creasing (incresing) and problem (21),(22) with the discrete sequences (18) given as increasing 

(decreasing). In this case, solutions dominated by the initial objective function are cut off from 

below as well as from above to the greatest degree [4]. It should be stressed that thisis a universal 
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approach and may also be used in solving continuous problems, for example, by modifying the 

zero order optimization methods. 

Assume we are given a set X of alternatives, which are to be examined by q criteria (of 

quantitative and/or qualitative nature) to make a choice among alternatives. The problem of 

decision making is presented by a pair (X, R) where R = {RI, . . . , R4} is a vector fuzzy preference 

relation [33,35]. In this case, we have 

R, = [X x X,/.JRJX~,X~)I, p=l,...,q, X&rXlEX, 

where PR,, (Xk, Xl) is a membership function of fuzzy preference relation. 

It is supposed in [33,35], that the matrices 4, p = 1,. . . ,q are directly given as expert’s 

estimates. However, there is another, more convincing, approach to obtaining these matrices. In 

particular, the availability of fuzzy or linguistic estimates of alternatives flp(Xk), p = 1,. . . , q, 
Xk E X (constructed on the basis of expert estimation or on the basis of aggregating information 

arriving from different sources of both formal and informal character [2]) with the membership 

funtions ~[f~(Xk)], p = 1,. . . , q, Xk E X, permits one to construct the matrices RP, p = 1,. . . ,q 
with the use of (29) and (30) as follows 

PR,(xk, xl) = sup min{cL[fp(xk)l,cL[fp(x~)1}, (32) 
Xk,XIEX 

fP(xk)ZfPWI) 

~R,(&r xk) = sup min{cL[fp(xk)l,Il[fp(X~)l}. (33) 
XkJIEX 

fP(xl)ZfPW*) 

If the pth criterion is associated with minimization, then (32) and (33) are written for regions 

fp(Xk) I f&%) and fp(W I f#k), rew~tively. 

Considering that fuzzy preference relations RP, p = 1,. . . , q play a role identical to objective 
functions Fp(X), p = 1,. . . , q in (X, M) models, it should be noted that the fuzzy preference 

relations may be introduced in the analysis of these models as well. For example, for F*(X), 

which is to be maximized, it is possible to construct 

PR, (xk, xl) = a [&I (xk) - Fp (xl)] + I?. (34) 

Following [36], it is possible to demand the fulfillment of the condition p&,(Xk, Xk) = 0,5 

leading to p = 0.5 and pR,(Xk, Xl) i- ,.iR,(Xl,Xk) = 1. This permits one to write 

a fey Fp(X) - ~2 FP(X) 1 + 0.5 = 1, 

to obtain 
1 

CY= 

2 ye? J-“(X) - ypL Fp(X) I’ 
Thus, correlation (34) may be presented as 

pR,(xk, xl) = 
Fdxk) - G(Xd 

I 

+ 0.5, 

2 yeyFp(X) - ,m;lz G(X) 

providing 0 < fin,, (Xk, Xl) 5 1. 

Let us consider the situation of setting up a single preference relation R. In a nonfuzzy case, 

we may be given a nonstrict preference in one of the following forms [35]: 

(a) (Xk, Xl) E R or Xk k Xl that means “Xk is not worse than XI”, 

(b) (Xl, Xk) E R or Xl ? Xk that means “Xl is not worse than Xk”, 

(c) (xk,-&) $ R or (-%,xk) 4 R th a means “Xk and Xi” are not comparable. t 
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The nonstrict preference relation R can be represented by a strict preference relation R8 and 

indifferent relation R’ [35,36]. We can say that “X& is strictly better than Xl” if (X&,X1) E R 
and (Xl,X&) $! R. The subset of all these pairs is the strict preference relation Rs, and it is 

possible to use the inverse relation R-’ ((X&, Xl) E R-’ is equivalent to (Xl, X&) E R [35]) to 

obtain 

RS = R\R-? (35) 

If (X&, Xl) E RS, then X& dominates Xl, i.e., XI, t Xl. The alternative X& E X is nondomi- 

nated in (X, R) if (X&, Xl) E RS for any Xl E X. It is necessary to find these alternatives. 

If we have pR(X&, Xl) as a nonstrict fuzzy preference relation, then the value pR(X&, Xl) is the 

degree of preference X& k Xl for any X&, Xl E X. The membership function, which corresponds 

to (35) (considering that PR-1 (X&, Xl) = p~(Xl, X&) [35]) is the following: 

P&(x&, xl) = m={pR(Xk, xl) - pR(&r x&h 0). (36) 

The use of (36) permits one to carry out the choice of alternatives. In particular, &(Xl,X&) 

for any Xl describes a fuzzy set of alternatives, which are strictly dominated by Xl. Therefore, 

the complement of this fuzzy set by 1 - &(Xl, X&) gives the fuzzy set of alternatives, which 

are not dominated by other alternatives from X. To choice the set of all alternatives, which 

are not dominated by other alternatives from X, it is necessary to find the intersection of all 

1 - &(Xl, X&), X& E X on all Xl E X [35]. This intersection is a subset of nondominated 

alternatives and has a membership function 

(37) 

Because pE(X&) is the degree of nondominance, it is natural to obtain alternatives providing 

(38) 

If sup,,,,~.~k(X&) = 1, then alternatives Xnn = {X;” ] XFn E X, p%(Xcn) = 1) are 

nonfuzzy nondominated [35] and can be considered as the nonfuzzy solution of the fuzzy problem. 

If the fuzzy preference relation R is transitive, then X”” # 0. Taking this into account, 

it should be noted that when fiP(X&) is quantitatively expressed, Xnn # 8. With qualitative 

F.(X&) it is possible to have X”” = 8 under intransitivity of R, that permits one to detect 

contradictions in an expert’s estimates. 

Expressions (36)-(38) may be used to solve the choice problem as well as ranking prob- 

lem [33] with the single preference relation. If we have the vector fuzzy preference relation, 

expessions (36)-(38) can serve as the basis for building a lexicographic procedure associated with 

step by step introduction of criteria for comparing alternatives. This procedure permits one to 

obtain a sequence X1, X2,. . . , XQ so that X > X’ 2 X2 2 . . . > XQ with the use of the following 

expressions: 

&,jXk) = x,FxfP_l [l - 

XP = X;pp 

- &,,(&,Xk)] = 1 - x,~x~,_l P&r,(Xlr xk), p= l,...,q, 

1 X;” E Xp-l,&&X;‘p) = x ;rP_, &,jxk) 1 
1 

obtained on the basis of (37) and (38), respectively. 

It should be noted that if R, is transitive, we can bypass the pairwise comparison of alternatives 

at the pth step. In this situation, the comparison can be done on a serial basis (the direct use 

of (3i) and (33)) with memorizing the best alternatives. 



Fuzzy Sets 873 

It is natural that the lexicographic procedure is applicable if criteria can be arranged in order 

of their importance. If the construction of the uniquely determined order is difficult, it is possible 

to apply another choice procedure. In particular, expressions (36)-(38) are applicable if we take 

R = ni=, Elp, i.e., /.LR(X~, Xl) = minis,<, p~,(Xk, XL), Xk, XL E X. When using this procedure, 
the application of (36)-(38) leads to the set Xn that fulfills [35,36] the role of a Pareto set. Its 

contraction is possible on the basis of differentiating the importance of Rp, p = 1,. . . , q with the 

use of the following convolution (aggregation of monocriteria fuzzy preference relations) [35]: 

ki-(Xk,Xl) = f:~pk@$(xk,-%), Xk,Xl E x, 
p=l 

where X,, p = 1,. . . ,q are weights (importance factors) of the corresponding criteria (X, > 0, 

p = 1,. . . ,q, c;=I A, = 1). 
The construction of ,_@(Xk,Xl), Xk,Xl E X allows one to obtain the corresponding mem- 

bership function &(Xk) of the subset of nondominated alternatives according to an expression 

similar to (37). The intersection of &(Xk) and &(Xk) defined as 

Pn(Xk) = min{&(Xkh &(Xk))r Xk E x, 

provides us with 

xn = x,” 1 x,” E x, pun (X,“) = NlyP (X/c) . 
I > 

The results of the present paper associated with the procedures of multicriteria decision making 

in a fuzzy environment have served as a basis for solving problems of power engineering, including 

substation planning in power systems [12] and optimization of reliability (optimization of reli- 

ability indices while meeting restrictions on resources or minimization of resource consumption 

while meeting restrictions on reliability levels) in distribution systems. 

5. CONCLUSIONS 

Since the application of a multicriteria approach is associated with the need to analyze (1) 

problems in which consequences of obtained solutions cannot be evaluated using a single criterion 

and (2) problems that may be considered on the basis of a single criterion but their unique 

solutions are not achieved because the uncertainty of information produces decision uncertainty 

regions, and the use of additional criteria can serve as a convincing means to contract these 

regions, two corresponding classes of models ((X, M) and (X, R) models) have been considered. 

The analysis of (X,M) models is based on the Bellman-Zadeh approach. The advantages of 

substantial (improving the efficiency of multicriteria decision making and taking into account 

different types of qualitative information) as well as computational character opened up by the 

application of the approach have been demonstrated. The use of (X, R) models, which allow one 

to combine the consideration of different types of uncertainty, is associated with applying a general 

approach to solving a wide class of optimization problems with fuzzy coefficients. This approach 

is based on a modification of traditional mathematical programming methods and consists in 

formulating and solving one and the same problem within the framework of interrelated models. 

The contraction of a decision uncertainty region is associated with reduction of the problem to 

multicriteria selecting alternatives in a fuzzy environment. Two corresponding techniques based 

on fuzzy preference relations have been considered. The first technique consists in step by step 

comparison of alternatives, that provides the sequential contraction of the decision uncertainty 
region. The second technique is associated with constructing and analyzing membership functions 

of a subset of nondominated alternatives obtained as a result of simultaneous considering all 
criteria. The results of the paper are of a universal character and can be applied to the design and 

control of system and processes of different nature as well as the enhancement of corresponding 

CAD/CAM systems and intelligent decision support systems. In particular, the results of the 
paper are already being used for solving diverse problems of power engineering. 
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